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Abstract:　In  this  paper,  we  consider  the  price  of  catastrophe  options  with  credit  risk  in  a  regime-

switching model. We assume that the macroeconomic states are described by a continuous-time Markov

chain with a finite state space. By using the measure change technique, we derive the price expressions

of  catastrophe  put  options.  Moreover,  we  conduct  some  numerical  analysis  to  demonstrate  how  the

parameters of the model affect the price of the catastrophe put option.
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1　 Introduction

There  have  been  many  severe  catastrophes  in  the  past  few  decades,  which  have

attracted  increasing  attention  to  catastrophe  derivatives  pricing.  Cox  and  Pedersen[1]

examined the price of catastrophe bonds by briefly discussing the equilibrium price and

its  relationship  to  the  standard arbitrage-free  pricing  framework.  Cox et  al.[2] assumed

that the price process of the asset is driven by a geometric Brownian motion with addi-

tional downward jumps of a prespecified size in the event of a catastrophe. They applied

this model to price catastrophe options. Jaimungal and Wang[3] generalized the results of

Cox et al.[2]. They assumed that the losses follow a compound Poisson process and that

the  drop in  asset  price  depends  on the  total  loss  level.  They obtained the  closed-form

formulae for the price of catastrophe put options. Jiang et al.[4] presented a catastrophe

put  option  pricing  model  that  accounts  for  interest  rate  uncertainty.  Xu  and  Wang[5]
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assumed  that  the  interest  rate  process  and  the  default  intensity  process  are  modeled

through  the  Vasicek  model  and  provided  the  price  expressions  of  catastrophe  put

options with credit risk.

In  recent  years,  the  pricing  frameworks  with  a  regime-switching  model  have  been

used  by  many  researchers  in  modern  financial  economics,  see,  for  example,  Elliott  et

al.[6],  Wang and Wang[7],  and Wang et  al.[8].  In  the  pricing  frameworks  with  a  regime-

switching model, the market is assumed to be in different states depending on the state

of  the economy. A regime shift  from one economic state to another may occur due to

various financial factors, such as changes in business conditions, management decisions

and other macroeconomic conditions. In this paper, we incorporate the model of Jiang et

al.[4] into the pricing framework with a regime-switching model, where the issuing com-

pany's  share  price  process,  the  loss  process  and  the  price  process  of  the  asset  are  all

related to the macroeconomic states. We study the price of the catastrophe put option

with credit risk in the proposed model.

The  rest  of  this  paper  is  organized  as  follows.  In  Section  2,  we  present  the  basic

assumptions  and  the  dynamics  of  the  issuing  company's  share  price  process,  the  loss

process and the price process of the asset. In Section 3, we adopt a measure change to

determine  an  equivalent  martingale  probability  measure  for  pricing  catastrophe  put

options.  In  Section  4,  we  obtain  some  closed-form  results  for  pricing  catastrophe  put

options with credit risk in a regime-switching model. We present some numerical analy-

sis to examine how the parameters of the model affect the price of the catastrophe put

option in Section 5.

2　 Modeling assumptions

(Ω,F , (Ft)
T
t=0, P ) F = FT

{X(t)}t⩾0

D = {e1, e2, · · · , eN}, ei = (0, · · · , 0, 1, 0, · · · , 0)′ ∈ RN ′

{X(t)}t⩾0

Given a filtered complete probability space , where  and P

is  a  real-word  probability  measure.  In  this  paper,  the  macroeconomic  states  are

described by a  continuous-time irreducible  Markov chain  with a  finite  state

space  ,  where  denotes  the  trans-

pose of a vector or a matrix. As in Elliott et al.[9], the process  has the follow-

ing decomposition:

X(t) = X(0) +

∫ t

0

AX(u)du+M(t), (1)

A = (aij)i,j=1,2,··· ,N X(t) M(t)

{X(t)}t⩾0

where  is the generator of the process  and  is a martingale

with respect to the natural filtration generated by .
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{r(t) : t ⩾ 0}Let  be the risk-free short rate process, which is defined by

r(t) =< r, X(t) >, (2)

r = (r1, r2, · · · , rN)′ ∈ RN ri > 0 i = 1, 2, · · · , N, < ·, · >
RN

where  with  for  each  and 

denotes the inner product in .

