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Abstract

Consider the model X; = X;_18 + g(I"/) + ¢¢ for t > 1. Here g is an unknown
function, 8 is an unknown parameter to be estimated and €5 are i.i 4. with mean 0
and variance ¢° and U; are ii.d. random variables obeyed uniforml: on [0, 1]. The
order of convergence of consistent estimators and the bound of asymptotic efficiency
in sense of Takeuchi are given. Meanwhile we give a necessary and sufficient condition
that the least squares of 3 is asymptotically efficient, and we also show that the MLE
is asymptotically efficient.
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§1. Intro-luction

Consider the partly linear autoregressive model
Xi=BXe1+9(U)+er (t=1,2,---), (1.1)

where X = O,g(j is an unknown function in R', {U;.t = 1,2,---} is i.i.d. sequence of
random variables obeyed uniformly on [0, 1] and {&,: f = 1,2,---} is a sequence of i.i.d.
random variables having a density function f() (with respect to the Lebesgue measure)
with mean 0, variance 0% and finite fourth moment. Assume that |8] < 1 and f(u) > 0
for all u.

The model defined (1.1) belongs to the cla~- of partly linea: regression models, which
was first proposed by Robinson(1988). In re«-ntly years, a It of literature discussed
partly linear model Y; = X8 + g(U:) + €4, ¢ = 1,2,--- .Here (X;, U;) are 1.i.d. random
samples or known design points. See, for example, Heckmen (1986, 1988), Rice(1988),
Speckmen(1988), Hidalgo(1992), Liang(1995), Liang and Cheng(1993).

More recently, Gao and Liang(1993) has investigated the asymptotic normality of
LS estimator for the model X, = X,y + g(X¢-2)+ & (¢ = 3,---), which based on g
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estimated by piecewise polynomial.

In this paper, we consider the asymptotic efficiency of some estimator of 3 for the
model (1.1). In section 2, we shall give the order of consistent estimator. In section 3, we
shall obtain the bound of the asymptotic normality in the sense of Takeuchi. In section
4, we shall give a necessary and sufficient condition that the least squares estimator of g
is asymptotically efficient, finally, we shall also show that the MLE of /3 is asymptotically
efficient.

Suppose that B is an open interval (-1. 1). Assume g is square integrable and fol g(u)du
= 0. Denote J(g) = fol g% (u)du,

X,I:(X],---,X,,_)T, X;:(X07"'vXn—1)79
e= (e, ,€n)", g(U) = (g(Uh),---,9(Un))".

§2 The order of convergence of consistent estimators

In this section we consider the order of convergence of consistent estimators of 3 in

model (1.1). Let
T[dPs. . T1dPg, z)
— 11 : d -
LB, 52) I dz. log [1dPgs, [ dae

Definition 2.1 For an increasing sequence of positive numbers {C,} (C, tending

to infinity), an estimator g, is called consistent with order {C, }if for any { > 0 and every
1 of B, there exist a sufficiently small positive number § and sufficiently large positive

number L satisfying the following:

lm sup Pga{Callf,~BIl > L} < ¢ (2.1)
n=o0{g-nli<s

Since the joint density of Xy, -+, X, is given by [[ f(z: — Bzi-1 ~— g(us)), it follows
t=1
from that for every 8), 3, with 8y # 3

e f(i'ft iy g(“t))
@) = [ [T 1= Braees - gu) & tog FELEAZLS 1] da,

Putting 8, = 51 + A, we have
o on) = [ [ 110 £ tog 7L — 11 e,

_ ?-: E [/ f(et)log“‘%ﬁ“‘] '

For all |A| we obtain [ f(u)log[f(u)/f(u — A)] = O(A?). i log[f(u)/ f(u — A)] = O(A?)
for large {Al, then we have supgc|ajcoo A72 f f(u)log[f(u)/f(u ~ A)] = O(1). Thus we
have

L) =0 (a7 S EXEY). (22)
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Since for each ¢, E(X,) = BE(E;—1) = --- = B'E(X,) = 0,
E(X{) = B*E(X{_1) + E(e]) + J(g) = (B** 7V + -+ + B2 + 1)(0® + J(9))

_ 1_ ﬁ2t 2
T 1-p2 (e* + J(9)),
we obtain
AL 2 n 1 — 2n
& FXe) = (1 o (1—?32)2) (0" +J(9)). (2.3)

In order to show that the order of convergence of consistent estimators is 1/7, we need the
following theorem.

