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? - ‘ Abstract

The stroné consistency of the constrained maximum likelihood estimator of the two-
parameter exponential finite mixture is established.

§ 1. Introduction

2 The investigation of the maximum likelihood estimator of the exponential finite
. mixture has been pursued by many authors, among whom we mention [1]—[5] For a
comprehensive bibliography we refer to.the book [6].
¢ Most existing works on exponential finite mixture deal with the one-parameter
- cage, Thig paper deals with two—parameter case which is much more complicated. To see
the difference hetween the one-parameter exponential finite mixture and two-parameter
exponential finite mixtute, we nobice the followmg fact, For the one-parameter
exponential densiby, i.e. =
; Y (@, &) =re 1,5 (@), A>0,
where I,., (%) is the indicator of the set [0, o), the dendity is bounded on the natural
parameter spaoe (0, 00) for any fixed #>>0, On the contrary, two-parameter exponential
: dengity, i. e. ‘
¢(z, A, @) =he™* V], (@), A>0, a€ (—o0, 0)=R
» is unbounded or the natural parameter space {(A, @): A>0, &€ R} for any fixed .
Due to this fact, it is easy to see that the maximum likelihood estimator exists in the
cago of one-parameter exponentidl finite mixture and does not exist in the case of two-
- parameter exponential finite mixbture. For example, consider a two-parameter
l exponential mixture of two components. Without loss of generality, we may suppose

T K<z, Lebwi=wy=1/2, ay=a3=a,, A;—>o0, A,=1, then we see that
Sup 1—_{ (w1¢ (w;, }\:1, ll1> +’LU2¢ (a;;, l:g, ag)) >(%" AJ)(-;; 3—(“-"))”'(—;- 6_(."_“) —>o0, ’
i= .

' This shows that the maximum likelihood estimator does nob exist,
! , The density of the two-parameter exponential finite mixture is
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1@, 0) = Bwd(o, . a,

where K, the number of the components, is known, the mixing proportions w,>>0,
wy+---+wg =1, the parameter #= (w, A, @), where w= (w;, *-+, wx), A= (A1, **-, Ag),
a=(ay, +-+, ag). The natural parameter space is
H=W x (0, o)X X RE
where W ={(wy, +*, wg): wi+--+wg=1 and w,;>0, Vk=1, «-., K}, The likelihood
funotion is
Lo (@ -y @ 0) =Hl f(zs 0).

Since we cannot consider the maximum likelihood egtimator over the natural
parameter space &, we shall use, however, the constreined maximum likelihood
estimator on some constrained region X, which engures the existence of the maximizer
of I, on it.

In this paper, we find a kind of constrained region F, on which the consirained
maximum likelihood estimator exists and tends to the true parameter , as n—>co
almost surely, provided the true parameter 6,EEH, Because we can make the
consjrained region X, arbitrarily approximate the natural space B, the condifion #,&

&y will not be an impassable chasm in practice.

§ 2. Main result

In the light of the example mentioned above, we know that in order to guarantee
the eoxistence of the maximum likelihood estimator, it is necessary to add some
e Ap=e'T, congtraints on A 8pace 80 as to avoid the occurrence

of the situation where some Ay—>co and the others
keep conslant.
Let g(¢) be an inoreaging function defined on
(0,00), and g(¥) =0(¢) as t—>oc. Let a be a positive
A= number. We defined a subset of the A space(0, co)®
ag follows:
Ao={(A, +--, Ag): Vj+Ek, if A;>a then.
A Ay<<exp (g (M)}
For example, we take g(#) =~/ ¢ and K =2, then the shape of A, is drawn as the

following figure.
Now, we take the constrained region of the parameter § to be
Ho=W x Ay X RE,
Theorem. Iet the sample space be Q. For almost all & @2, there exists a positive

A

number N, such that for any n>N,, the likelihood function L, has a maximizer 6, on

E, and §,—Y,, provided 8,€ &,.
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Proof. For an arbitrary e-neighborhood U, (6,) of 8, et T T
Bo=Eo—Us(0o).
If B, can be expressed as a finite union of subsets, E{,=L‘JE‘, and for almost all w€Q,

there is a positive number N, such that for each B; we have
sgp L.(0) <L.(8), Vn>N,,

then the theorom is proved. By the strong law of large numbers,
T (66) =exp( = log Ln(66) )“=> exp (B log £ (s, 0)) =L £>0.

‘So, we need only prove that

(%) sgp L@ <€ Vn>N,.

‘On the other hand,

log sup Li/"(6) <+ 3} sup log f (@ 6)= Bsuplog (=, 6),

log LM/*(66) =5 Elog f (2, o).

“Therefore, it is also enough to prove that

(%) Esup log f (e, 6) <H log f (=, 6o).

For B>0 and 0>0, pub
Ay=AoN{(Ay, *++, Ax): all A,=>B},
Ay=AoN {(Ag, -+, Ag): all <O},
For every B>0, when O is sufficiently large, we have
Bo=E;| B,
where By=8, (W x 4;x R¥), $=1, 2. Hence, in what follows we need only prove that
&y possesses the property (#) and that F, can be expressed as a union of finitely many
subsets such that each subset possesses the property ().
1°, Congider &,.
Suppose §€ B;. Take K +1 arbitrary disjoint interyals I,=[B,—2, B+2], k=1,
» K+1. Let I=[Bx—1, Bx+1] and p,=P{z€I;}, p=min{py, ps, ***, Pis1}. By the
strong law of large numbers, for almost all w&€ @ there is a N, such that for n>>N, we
have
mln#{ﬁvz € I} /n> —'P

1<k<K:
For any (a,, -+, ax) there must be some I, which contains none of a,, +++, ag. For
sufficiently 18rge B, we have
L= f (=, 6) J S, )1

LT3N

< é 7\-1.-) L,ez,,.( 2 Wik MO, 0y (21) ) ]

<;(§1 7"1:) I1 EMG"“‘ <(,§1 M)(é?\qﬁo‘“ ;<('§K1 M)(ghﬁ’%""”)

1€ Xke k=

=gum;+ sumy
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‘where the entries in sum, and sum, are, respectively, of the form
;wlc+(p/2)e—mplﬂ and M(;\_g/ﬂe—zwﬂ)y j#k.

Because #€ Hy, all A,>>B. Hence the entries of the first form are infinitesimals as B—»oco.
As to the entries of the second form, when B—»cc we have A;>>B>>a, henoe by definition
of 4, we have

A j( M/Se—zwﬁ) < M/Ee-zkp/%g(m — M/ze—mplz-ro(m_)o'
Consequently, sum;+sum,<<§/2. It implies that '

suUp Lir<¢ ¥Yn>N,.

This is just what we wanted.
2°. Before considering &, we claim that corresponding to each w*€ W and each A®
€ A,, the set
E*=8{N1{0: w=w", A=A"}
can be expressed as a finite union
g -z,
where Hj=E;N {§: w=w", A=A" @€ 4]}, A]=Aj,;x -+ X A%, and for each B} we have

Esup ]'ng (wl 0) <E10gf (IB, 00) -
=
‘We prove the claim as follows. Let 0<<my<C.-+<<mg, where m; is so large that for

every f with some |ayx|>m; we have ¢ U.(f,). The space RY of (ay, -+, ag) can be
expressed as a union of finite numbers of subsets such that each subset is of one of the
following two forms
Mi={(ay, -, ag): all |@|<m}
M,={(ay, +-, ax): there are some |a;|>m,,; and all other |a.| <mu}.
Hence instead of 2%, we need only consider the sets
Br=E\N1{0: w=w" A=\, a€C M}, 1~
Because E] is compact, it can oe expressed as a finite union of subsets such that each
subset is of the following form '
Bli=ByN{f: w=w", A=7*", a€ A}},
Esuplog f (=, 6) <Elogf(z, bo).

g5

and

Let the component a of §y be
ao= (@01, ***, Gox).

We can assume that the A}'s make a lattice covering of M;, namely, each A% is a
rectangle I,;x.--x I,, and for each A< K, there is a I, which does not intersect the
interval (agy—e¢, ag,+€). This will be useful later.

Regarding &;, we consider an arbitrary point #;€ 53, say ;= (w*, A", a1, -+, az).
‘Without logs of generality, we can assume that

lat], =+, lap|=mua and  (agiq], -+, |en|<mi, k=1

Let d3 be a point with |ay| == || =m, and all other components coinciding with
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those of 4;. Then, §3€ 5?. Henoe there is some 5}, such that g:¢ &j;. This implies that

G:€ B3N {0: w=w", A=A", |@], -, |&| =M1 @€ 1y, -, GxEIc.}'ﬂ‘E;i
Therefore, Z; can be expressed as a finite union of subsets with the similar form of &3

By the monotone convergence theorem, we have
lim E suplog f (=, 8) =FElog hm supf(m 7))

Mipy—302 83 7]

—Elog lim sap 2 Wnﬁ(w M, a;)

Mmoo ga 17k
Take I,,, -+, I,, such that I,, does not interseot (@gs—¢, @p1+¢€). Note that corresponding
to each § € F3; there exists . '
P EBL=8N{0: w=w", A=A", a €I, %+ %I}
such that §’ and @ have the same components axy, *:-, ax. Henoe,
lim sup log f (v, 6) < E sup log f (=, §) <E log f (z, ).

AT gy =Yy
This completes the proof of our olaim,
. Consider H,=H,N (W x 4,x RE),
Suppose that ¢>ry>+++>rg>0 and for any # with some L,,<fr1 we have 0¢U, (8o).
.Hg can be expressed as a finite union of subsets such that each subset is of one of ithe
following two forms:
Han=8,N{8: all ME [ry, 0]},
Haa==Hj[N {§: there are some A; € [r;, ¢] and all other A,<r*4}.
Firgt, we consider H;.
From the result of 2°, we know that for w*€ W and A*€ A, there are neighborhoods
U(W*) and U (A") such that
E suplog f (z, §) <Elog f(z, 60), Vj,
4

where o

=E,N1{0: WeU "), A€U\), a€ Al}.

Beacuse the projection of &, on the space of (w, A) is W X [r,, ¢]% which is compaoct, we

have a finite number of U/ (w") X U(A.'), say U(w*?) xU (A9, ¢=1, +, @, such that
T L’1’121—LJL,|1—421¢11 ‘

where
Epnyg=80N{w€U (v, A€U(A"), a€ A%,
and
B sup log f (2, §) <E log f (=, o).

"-1!
Secondly, we consider H,,.
Suppose §*= (w*, a*, A, *--, Ar) € B2, Without loss of genreality, we assume A, «-,
ME [7, 0] and Agyq, <++, Ax<7i;1. Analogous to the reasoning in 2°, let
g% = (w*, a*, AL, ***, Mg, Ti =**, T0).
"Then, §**€ By;. Hence §** € some Hyg;. This implies that
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'€ ENIY: w* €U W), a* €A}, MEAL, -, MEA s, ++r, My<riss}—=Fea,
where '
‘ APX e x A =T (A",
Thus, H3, can be expressed as a finite union of subsets B4 and we have
lim B sup log f(z, 8)= Elog lim sup f(=, )

610  Bgix 743120 Egjx

= E log lim sup 2 wd (&, M, @)

74120 Egjx A=

~Blog sup f (v, 6)<E log £ (3, bo).

ey

.

This terminates the proof of the theorem.
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