N叉树上的离散时间量子随机行走

韩琦, 陆自强, 韩娅楠, 陈芷禾

韩琦, 陆自强, 韩娅楠, 陈芷禾. N叉树上的离散时间量子随机行走[J]. 应用概率统计, 2022, 38(1): 86-98. DOI: 10.3969/j.issn.1001-4268.2022.01.006
引用本文: 韩琦, 陆自强, 韩娅楠, 陈芷禾. N叉树上的离散时间量子随机行走[J]. 应用概率统计, 2022, 38(1): 86-98. DOI: 10.3969/j.issn.1001-4268.2022.01.006
HAN Qi, LU Ziqiang, HAN Yanan, CHEN Zhihe, . Discrete-Time Quantum Random Walks on the N-ary Tree[J]. Chinese Journal of Applied Probability and Statistics, 2022, 38(1): 86-98.
Citation: HAN Qi, LU Ziqiang, HAN Yanan, CHEN Zhihe, . Discrete-Time Quantum Random Walks on the N-ary Tree[J]. Chinese Journal of Applied Probability and Statistics, 2022, 38(1): 86-98.

N叉树上的离散时间量子随机行走

详细信息
    通讯作者:

    陆自强, E-mail: luziqiang199605@163.com

  • 中图分类号: O211.9; O413.1

Discrete-Time Quantum Random Walks on the N-ary Tree

Funds: The project was supported by the National Natural Science Foundation of China (Grant No. 11861057).
More Information
    Corresponding author:

    LU Ziqiang, E-mail: luziqiang199605@163.com

  • 摘要: 通过离散时间量子随机行走的框架,我们研究了在N叉树上的离散时间量子随机行走, 该框架不需要硬币空间,仅仅只需要选择一个除了酉性再无其它限制的演化算子,并且包含了使用再生结构的轨道枚举和z变换. 作为结果,我们在封闭形式中计算了在根处的振幅的生成函数.
    Abstract: We study discrete-time quantum random walks on the $N$-ary tree by a framework for discrete-time quantum random walks, this framework has no need for coin spaces, it just choose the evolution operator with no constraints other than unitarity, and contain path enumeration using regeneration structures and $z$ transform. As a result, we calculate the generating function of the amplitude at the root in closed form.
  • 期刊类型引用(0)

    其他类型引用(1)

计量
  • 文章访问数:  228
  • HTML全文浏览量:  4
  • PDF下载量:  427
  • 被引次数: 1
出版历程
  • 刊出日期:  2022-02-25

目录

    /

    返回文章
    返回