Theorem 2.1 Suppose that for each n, {X, : [T}, f(X:—Bzi—1 —g(u:)) > 0} does
not depend on f3. If there exists a {C,, }-consistent estimator, then the following holds: for
every 3 € B and every a # 0

Llim lim 7,(8,8+alC;') = co. (2.4)

n—oo

Proof See the proof of Theorem 2.2.2 of Akahira and Takeuchi(1981).
Letting A = LC;!, in order to get limy_, lim L.(B,8 + aLC;') = oo from

n —_—nN—00

(2-2), (2.3) and Theorem 2.1 we have to obtain C,, = O(y/n). Hence, it is seen that the
order of convergence of consistent estimator is /n.

§3 The bound of asymptotic distribution of AMU estimators

In this section, we shall give the bound of asymptotic distribution of AMU estimator
in the sense of Takeuchi. At first, we list some assumptions which are sufficient for our
main results.

A.S.1 f(-)is differentiable and f(u) > 0 for all 4 and |u]iigldo f(u)=0.

A.S.2 f(-)is three times continuously differentiable on the real line and |ul|igloo f'(w)
=0.

A.S.3 Q;——-fu(zi) is a bounded function and E|e* < oo.

A.S.4 For each fy € B the following hold:

(@) Zim n=? 3 g {|X(af sup (e + )} =0, (5 =0,1)
t=1

n—e 0<|n|<un=12|X_,|
n 2
(b) lim n™ Y Eg, {|Xt_1|3 sup |&'(ee + 1])|} =0, (j=0,1),
n—oo t=1 0<|n|<un—12|X,_,|
0% log f(z)
where k(z) = T onz
4
A.S5 E ’fl(e‘) < o0
fler)
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A.S.6 lim uf(u)=0.

Jul—o0
Definition 3.1 S, is asymptotically median unbiased (AMU for short) if for any
v € B, there exists a positive number é such that

lim sup Cg,|Pgn{Bn <B}-1/2|=0,
R B B-v|<é

lim sup Cy|Pgn{fn>p8}—-1/2|=0.
N0 518 p|<8

Definition 3.2 For 3, asymptotically median unbiased, a distribution function
F(t,0) is called an asymptotically distribution of Cy (8, — ) if for each ¢, F(t,() is con-

tinuous in B and for every continuity point of F(¢,0)

CnlPgn{Cn(Bn — B) < t} - F(t,B8)| — 0.

Since 3, is a {C, }-consistent estimator, it follows that F(—oc0,8) = 0 and F(o0,8) =
1.Let B, be an AMU estimator. Then it follows that F(0,6~) < 1/2 and F(0,8%) > 1/2
for all g € B. For §,, AMU, that G;,’ and GE are defined as follows:

G?j- = Fléo Pﬁ,n{C'n(ﬂn - ,B) < t} vt > 0, (3'1)
GE = hﬂ Pﬁ,n{C'n(ﬂn - ﬂ) < t} vt <o, (3.2)

Let By (€ B) be arbitrary but fixed, we consider the problem of testing hypothesis
u

HY: ﬂ=ﬂ1=ﬂo+ﬁ(u>0)4—>1\’: B = Bo.
We define

I = sup lim Ep,non, (3.3)
Bo pEd, g M0 Bo

where @175 = {¢n : Eggtu/Condn = ]5,0 < du(X,) < 1forall X, (n=1,---)}. Putting
Ag, g, = {Vn(Bn — Bo) < u}, we have for all u > 0.
1
Pﬂo+u/c.,n(Aﬁ.,ﬂ°) = Pﬁo+u/C. ,ﬂ{Cﬂ(ﬂﬂ - ﬂo - u/Cn) S 0} b ‘é.

Since a sequence {xa,_,,} of the indicators of Ag_ g, (n = 1,2,---) belongs to @2,
it follows from (3.1) and (3.3) that

Gh < T3 Yu>0. (3.4)
Similarly to consider the next problem of testing the hypothesis
H : B=0F+u/Ch(u<0) K: p=/[.
We define
o= inf lim Eg, .én. (3.5)

o ¢le¢l/2 n— 00
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Note that

Iy =1- sup Lm Fg, nén. (3.6)

¢. €¢l/2 =00
In the similarly way as the case u > 0, we have
Gg, 2 T3, Vu<o. (3.7)

Since By is arbitrary, the bound of the asymptotic distribution of AMU estimators are
given by: '

Gh <TF Vu>0, Gz >T; Yu<0.
Definition 3.3 An AMU estimator 8, is asymptotically efficient if for each 8 € B
N F[,‘;, Yu>0,
Is, Yu<O.
It can easily see that for any AMU estimator 8,, and any 8 € B
Jim P {Cr(Bn~B) <u}< T,  Vu>0,
lim Pg n{Cu(Bn=~B)<u}>T5, VYu<O.

F(u,8) = {

Hence if 3 satisfies the above condition of the asymptotic efficiency, we have for any AMU
estimator f§,

i (Pou{=a < Ca(B = B) <8} = Ppaf{=a < CulBa = B) < 1)) 2 0

for all positive number a and b and each 8 € B.

In the following we shall obtain the bound of the asymptotic normality of the like-
lihood ratio statistics and the sufficient condition that an AMU estimator be asymptotic
efficient. In fact, Theorem 3.2 shows that under some regular conditions the bound of
asymptotic distribution of AMU estimators of # is a normal distribution with mean 0
and variance (1 — A2)/((o* + J(g))I), where I is the Fisher information of f. Thus it
is easily seen that an AMU estimator is asymptotically efficient if it has an asymptotic
normal distribution with variance equal to the above bound. In this section it is enough
to consider the case Cy, = v/n. Here we first state several preliminary conclusions.

Lemma 3.1 Let {Z,:n = 1,---,}be a sequence of random variables satisfying the
followings:

(1) Zo=2ZyN+ Ran(n>N);

(2) For each fixed N, the asymptotic distribution of Z, n is normal with mean 0
and variance o%;;

(3) limpy_o 0% = 0?;
(4) R, N converges in probability to 0 uniformly in n.

Then Z,, has a limiting normal distribution with mean 0 and variance o2.

Proof See the proof of Lemma 3.2.1 of Akahira and Takeuchi (1981).
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Lemma 3.2 Let Y;,Y3,--- be m-dependent sequence of random variables such that
(1) EX)=0,E(|ViP) S R<oo(i=1, ),
(2) limpooo 1; ZZ:] Airn = A exists, uniformly forall 2 = 1,---
Then Y 7, Y; is asymptotically normal with mean 0 and variance nA.
Proof See Hoeffding and Robbins (1948).
Lemma 3.3 Under the assumption (A.S.1),if Ele,|? < oo and E|f'(e,)/f(e)]? < oo,

n 4
then the limiting distribution of n=1/2 3* fle)

(0* + J(g)) e,
ot +J(gNl . f u)
—= with I = du.

1- 2 flu)

Proof Sce the proof of Lemma 3.2.3 of Akahira and Takeuchi (1981).

Next it will be shown that the bound of AMU estimators of 3 is obtained using the

X;_1 is normal with mean 0 and variance

best test statistics and the least squares estimator of 3 is asymptotically efficient if and
only if f is a normal distribution with mean 0 and variance o2.

Let 3o arbitrary but fixed in R!, considering the problem of testing the hypothesis
+:ﬁ=ﬂ1=ﬂo+%(U>0)H K:B=fo.

Putting By = o + A with A = u/\/n. We dcfine
J(Xe— Bo X1 — g(Ud))
f(Xt Bi1 X1~ Q(Ut))'

We assume that f is twice continuously differentiable. If 3 = 3y, then

tg Zne = f: log — J,Eitl)/th = }": {108 f(sl) —log f(s: — un"l/th_l)}

t=1 f(Et
n 32
=un~Y? {: ——‘,ff((j:))Xt 1- 2n tZl éf(zs )

Zui = 1

Xe1. (3.8)

¢t lies between ¢, and €, — un=12X,_y. If B = By, then

n fleg +un=2X, )

En: Zut = 2 log Z{logf(s, +un~? X)) ~ log f(er)}
t=1 t=1

flee)
n 2 * K
- un_l/z E1 ff,'((s:)) Xt vt 271 Z_:l f(e )Xt v (3.9)

£?* lies between &; and &; + un~1/2X,_;.
Putting T = iy X2 k(e0), Tp = Yooy XEk(ep), and Tp* = iy X 1k(e1").
Lemma 3.4 Under assumption (A.S.1) — (A.S.4) the following hold

n ! ’
Eg; (Tn) = t; Es, {X;z_l {jj:((z:))} }

_ 401 — g*»=1)
= (o’ +J(g))1{ ﬁlz _51((1—13[;?)2 )}; (j=0,1)
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Jm Es,(T3/n) - Eg(ta/m) =0, lim |Eg,(T5"/n — Eg,(Tu/n)| = 0;
nll»ngo IEﬁo(T;:z/nz) - Eﬁo(Tz/"2)| =0, nlivn(}o IEﬁl(T - nv:2/n2) - Eﬁl(Tz/"z)l = 0.

Proof See the proof of Lemma 3.2.4 of Akahira and Takeuchi (1981).

Lemma 3.5 Under the Assumption (A.S.1) — (A.S.5), both of the sequences
T, [(Ep,Ty;) and T;*/(Eg,T2*) converge with probability 1.

Proof See the proof of Lemma 3.2.5 of Akahira and Takeuchi (1981).

Theorem 3.1 Suppose that Assumption (A.S.1) - (A.S.5) hold. If B = Sy, then

n 2( 2
Y Z,: has a limiting normal distribution with mean %
— Mo

t=1
2( 2 . n
- (1(71 +;z(;]))1‘- If 3 = B, then Y Z,; has a limiting normal distribution with mean
] t=1
u2(02+J(g))[ u2(a2+J(g))I
——————— and variance —————=""—,
2(1 - 43) 1- /2
Proof If 3 = f3y, then it follows from (3.8) that

n n ! 2 n
Zo = un~1/? / (Et)X L u= T*
tgl ¢ tgl f(at) -1 2n { Z "

and variance

-1/2 n 1 1) - -
= n B, (T2) { us " T ey Ko G (3.10)
Polin n=1Ep, (Ty) 2 Ego(T3) '

If B = B, then it follows from (3.9) that
izmzun—l/zz f(Et) 1___2
t=1

=1 f ( t)
R i >/ el S
oriin wTEp, (T3°) 2 Egy(T") (3.11)
It follows from the first two formulas of Lemma 3.4 that '
2+ J(g)I
lim n~'Eg,(T7) = lim n~Ep,(T3) = (—"TJ’—%)—(J' =0,1).
n—o0 — by
Hence it follows from Lemma 3.3 that both of the sequences of
L HE X S S
-1 :x and -1 P
n Eﬂo(Tn) n- Eﬁl (Tn )

have a limiting normal distribution with mean 0 and variance (1 — 82)/[(0? + J(g))I].
Therefore it follows from (3.10), (3.11) and Lemma 3.5 that if 8 = o, then E?=1 Zut has
2( 42 2 I
WO+ TGN g vasiance Y& HIGN]

2(1-55) 1- 55
u?(o? + J(g))]
2(1-53)

a limiting normal distribution with mean

If B = 31, then }_;_, Zn, has a limiting normal distribution with mean —

u’(o? + J(g))I
1-8%

and variance
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Theorem 3.2 Suppose that assumptions (A.S.1) - (A.S.5) hold. The bound of
asymptotic distribution of AMU estimators /3, is given as follows: for each € B

T Py u{v/lfn—B) S} < @ ("V %“”’) V>0, (3.12)

i Py {va(Bn — B) > u} > & (”" Gk "””') Yu<o,  (3.13)

n—oo AY/ 1- /jl
where ®(.) is the standard normal distribution.

