NEAWBEGT 540 & Chinese Journal of Applied Probability and Statistics
B4 20244 8 [ Aug., 2024, Vol. 40, No. 4, pp. 572-587
doi: 10.12460/j.issn.1001-4268.aps.2024.2022067

Pricing Catastrophe Options with Credit Risk in a
Regime-Switching Model *

XU Yajuan' WANG Guojing’
"Department of Mathematics and Physics, Suzhou Vocational University, Suzhou, 215104, China

*The Center for Financial Engineering and Department of Mathematics, Soochow University,
Suzhou, 215006, China

Abstract: In this paper, we consider the price of catastrophe options with credit risk in a regime-
switching model. We assume that the macroeconomic states are described by a continuous-time Markov
chain with a finite state space. By using the measure change technique, we derive the price expressions
of catastrophe put options. Moreover, we conduct some numerical analysis to demonstrate how the
parameters of the model affect the price of the catastrophe put option.

Keywords: pricing; catastrophe option; credit risk; regime-switching; measure change

2020 Mathematics Subject Classification: 91B24

Citation: XU Y J, WANG G J. Pricing catastrophe options with credit risk in a regime-switching
model [J]. Chinese J Appl Probab Statist, 2024, 40(4): 572-587.

1 Introduction

There have been many severe catastrophes in the past few decades, which have
attracted increasing attention to catastrophe derivatives pricing. Cox and Pedersen'”
examined the price of catastrophe bonds by briefly discussing the equilibrium price and
its relationship to the standard arbitrage-free pricing framework. Cox et al.? assumed
that the price process of the asset is driven by a geometric Brownian motion with addi-
tional downward jumps of a prespecified size in the event of a catastrophe. They applied
this model to price catastrophe options. Jaimungal and Wang® generalized the results of
Cox et al.”. They assumed that the losses follow a compound Poisson process and that
the drop in asset price depends on the total loss level. They obtained the closed-form
formulae for the price of catastrophe put options. Jiang et al.l” presented a catastrophe

put option pricing model that accounts for interest rate uncertainty. Xu and Wangm
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assumed that the interest rate process and the default intensity process are modeled
through the Vasicek model and provided the price expressions of catastrophe put
options with credit risk.

In recent years, the pricing frameworks with a regime-switching model have been
used by many researchers in modern financial economics, see, for example, Elliott et
all?, Wang and Wangm, and Wang et al.¥. In the pricing frameworks with a regime-
switching model, the market is assumed to be in different states depending on the state
of the economy. A regime shift from one economic state to another may occur due to
various financial factors, such as changes in business conditions, management decisions
and other macroeconomic conditions. In this paper, we incorporate the model of Jiang et
al.” into the pricing framework with a regime-switching model, where the issuing com-
pany’s share price process, the loss process and the price process of the asset are all
related to the macroeconomic states. We study the price of the catastrophe put option
with credit risk in the proposed model.

The rest of this paper is organized as follows. In Section 2, we present the basic
assumptions and the dynamics of the issuing company’s share price process, the loss
process and the price process of the asset. In Section 3, we adopt a measure change to
determine an equivalent martingale probability measure for pricing catastrophe put
options. In Section 4, we obtain some closed-form results for pricing catastrophe put
options with credit risk in a regime-switching model. We present some numerical analy-
sis to examine how the parameters of the model affect the price of the catastrophe put

option in Section 5.

2 Modeling assumptions

Given a filtered complete probability space (Q, F, (F,)I,, P), where F = F, and P
is a real-word probability measure. In this paper, the macroeconomic states are
described by a continuous-time irreducible Markov chain {X(¢)},», with a finite state
space D = {e;,e,, - ,ex}, ¢ =(0,---,0,1,0,---,0) € RY, where ' denotes the trans-
pose of a vector or a matrix. As in Elliott et al.”, the process {X(¢)},5, has the follow-

ing decomposition:
X(t)=X(0)+ / AX (u)du + M(t), (1)
0

where A = (a;;)ij=12... n is the generator of the process X (¢) and M(¢) is a martingale

with respect to the natural filtration generated by {X(¢)}s.
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Let {r(t) : t > 0} be the risk-free short rate process, which is defined by
H(t) =<1, X (1) >, )

where r= (ry,7y,---,7ry) € RY with r,>0 for each ¢1=1,2,---,N, and <-,->
denotes the inner product in R".