{S(t) : t ⩾ 0} {L(t) : t ⩾ 0}
{V (t) : t ⩾ 0}

S(t), L(t) V (t)

Let  be the share price process of the issuing company, 

be the loss process of the the issuing company, and  be the price process of

the asset of the issuing company. We assume that the dynamics of  and 

are given by

S(t) = S(0)exp
{∫ t

0

[
µ1(u)−

1

2
σ2

1(u)

]
du+

∫ t

0

σ1(u)dW 1(u)− αL(t) + β(t)

}
, (3)

L(t) =
N(t)∑
j=1

Yj, β(t) =

∫ t

0

∫ ∞

0

(1− e−αy)λ(u)fL(y)dydu,

V (t) = V (0)exp
{∫ t

0

[
µ2(u)−

1

2
σ2

2(u)

]
du+

∫ t

0

σ2(u)dW 2(u)

}
, (4)

W 1(t) W 2(t)where  and  are standard Brownian motions under P with

Cov
(
dW1(t),dW 2(t)

)
= ρdt, ρ ∈ R;

µ1(t), µ2(t) σ1(t), σ2(t) {X(t)}t⩾0the  appreciation  rate  and  the  volatility  depend  on ,

which are defined by

µ1(t) =< μ1, X(t) >, σ1(t) =< σ1, X(t) >,

µ2(t) =< μ2, X(t) >, σ2(t) =< σ2, X(t) >,

where

μ1 = (µ11, µ12, · · · , µ1N)
′ ∈ RN , σ1 = (σ11, σ12, · · · , σ1N)

′ ∈ RN ,

μ2 = (µ21, µ22, · · · , µ2N)
′ ∈ RN , σ2 = (σ21, σ22, · · · , σ2N)

′ ∈ RN ,

µ1i > 0, µ2i > 0, σ2i > 0 σ2i > 0 i = 1, 2, · · · , N {Yj : j = 1, 2, · · · }
fL(y)

{N(t) : t ⩾ 0} λ(t)

with  and  for each ;  are

i.i.d. random variables representing the size of the i-th loss with p.d.f.  and mean l,

and  is a doubly stochastic Poisson process with arrival rate , which is

defined by

λ(t) =< λ, X(t) >,

λ = (λ1, λ2, · · · , λN)
′ ∈ RN λi > 0 i = 1, 2, · · · , N. N(t)

N(t)

where  with  for  each  Since  is  a

doubly stochastic Poisson process, there exists a standard Poisson process  which is
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λ(t) N(t) = N(Λt)independent of the intensity process , such that , where

Λt =

∫ t

0

λ(s)ds.

X(t) W 1(t),W 2(t) N(t)See Grandell[10]. We also suppose that  is independent of  and .

Denote

Ft = FX
t

∨
F W̄1

t

∨
F W̄2

t

∨
FL

t , (5)

where

FX
t = σ(X(s) : 0 ⩽ s ⩽ t),

FW1
t = σ

(
W 1(s) : 0 ⩽ s ⩽ t

)
,

FW2
t = σ

(
W 2(s) : 0 ⩽ s ⩽ t

)
,

FL
t = σ(L(s) : 0 ⩽ s ⩽ t)

X(t),W 1(t),W 2(t) L(t)are the natural filtrations generated by  and , respectively.

3　 Equivalent martingale probability measure

{
e−

∫ t
0 r(s)dsψ(t) : t ⩾ 0

}
ψ(t)

In this section, we will illustrate an equivalent martingale probability measure. As

in Cox et al.[2], if a liquid market for catastrophe options exists, then an equivalent mar-

tingale probability measure Q exists by standard derivative pricing theory, not necessar-

ily  unique,  under  which  the  discounted  relative  price  processes 

are martingales, for all contingent capitals . We follow Cox et al.[2], Elliott et al.[6],

and adopt Merton’s[11] assumption that the jumps are systematic and non-diversifiable.

So  the  arrival  rate  and distribution of  catastrophic  events  are  not  altered by measure

changes.