Proof Let 3y be arbitrary but fixed in B. Let u be arbitrary positive number.Then
we consider the problem of testing the hypothesis

HY :8=8g+un"? & K: (=7

If we choose a sequence {k, } such that lim, o Pg yun-172 1 {X1=1 Znt > kn} = 1/2, then
it follows from Theorem 3.1 that im,_ . k, = —u?a?I/[2(1 ~ 32)]. Furthermore we have

from Theorem 3.1

. L . v L — ]2 ky~JJ2
lim Pg, . Dt > k} = lim P OH{Z‘”' > ,
n—oo Po. {t; t n—oo Po, \/I_* \/[_a
2 2
- 8~V = d(VT7), 17 = T TIN
1—fo

Hence it follows from (3.3) and the fundamental lemma of Neyman and Pearson that for
each u > 0 I'f (u) = ®(u\/I(a? + J(9))/(+/1 — 3%)). From (3.1) and (3.4D) we obtain for

every u > 0

n@go Pﬁo,n{\/ﬁ(ﬂn - ﬂo) S u} S ¢ ("_[(_ldi_-;l(—g))) i

Since 3, is AMU, 1”3;(0) = ¢(0) = 1/2. It follows from the arhitrariness of 5 that (3.12)
holds.
Now let u be arbitrary negative number. Then we consider the problem of testing

hypothesis

H™ :ﬁ:ﬂg-{-un_l/2 - K :p0=[.

u
By a similar way as the case u > 0, we have from (3.6) I'; (u) = ‘I)(
V1-732

all u < 0. Hence it follows from (3.2) and (3.70) that for every u < 0

: uy/ (0% + J(g)I
lim P, n{va(fn — Go) <u} > @ < Ny ) .

n—oo

It follows from the arbitrariness of Jy that (3.13) holds. Thus we complete the proof.

From Theorem 3.3 and Definition 3.2 and 3.3 we get the following theorem.
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Theorem 3.3 Under the assumptions {(A.S.1) ~ (A.5.5), an AMU estimator is
asymptotically efficient if and only if the limiting distribution of /n{(8, — Bo) is normal
with mean 0 and variance (1 ~ 3%)/((0? + J(g))1).

§4. Asymptotic efficiency of LS estimator and MLE estimator

In this section, we shall give a necessary and sufficient condition that LS estimator of
B is asymptotically efficient, then we also show that MLE of 4 is asymptotically efficient.
We adopt piecewise polynomial to approximate g and to construct the LS estimator and
MLE of 8.The following condition is sufficient for the statement of the results.

Condition 1 Let r(0 < r < 1),m(m = 1,---) and M(> 0) be nonnegative real
constants such that

g™y ~ W < My —yl, for0<y,y' <L

Think of p = m 4 r as a measure of smoothness of the function g.

First we describe a piecewise polynomial estimator of g defined by Chen (1988), which
has been investigated by some others. Given a positive My, the estimator has the form
of a piecewise polynomial of degree m based on M, intervals of length 1/M,,, where the
(m + 1)M,, coefficients are chosen by the method of least squares on the basis of the data
X1, -+, Xn. Let Iy, = [(v=1)/My,v/M,)for 1 <v < My and Inn, = [1-1/M,, 1}. Let
Xny denote the indicator function for the interval Iy, , so that x,, = 1 or 0 according to
z € I, or z ¢ I,,. Consider the piecewise polynomial estimators of g of degree m given
by g(z) = Zﬁi‘l Xnup(Z) Pamu(z), where {Pam.(z)} are polynomial of degree m chosen to
minimize the residual sum squares

n
tzl(Xt -~ Xi10Ls — §(U¢))2 = min. (4.1)

For convenience and simplicity, some notations are introduced

Pn.nw(z) =ag, + a1 +---+ amuzm,

an(Ul) an(Ul)Ulm XnM.(Ul) XnM.(Ul)Uim
Z = e e e 9
an(Uu) Tt an(Un)U:;n oo X'nM,.(Un) et XnM, (Un)U:z.n
a = (0'01,’ ct ,0m1y002,7 " 3 Q@m2,00M, " " 7a7nM.){m+1)M.,
~ E(Ul) 2&1 Xnu(Ul)I’Snmu(Ul)
gs| =TT = Z.. (4.2)
ﬁ(U,,) 2,,;1 Xnv(Un)anu(Un)

Then based on the model
X, =B8X:+G +e,
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the LS estimator (@, 8Ls) of (a,) can be obtained as follows
= A(Xn — X2B.), Brs= (X2(F-P)X) ' X((F - P)Xn, (4.3)
where A = (ZTZ)"lzT and P = ZA and F is the (m + 1)M,-order identity matrix.

Theorem 4.1 Assume that condition 1 hold, and that im,,_,., n~IM,, = 0 for some
g € (0,1) and lim,, oo nM72P = 0, then

V(s - B) = N(0,0*I'7?), (4.4)
where 815 is defined by (4.3) and I'* = o? + J(g).

Proof Similarly prove as the proof of the Theorem 2.1 of Gao and Liang (1995), we
omit the details.

It will be proved that the least square estimator of § is asymptotically efficient if and
only if f'(u)/f(u) = cu, where ¢ is some constant. Indeed, since

o = /uzf(u)du / f;zs;)du > {/'uf’(u)du}z =1,

7=" is obtained if and only if f'(u)/f(u) = cu. It follows from Theorem 3.2 that the
limiting distribution of /n(dLs — B) attains the bound of the asymptotic distributions
if and only if f is a normal density function with mean 0 and variance o?. Hence it is
seen by Theorem 3.3 that the least square estimator is a.symptotica.lly efficient if and only
if f is a normal density function with mean 0 and variance 0?. Therefore we have now

established.
Theorem 4.2 Under the assumptions (A.S.1) - (A.S.5), a necessary and sufficient
condition that the least squares estimator of 3 is asymptotically efficient is that fis a

normal density function with mean 0 and variance o2.

Remark As is immediately seen from above, assumptions (A.3.1)-(A.3.6) are not
necessary for the proof of sufficiency.

We now consider the asymptotic efficiency of the maximum likelihood estimator
- (MLE), which is defined as the solution of the following
n
3 Zlog S(Xi - Ay — §U) = 0
t=1

By Taylor expansion we have

0= zn: 8(?6 log f(X¢ = BXi-1 — g(Ut))

t=1
= i logf(X, BXe-1 - g(U))
*-2'10g J(Xe = B Xeeq = BY(UD) Bz — B+ (V) - Q(Ut))]

2 S [ Xy ¥ (Xe — Xy - 9(U))
Xg WXy =B X1 —9°(Uy) (Bpr - B+ 9(Ue) - g(Ut))] )
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where [8* — B| < |BuL ~ B, [77(Ur) — 9(Ud| < [§(Uy) — 9(Uy)! and 9(u) = log f(u).
We have from lemma 3.3 that the limiting distribution of

1 n
7= 3 Xe19(Xe ~ BX e — g(Ue))
t=1

is normal with mean 0 and variance ((¢? + J(9))I)/(1 — B?). It follows from Lemma
n

3.4 that 2 > X2 ¢"(X; — B*X¢~1 — §°(U:)) converges to ((o2 + J(¢))[)/(1 — B82) in
t=1

probability. On the other hand, it follows from condition 1 that

16U - 90 = | 35 X (09U ~ Proms V)] < O,

v=l

Assume lim,, oo M7Pn'/2 = 0. Hence we have

71'17 Y1 Xea¥'(Xe = BX -1 — 9(U))
r Dte1 Xia¥"(Xi = B Xim1 — §*(Ue))

Using Theorem 3.3, we get the following conclusion:

Vu(Bmr ~ ) = + 0,(1).

Theorem 4.3 Suppose condition 1 and (4.5) hold. Under the assumptions (A.S.1)
- (A.S.6), the maximum likelihood estimator is asymptotically efficient.
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