Let {S(t):t > 0} be the share price process of the issuing company, {L(¢) : t > 0}
be the loss process of the the issuing company, and {V'(t) : ¢ > 0} be the price process of
the asset of the issuing company. We assume that the dynamics of S(t), L(t) and V(¢)

are given by
S(#) = S(0)exp { / t [,ul(u) _ ;af(u)} du + / o1 (W)W () — aL(t) + B(t)} B

N(®)

szzm,mw:AlWLwWMMﬁmwm7

V() = V(0)exp { /0 t [MQ(u) _ ;ag(u)} du + /O t az(u)dwg(u)} , (4)

where W, (t) and W,(t) are standard Brownian motions under P with
Cov (dWl(t), sz(t)) = pdt, p € R;

the appreciation rate p,(t),us(t) and the volatility o,(t),0,(t) depend on {X(t)}.o,
which are defined by
pa(t) =< p, X(t) >, 0.(t) =< 61, X(t) >,

f2(t) =< py, X (1) >, 02(t) =< 63, X (t) >,

where

R, = (M117N12a ce ,Nuv)l S RNa 0; = (0'11’012, te aalN)/ S RN7

My, = (for, flog, -+, Han) € RY, o, = (021,020, ,02y) € RY,

with gy, > 0, p1e; > 0,05, > 0 and 0y >0 for each i =1,2,--- | N; {Y,:j=1,2,---} are
ii.d. random variables representing the size of the i-th loss with p.d.f. f,(y) and mean [,
and {N(¢) :t > 0} is a doubly stochastic Poisson process with arrival rate A(¢), which is
defined by

A(t) =< &, X (1) >,

where L= (A, Ay, -+ ,A\y) € RY with A\, >0 for each i =1,2,--- ,N. Since N(t) is a

doubly stochastic Poisson process, there exists a standard Poisson process N (t) which is
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independent of the intensity process A(t), such that N(t) = N(A,), where
t
A, = / A(s)ds.
0

See Grandell"”. We also suppose that X (t) is independent of W, (t), W,(t) and N(t).

Denote
Fi :EXVFtW1 \/‘EW2\/]:tL’ (5)
where
FX=0(X(s):0<s<t),
=0 (Wi(s):0<s<t),
Frr=0(Wy(s): 0<s<t),
FF=0(L(s):0< s <)

are the natural filtrations generated by X (t), W,(t), W,(t) and L(t), respectively.

3 Equivalent martingale probability measure

In this section, we will illustrate an equivalent martingale probability measure. As
in Cox et al.m, if a liquid market for catastrophe options exists, then an equivalent mar-
tingale probability measure () exists by standard derivative pricing theory, not necessar-
ily unique, under which the discounted relative price processes {e’fJ T (t)  t > 0}
are martingales, for all contingent capitals 1(t). We follow Cox et al.”| Elliott et al.9
and adopt Merton’s"” assumption that the jumps are systematic and non-diversifiable.
So the arrival rate and distribution of catastrophic events are not altered by measure
changes.

Proposition 1 Let 1% be the Radon-Nikodym process

nd = % —exp{/0 L (u)oy (u)dW, (u) +/O Ly (w)oy (u)dW 5 (u)

_;AUmmﬂw+@WM%O+%MmemwmeM}7 6

where

1y — Pleat) = (] (w) — () = ()]
1 (1= )7 ()0 (u) |
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L(u) = plp(u) — r(u)los(u) — [pa(u) — r(u)]o: (u)
’ (1= p*)oi(u)o?(u) .

Then W,() and W;(t) defined by
W) = (1) — / () (w)du — p / L (w)oa(u)du ™)
and
Wi(t) = Wa(t) — p / L ()0 ()l — / L (1) () du s)

are standard Brownian motions under () with instantaneous correlation p, i.e.,
Cov(dW,(t), dW,(t)) = pdt.

Finally, let D(¢,T) = exp{— ftT r(u)du}, and then {D(0,t)S(t) : t > 0} and {D(0,t)V (¢) :
t > 0} are martingales under @), respectively.
Proof It can be easily seen that n%¥ > 0, P-a.s. and 7% is a Radon-Nikodym pro-

cess which induces the measure change from P to ). From Girsanov’s theorem, we know

that W,(t) and W,(t) are standard Brownian motions under @ with Cov(dW,(¢),
AW, (1)) = pdt.