ηQ
TProposition 1　Let  be the Radon-Nikodym process

ηQ
T =

dQ
dP

=exp

{∫ T

0

l1(u)σ1(u)dW 1(u) +

∫ T

0

l2(u)σ2(u)dW 2(u)

− 1

2

∫ T

0

[l21(u)σ
2
1(u) + l22(u)σ

2
2(u) + 2ρl1(u)σ1(u)l2(u)σ2(u)]du

}
, (6)

where

l1(u) =
ρ[µ2(u)− r(u)]σ1(u)− [µ1(u)− r(u)]σ2(u)

(1− ρ2)σ2
1(u)σ1(u)

,
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l2(u) =
ρ[µ1(u)− r(u)]σ2(u)− [µ2(u)− r(u)]σ1(u)

(1− ρ2)σ1(u)σ2
1(u)

.

W1(t) W2(t)Then  and  defined by

W1(t) =W 1(t)−
∫ t

0

l1(u)σ1(u)du− ρ

∫ t

0

l2(u)σ2(u)du (7)

and

W2(t) =W 2(t)− ρ

∫ t

0

l1(u)σ1(u)du−
∫ t

0

l2(u)σ2(u)du (8)

are standard Brownian motions under Q with instantaneous correlation ρ, i.e.,

Cov(dW1(t),dW2(t)) = ρdt.

D(t, T ) = exp{−
∫ T

t
r(u)du} {D(0, t)S(t) : t ⩾ 0} {D(0, t)V (t) :

t ⩾ 0}
Finally, let , and then  and 

 are martingales under Q, respectively.

ηQ
T > 0 ηQ

T

W1(t) W2(t) Cov(dW1(t),

dW2(t)) = ρdt.

Proof　It can be easily seen that , P-a.s. and  is a Radon-Nikodym pro-

cess which induces the measure change from P to Q. From Girsanov's theorem, we know

that     and  are  standard  Brownian  motions  under Q with 

t ⩾ uBy Bayes' rule, for all , we have

EQ[D(0, t)S(t)|Fu] =

EP

[
D(0, t)S(t)

dQ
dP

|Fu

]
EP

[
dQ
dP

|Fu

]

=

EP

[
D(0, t)S(t)EP (

dQ
dP

|Ft)|Fu

]
EP

[
dQ
dP

|Fu

] = EP

[
D(0, t)S(t)

ηQ
t

ηQ
u

|Fu

]

=D(0, u)S(u)EP

{
exp

{∫ t

u

[l1(s) + 1]σ1(s)dW 1(s) +

∫ t

u

l2(s)σ2(s)dW 2(s)−A(u, t)

+

∫ t

u

[
µ1(s)− r(s)− 1

2
σ2

1(s)−
1

2
l21(s)σ

2
1(s)−

1

2
l22(s)σ

2
2(s)

− ρl1(s)σ1(s)l2(s)σ2(s)

]
ds

}
|Fu

}
=D(0, u)S(u) exp

{∫ t

u

[µ1(s)− r(s) + l1(s)σ
2
1(s) + ρσ1(s)l2(s)σ2(s)]ds

}
=D(0, u)S(u), (9)

A(u, t) = α[L(t)− L(u)]− [β(t)− β(u)],where  and
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EQ[D(0, t)V (t)|Fu] =

EP

[
D(0, t)V (t)

dQ
dP

|Fu

]
EP

[
dQ
dP

|Fu

]

=

EP

[
D(0, t)V (t)EP

(
dQ
dP

|Ft

)
|Fu

]
EP

[
dQ
dP

|Fu

] = EP

[
D(0, t)V (t)

ηQ
t

ηQ
u

|Fu

]

=D(0, u)V (u)EP

{
exp

{∫ t

u

l1(s)σ1(s)dW 1(s) +

∫ t

u

[l2(s) + 1]σ2(s)dW 2(s)

+

∫ t

u

[
µ2(s)− r(s)− 1

2
σ2

2(s)−
1

2
l21(s)σ

2
1(s)−

1

2
l22(s)σ

2
2(s)

− ρl1(s)σ1(s)l2(s)σ2(s)

]
ds

}
|Fu

}
=D(0, u)V (u) exp

{∫ t

u

(µ2(s)− r(s) + l2(s)σ
2
2(s) + ρl1(s)σ1(s)σ2(s))ds

}
=D(0, u)V (u). (10)

{D(0, t)S(t) : t ⩾ 0} {D(0, t)V (t) : t ⩾ 0}So  and  are martingales under Q, respectively.

Remark 1　From (3), (4), (7) and (8), we know

S(t) = S(0)exp
{∫ t

0

[
r(u)− 1

2
σ2

1(s)

]
du+

∫ t

0

σ1(s)dW1(u)− αL(t) + β(t)

}
, (11)

V (t) = V (0)exp
{∫ t

0

[
r(u)− 1

2
σ2

2(s)

]
du+

∫ t

0

σ2(s)dW2(u)

}
. (12)

4　 Pricing catastrophe put options

(K − S(T ))+ (K−
S(T ))+ (1−ω)V (T )

D

p(0, T )

To reflect the influence of the macroeconomic states on the price of a catastrophe

put option with credit risk in a regime-switching model, We assume that the catastro-

phe  put  options  whose  promised  payoff  is  and  actual  payoff  is 

 in the event of a default, where ω denotes the value of the deadweight

costs  associated with bankruptcy and is  expressed as  a  percentage  of  the  value  of  the

asset of the issuing company, and D denotes the total amount of claims. Hence, letting

 denote the price of the catastrophe put option with credit risk at time 0, which

matures at time T, we have

p(0, T ) =EQ [D(0, T )I{L(T )−L(0)>L}(K − S(T ))+I{V (T )⩾D∗}]

+ EQ

[
D(0, T )I{L(T )−L(0)>L}(K − S(T ))+

(1− ω)V (T )

D
I{V (T )<D∗}

]
, (13)
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D∗

where  the  parameter L is  the  trigger  level  of  losses  above  which  the  catastrophe  put

option becomes in-the-money, K is the strike price at which the issuing company is obli-

gated to purchase unit share if losses exceed L, and  is the default boundary of the

issuing company.

Ji =
∫ T

0
< ei, X(u) > du {X(t)}t⩾0

i = 1, 2, · · · , N [0, T ] J1 + J2 + · · ·+ JN = T

J1, J2, · · · , JN−1

Let  be the amount of time  has spent in state i

( )  over the time interval ,  and then .  So we

only consider . Define

J = (J1, J2, · · · , JN−1), (14)

RT (J) =
∫ T

0

r(u)du =
N−1∑
i=1

(ri − rN)Ji + rNT, (15)

λT (J) =
∫ T

0

λ(u)du =
N−1∑
i=1

(λi − λN)Ji + λNT, (16)

U 1
T (J) =

∫ T

0

σ2
1(u)du =

N−1∑
i=1

(σ2
1i − σ2

1N)Ji + σ2
1NT, (17)

U 2
T (J) =

∫ T

0

σ2
2(u)du =

N−1∑
i=1

(σ2
2i − σ2

2N)Ji + σ2
2NT, (18)

U 12
T (J) =

∫ T

0

σ1(u)σ2(u)du =
N−1∑
i=1

(σ1iσ2i − σ1Nσ2N)Ji + σ1Nσ2NT, (19)

and

p(0, T, J) =EQ[D(0, T )I{L(T )−L(0)>L}(K − S(T ))+I{V (T )⩾D∗}|FX
T ]+

+ EQ

[
D(0, T )I{L(T )−L(0)>L}(K − S(T ))+

(1− ω)V (T )

D
I{V (T )<D∗}

]
|FX

T ]. (20)

p(0, T )Then we can rewrite  as

p(0, T ) = EQ[p(0, T, J)] = EQ[E1(J)− E2(J) + E3(J)− E4(J)], (21)

where

E1(J) = EQ[D(0, T )I{L(T )−L(0)>L}KI{K⩾S(T )}I{V (T )⩾D∗}|FX
T ], (22)

E2(J) = EQ[D(0, T )I{L(T )−L(0)>L}S(T )I{K⩾S(T )}IV (T )⩾D∗ |FX
T ], (23)

E3(J) = EQ

[
D(0, T )I{L(T )−L(0)>L}K

(1− ω)V (T )

D
I{K⩾S(T )}I{V (T )<D∗}|FX

T

]
, (24)

E4(J) = EQ

[
D(0, T )I{L(T )−L(0)>L}S(T )

(1− ω)V (T )

D
I{K⩾S(T )}I{V (T )<D∗}|FX

T

]
. (25)

E1(J) E2(J)Proposition 2　Let  and  be determined by (22) and (23). Then we have

E1(J) = Ke−λT (J)
∞∑

n=1

(λT (J))n

n!

∫ ∞

L

D(0, T, J)N2(d1(y, J), d2(J),−ρ̂(J))f ∗n
L (y)dy, (26)
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E2(J) = e−λT (J)
∞∑

n=1

(λT (J))n

n!

∫ ∞

L

S(0)e−αy+β(T )N2(d3(y, J), d4(J),−ρ̂(J))f ∗n
L (y)dy, (27)

where

d1(y, J) =
ln

K

S(0)
−RT (J) +

1

2
U 1

T (J) + αy − β(T )√
U 1

T (J)
,

d2(J) =
ln
V (0)

D∗
+RT (J)−

1

2
U 2

T (J)√
U 2

T (J)
, ρ̂(J) =

ρU 12
T (J)√

U 1
T (J)U 2

T (J)
,

d3(y, J) =
ln

K

S(0)
−RT (J)−

1

2
U 1

T (J) + αy − β(T )√
U 1

T (J)
,

d4(J) =
ln
V (0)

D∗
+RT (J)−

1

2
U 2

T (J) + ρU 12
T (J)√

U 2
T (J)

.

N2(·, ·, ·) f ∗n
L (y)

n fL(y)

   is the bivariate normal cumulative distribution function and  represents

the  -fold convolution of the probability density function .

Proof　By the property of conditional expectation, we have

E1(J) = KEQ{D(0, T )I{L(T )−L(0)>L}EQ[I{K⩾S(T )}I{V (T )⩾D∗}|FX
T

∨
FL

T ]|FX
T }. (28)

(11) (12)From  and , we know

S(T ) = S(0)exp
{∫ T

0

[
r(u)− 1

2
σ2

1(u)

]
du+

∫ T

0

σ1(u)dW1(u)− αL(T ) + β(T )

}
, (29)

V (T ) = V (0)exp
{∫ T

0

[
r(u)− 1

2
σ2

2(u)

]
du+

∫ T

0

σ2(u)dW2(u)

}
. (30)

So

EQ [I{K⩾S(T )}I{V (T )⩾D∗}|FX
T

∨
FL

T ]

=Q

(∫ T

0

σ1(u)dW1(u) ⩽ ln
K

S(0)
−RT (J) +

1

2
U 1

T (J) + αL(T )− β(T ),∫ T

0

σ2(u)dW2(u) ⩾ ln
D∗

V (0)
−RT (J) +

1

2
U 2

T (J)|FX
T

∨
FL

T

)
=N2(d1(L(T ), J), d2(J),−ρ̂(J)).

L(T )By computing the expectation over the observed losses , we get
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E1(J) = KEQ{D(0, T )I{L(T )>L+L(0)}N2(d1(L(T ), J), d2(J),−ρ̂(J))|FX
T }

=Ke−λT (J)
∞∑

n=1

(λT (J))n

n!

∫ ∞

L
D(0, T, J)N2(d1(y, J), d2(J),−ρ̂(J))f ∗n

L (y)dy, (31)

D(0, T, J) = D(0, T )where .

Let

ηS
T =

dQS

dQ
= exp

{∫ T

0

σ1(u)dW1(u)−
1

2

∫ T

0

σ2
1(u)du

}
. (32)

W S
1 (t) =W1(t)−

∫ t

0
σ1(u)du W S

2 (t) =W2(t)− ρ
∫ t

0
σ1(u)du

Cov(dW S
1 (t),dW

S
2 (t)) = ρdt QS

By Girsanov's  theorem,  and 

are two standard Brownian motions with  under . So

S(T ) = S(0)exp
{∫ T

0

[
r(u) +

1

2
σ2

1(u)

]
du+

∫ T

0

σ1(u)dW S
1 (u)− αL(T ) + β(T )

}
, (33)

V (T ) = V (0)exp
{∫ T

0

[
r(u)− 1

2
σ2

2(u)

]
du+

∫ T

0

σ2(u)dW S
2 (u) +

∫ T

0

ρσ1(u)σ2(u)du
}
.

(34)

By the property of conditional expectation, we get

E2(J) = EQ

{
D(0, T, J)I{L(T )−L(0)>L}E

Q[S(T )I{K⩾S(T )}I{V (T )⩾D∗}|FX
T

∨
FL

T ]|FX
T

}
. (35)

From Bayes' rule, we have

EQ [S(T )I{K⩾S(T )}I{V (T )⩾D∗}|FX
T

∨
FL

T ]

=EQ [ηS
T |FX

T

∨
FL

T ]EQS

[
S(T )

ηS
T

I{K⩾S(T )}I{V (T )⩾D∗}|FX
T

∨
FL

T

]
=E

[
exp

{∫ T

0

σ1(u)dW1(u)−
1

2

∫ T

0

σ2
1(u)du

}]
EQS

[
S(T )

ηS
T

I{K⩾S(T )}I{V (T )⩾D∗}|FX
T

∨
FL

T

]
=S(0)D(0, T, J)e−A(0,T )EQS

[I{K⩾S(T )}I{V (T )⩾D∗}|FX
T

∨
FL

T ]

=S(0)D(0, T, J)e−A(0,T )QS

[ ∫ T

0

σ1(u)dW S
1 (u) ⩽ ln

K

S(0)
−RT (J)−

1

2
U 1

T (J) +A(0, T ),∫ T

0

σ2(u)dW S
2 (u) ⩾ ln

D∗

V (0)
−RT (J) +

1

2
U 2

T (J)− ρU 12
T (J)|FX

T

∨
FL

T

]
=S(0)D(0, T, J)e−A(0,T )N2(d3(L(T ), J), d4(J),−ρ̂(J)). (36)

Substituting (36) into (35), we get

E2(J) = e−λT (J)
∞∑

n=1

(λT (J))n

n!

∫ ∞

L

S(0)e−αy+β(T )N2(d3(y, J), d4(J),−ρ̂(J))f ∗n
L (y)dy. (37)

The proof is completed.　　□
E3(J) E4(J)Proposition 3　Let  and  be determined by (24) and (25). Then we have
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E3(J) = K
(1− ω)

D
e−λT (J)

∞∑
n=1

(λT (J))n

n!

∫ ∞

L

V (0)f ∗n
L (y)N2(d5(y, J), d6(J), ρ̂(J))dy, (38)

E4(J) =
(1− ω)

D
e−λT (J)

∞∑
n=1

(λT (J))n

n!

×
∫ ∞

L

S(0)V (0)

D(0, T, J)
e−αy+β(T )f ∗n

L (y)N2(d7(y, J), d8(J), ρ̂(J))dy, (39)

where

d5(y, J) =
ln

K

S(0)
−RT (J) +

1

2
U 1

T (J)− ρU 12
T (J) + αy − β(T )√

U 1
T (J)

,

d6(J) =
ln

D∗

V (0)
−RT (J)−

1

2
U 1

T (J)√
U 2

T (J)
,

d7(y, J) =
ln

K

S(0)
−RT (J)−

1

2
U 1

T (J)− ρU 12
T (J) + αy − β(T )√

U 1
T (J)

,

d8(J) =
ln

D∗

V (0)
−RT (J)−

1

2
U 2

T (J)− ρU 12
T (J)√

U 2
T (J)

.

Proof　Define

ηV
T =

dQV

dQ
= exp

{∫ T

0

σ2(u)dW2(u)−
1

2

∫ T

0

σ2
2(u)du

}
. (40)

W V
1 (t) =W1(t)− ρ

∫ t

0
σ2(u)du W V

2 (t) =W2(t)−
∫ t

0
σ2(u)du

Cov(dW V
1 (t),dW V

2 (t)) = ρdt QV

E1(J) E2(J)

By Girsanov's theorem,  and 

are two standard Brownian motions with  under . Simi-

lar to the calculation of  and , we get

E3(J) = K
(1− ω)

D
e−λT (J)

∞∑
n=1

(λT (J))n

n!

