带随机移民分枝布朗运动在quenched概率下的中心极限定理
A Quenched CLT for Branching Brownian Motion with Random Immigration
-
摘要: 本文考虑当空间维数大于等于4时,带随机移民分枝布朗运动在quenched概率下的中心极限定理.与在annealed概率下的结果类似, 极限是高斯随机测度;但当空间维数等于4时, 高斯随机测度的协方差不同于annealed概率下的结果.Abstract: We establish a quenched central limit theorem (CLT) for the branching Brownian motion with random immigration in dimension d\geq4. The limit is a Gaussian random measure, which is the same as the annealed central limit theorem, but the covariance kernel of the limit is different from that in the annealed sense when d=4.
下载: