韩琦, 陆自强, 韩娅楠, 陈芷禾. N叉树上的离散时间量子随机行走[J]. 应用概率统计, 2022, 38(1): 86-98. DOI: 10.3969/j.issn.1001-4268.2022.01.006
引用本文: 韩琦, 陆自强, 韩娅楠, 陈芷禾. N叉树上的离散时间量子随机行走[J]. 应用概率统计, 2022, 38(1): 86-98. DOI: 10.3969/j.issn.1001-4268.2022.01.006
HAN Qi, LU Ziqiang, HAN Yanan, CHEN Zhihe. Discrete-Time Quantum Random Walks on the N-ary Tree[J]. Chinese Journal of Applied Probability and Statistics, 2022, 38(1): 86-98. DOI: 10.3969/j.issn.1001-4268.2022.01.006
Citation: HAN Qi, LU Ziqiang, HAN Yanan, CHEN Zhihe. Discrete-Time Quantum Random Walks on the N-ary Tree[J]. Chinese Journal of Applied Probability and Statistics, 2022, 38(1): 86-98. DOI: 10.3969/j.issn.1001-4268.2022.01.006

N叉树上的离散时间量子随机行走

Discrete-Time Quantum Random Walks on the N-ary Tree

  • 摘要: 通过离散时间量子随机行走的框架,我们研究了在N叉树上的离散时间量子随机行走, 该框架不需要硬币空间,仅仅只需要选择一个除了酉性再无其它限制的演化算子,并且包含了使用再生结构的轨道枚举和z变换. 作为结果,我们在封闭形式中计算了在根处的振幅的生成函数.

     

    Abstract: We study discrete-time quantum random walks on the N-ary tree by a framework for discrete-time quantum random walks, this framework has no need for coin spaces, it just choose the evolution operator with no constraints other than unitarity, and contain path enumeration using regeneration structures and z transform. As a result, we calculate the generating function of the amplitude at the root in closed form.

     

/

返回文章
返回