∫ ∞

L

V (0)N2(d5(y, J), d6(J), ρ̂(J))f
∗n
L (y)dy. (41)

Define

ηSV
T =

dQSV

dQV
= exp

{∫ T

0

σ1(u)dW V
1 (u)− 1

2

∫ T

0

σ2
1(u)du

}
. (42)

W SV
1 (t) =W V

1 (t)−
∫ t

0
σ1(u)du W SV

2 (t) =W V
2 (t)−

ρ
∫ t

0
σ1(u)du Cov(dW SV

1 (t),dW SV
2 (t)) = ρdt

QSV E1(J) E2(J) E3(J)

By  Girsanov's  theorem,  and 

 are  two  standard  Brownian  motions  with 

under . Similar to the calculation of ,  and , we get
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E4(J) =
(1− ω)

D
e−λT (J)

∞∑
n=1

(λT (J))n

n!

×
∫ ∞

L

S(0)V (0)

D(0, T, J)
e−αy+β(T )f ∗n

L (y)N2(d7(y, J), d8(J), ρ̂(J))dy. (43)

The proof is completed.　　□

J

N = 2 X(t)

e1 e2

fk
1 (s, T ) J1

X(0) = k k ∈ {1, 2}
0 ⩽ s ⩽ T fk

1 (s, T )

In order to deduce the closed-form expression for pricing the catastrophe put option

with credit risk in a regime-switching model, we need to know the distribution of . In

particular, we consider , that is  switches between only 2 states, where state

 and state  represent a “good” economy and a “bad” economy, respectively. Taylor[14]

pointed out  that  a  Markov chain  with  two states  is  sufficient  to  distinguish  a  normal

market from the one experiencing a crisis. Let  be the probability density of 

given ,  for .  As  in  Kovchegova  et  al.[12] and  Yoon  et  al.[13],  for  all

,  satisfies

f 1
1 (s, T ) =e−λs−ν(T−s)[δ(T − s) +

√
λνs

T − s
I1(2

√
λνs(T − s) + λI0(2

√
λνs(T − s)],

f 2
1 (s, T ) =e−λs−ν(T−s)[δ(s) +

√
λν(T − s)

s
I1(2

√
λνs(T − s) + νI0(2

√
λνs(T − s)],

Iρ(z)where  is the modified Bessel function defined by

Iρ(z) =
∞∑

n=0

1

n!Γ(ρ+ n+ 1)
(
z

2
)2n+ρ.

f1(s, T ) J1Let  be the probability density of , and then

f1(s, T ) =< (f 1
1 (s, T ), f

2
1 (s, T ))

′, X0 > .

Therefore, combining Proposition 2 and Proposition 3, the price of the catastrophe put

option with credit risk in a regime-switching model is given by the following theorem.

p(0, T )Theorem 4　Let  be determined by (21), and then the price of the catastro-

phe put option with credit risk in a regime-switching model is

p(0, T ) =

∫ T

0

p(0, T, s)f1(s, T )ds

=

∫ T

0

[E1(s)− E2(s) + E3(s)− E4(s)]f1(s, T )ds. (44)

5　 Numerical analysis

In  this  section,  using  the  explicit  formulae  obtained  in  the  previous  sections,  we

present some numerical analysis to examine how the parameters of the model affect the
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L = Cl

fL(y) = δ(y − l) E1(J),E2(J),E3(J) E4(J)

price of the catastrophe put option. We assume that the loss size conditional on a loss is

fixed at l and that the trigger level is an integer multiple of the loss size, i.e., .

As explained in Jaimungal and Wang[2], and Jiang et al.[4], the parameter C, which coin

the trigger ratio level, represents the ratio of the trigger level to the total expected loss

amount. In this predetermined loss case, the probability density function of loss sizes is

a Dirac density , and then  and  can be expressed

as follows:

E1(J) = Ke−λT (J)
∞∑

n=C

(λT (J))n

n!
D(0, T, J)N2(d1(nl, J), d2(J),−ρ̂(J)), (45)

E2(J) = e−λT (J)
∞∑

n=C

(λT (J))n

n!
S(0)e−αnl+λT (J)(1−e−αl)N2(d3(nl, J), d4(J),−ρ̂(J)), (46)

E3(J) = K
(1− ω)

D
e−λT (J)

∞∑
n=C

(λT (J))n

n!
V (0)N2(d5(nl, J), d6(J), ρ̂(J)), (47)

E4(J) =
(1− ω)

D
e−λT (J)

∞∑
n=C

(λT (J))n

n!

S(0)V (0)

D(0, T, J)
e−αnl+λT (J)(1−e−αl) ·N2(d7(nl, J), d8(J), ρ̂(J)).

(48)

T = 5, V = 9,

D∗ = 5, D = 8, C = 2, α = 0.2, l = 3, r = (0.05, 0.02)′ σ1 = (0.1, 0.4)′, σ2 = (0.1, 0.4)′, A =(
−0.4 0.4
0.5 −0.5

)
Unless  otherwise  specified,  the  following  parameters  are  fixed: 

, 

.

ω = 0.4, λ = (0.1, 0.3)′, ρ = 0.1, S(0) = 80

e2

ω = 0.4, λ = (0.1, 0.3)′, ρ = 0.1,K = 80

e2

Fig.  1 presents  the  relation  between  the  strike  price K and  the  catastrophe  put

option price p for different ω and X(0). Fixed ,

we see that the catastrophe put option price p increases as the strike price K increases.

The catastrophe put option price p is  higher when we start at the state .  Fixed the

strike price K, we see that the catastrophe put option price p decreases as ω increases.

Fig.  2 presents  the relation between the share price S and the catastrophe put option

price p for  different ω and  X(0).  Fixed ,  we  see

that  the  catastrophe  put  option  price p decreases  as  the  share  price S increases.  The

catastrophe put option price p is higher when we start at the state . Fixed the share

price S, we see that the catastrophe put option price p decreases as ω increases.

λ ω = 0.4, λ = (0.1, 0.3)′, ρ = 0.1, S(0) = 80

e2

λ ω = 0.4, λ = (0.1, 0.3)′, ρ = 0.1,K = 80

Fig.  3 presents  the  relation  between  the  strike  price K and  the  catastrophe  put

option price p for different  and X(0). Fixed ,

we see that the catastrophe put option price p increases as the strike price K increases.

The catastrophe put option price p is  higher when we start at the state .  Fixed the

strike price K,  we see that the catastrophe put option price p increases as λ increases.

Fig.  4 presents  the relation between the share price S and the catastrophe put option

price p for  different  and  X(0).  Fixed ,  we  see
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e2

λ

that  the  catastrophe  put  option  price p decreases  as  the  share  price S increases.  The

catastrophe put option price p is higher when we start at the state . Fixed the share

price S, we see that the catastrophe put option price p increases as  increases.
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Figure 1    The relation between K and p for different ω and X(0)
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Figure 2    The relation between S and p for different ω and X(0)
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Figure 3    The relation between K and p for different λ and X(0) 
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Figure 4    The relation between S and p for different λ and X(0)
 

ω = 0.4, λ = (0.1, 0.3)′, ρ = 0.1, S(0) = 80

e2

ω = 0.4, λ = (0.1, 0.3)′, ρ = 0.1,K = 80

e2

Fig.  5 presents  the  relation  between  the  strike  price K and  the  catastrophe  put

option price p for different ρ and X(0). Fixed ,

we see that the catastrophe put option price p increases as the strike price K increases.

The catastrophe put option price p is  higher when we start at the state .  Fixed the

strike price K, we see that the catastrophe put option price p decreases as ρ increases.

Fig.  6 presents  the relation between the share price S and the catastrophe put option

price p for  different ρ and  X(0).  Fixed ,  we  see

that  the  catastrophe  put  option  price p decreases  as  the  share  price S increases.  The

catastrophe put option price p is higher when we start at the state . Fixed the share

price S, we see that the catastrophe put option price p decreases as ρ increases.
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Figure 5    The relation between K and p for different ρ and X(0)
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Figure 6    The relation between S and p for different ρ and X(0)
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状态转移模型中带有信用风险的巨灾期权的定价

徐亚娟1 　王过京2

1 苏州市职业大学数理部, 苏州, 215104

2 苏州大学金融工程中心和数学科学学院, 苏州, 215006

摘　要:　在本文中, 我们考虑了状态转移模型中带有信用风险的巨灾期权的定价问题. 我们假设宏观

经济状态由具有有限状态空间的连续时间的马尔可夫链描述. 通过测度变换技术,我们导出了巨灾看跌

期权的定价表达式. 此外, 我们通过数值分析展示了模型的参数变化对巨灾看跌期权价格的影响.

关键词:　定价; 巨灾期权; 信用风险; 状态转移; 测度变换

中图分类号:　O211.6
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