By Bayes’ rule, for all ¢ > u, we have
d@
EF | D(0,t)S(t)—|F
D050

» | 4€Q
: {dp'fu]

E[D(0,£)S(1)1F.] =

e [possoe s 0s0Z]
= - 9 ’]7762 u

r|dQ
357

=D(0, u)S(u)EP{ exp { /u [1,(s) + 1oy (s)dW, (s) + /u ly(8)o,(s)dW,(s) — A(u, t)

u

# [ o) =9 - 3020 - J9 ) - S0
— pll(s)al(s)b(s)ag(s)} ds} |]-"u}

=008 exp { [ 1a(s) = (6) + 1(5102(5) + po (o) e)on(s)ds
=D(0,u)S(u), (9)

where A(u,t) = «[L(t) — L(u)] — [B(t) — B(u)], and



No. 4 XU Yajuan, WANG Guojing: Pricing Catastrophe Options with Credit Risk in a...... 577

E [D(O,t)V(t)i%fu}
- [

» (49
AT el
dpP™ "

ES[D(0, )V (1) F.] =

# [ st =) = 320 - J ) - Ji0)
- o)) as )
—D(0,u)V (1) exp { / (1a(8) — 1(5) + a()0%(5) + pll(s)al(s)ag(s))ds}

u

)
=D(0,u)V (u). (10)
0

So {D(0,t)S(t): t > 0} and {D(0,t)V(t) : t > 0} are martingales under @), respectively.
Remark 1 From (3), (4), (7 )and (8), we know

S(t exp{ [ —fo' }du+ dWl()—aL(t)+ﬁ(t)}, (11)

V(t) = V(0)exp { / [r(u) _ %ag( )] du + / t 02<s>dw2(u>} | (12)

4 Pricing catastrophe put options

To reflect the influence of the macroeconomic states on the price of a catastrophe
put option with credit risk in a regime-switching model, We assume that the catastro-
phe put options whose promised payoff is (K — S(T'))* and actual payoff is (K—
S(T))+4=Y1) in the event of a default, where w denotes the value of the deadweight
costs associated with bankruptcy and is expressed as a percentage of the value of the
asset of the issuing company, and D denotes the total amount of claims. Hence, letting
p(0,T) denote the price of the catastrophe put option with credit risk at time 0, which

matures at time 7, we have
p(0,T) =E° [D(0, T) I (12)- 1>y (K — S(T)) Livir)zp]

1—w)V(T
+E? | D0, T) {1(r)-p(oy>ry (K — S(T))Ag()f{wnw*} ) (13)
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where the parameter L is the trigger level of losses above which the catastrophe put
option becomes in-the-money, K is the strike price at which the issuing company is obli-
gated to purchase unit share if losses exceed L, and D* is the default boundary of the
issuing company.

Let J, = fOT < e, X (u) > du be the amount of time {X(¢)},>, has spent in state i
(i=1,2,---,N) over the time interval [0,7], and then J, + J,+---+ Jy =T. So we
only consider Jy, J,, -, JJy_;. Define

J=(J,Joy - JIn_1), (14)
T N-1

r(u)du = > (r; — ry)J; + a7, (15)

=1

Mwdu = ST A 4 AT, (16)

=1

=1

T N—1

/
/
UL(3) = /O "t (u)du = 3 (02 — 0% ), 4 02\ T (17)
/
/

UT%(J) = Ui(u)du = Z (ng - U;N)Ji + G;NT7 (18)
=1
T N—1
UrzJ) = o(u)oy(u)du = > (01,05 — O1nOan)J; + T1nOanT, (19)
=1
and
p(0,7,3) =E°[D(0, T) I (1) -r0y> 2y (K = S(T) Ly s 03 | F7 -
1—w)V(T
+E“ [D(OyT)I{uT)L(o»L}(K - S(T))J,g()f{vmw*} |F2 ] (20)
Then we can rewrite p(0,7) as
p(0,T) = E®[p(0,T,J)] = E®[E,(J) — E2(J) + Es(J) — E4(3)], (21)
where
E,(3) = E°[D(0, T) I {1(r)-Loy> 1 K Lz seon Lpveryspy | F7 |, (22)
E.(J) = E°[D(0, T) I {1(r)-r£)> 3 S(T) L xessn Ivryspe | F7 ) (23)
1 —w)V(T
Es(J) = E¢ [D(QT)I{L(T>—L<0)>L}K(l;()I{K>S<T>}I{V<T><D*}’ff] : (24)
1 —w)V(T
E.(J) = E° [D(O»T)I{LmL<o>>L}5(T)(I;HI{K>S<T)}]{V<T)<D*}’}-?] : (25)

Proposition 2 Let F,(J) and E,(J) be determined by (22) and (23). Then we have

n!

El (J) = Ke_AT(J) i Qr @) /oo D(OaT,J)N2(d1 (yv'])a d2('])’ 7[)('])) zn(y)dy’ (26)

n=1
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n!

E,(J) = o) 3 Qrd” / S(0)e "D N, (dy (y,3), du(3), —p@)) ;" (y)dy,  (27)
L

n=1

where

K 1
ln% —R:(J) + §UT(J) +ay — B(T)
dl(yv']) = UI(J) )

ln&?) + Rr(J) — %U%(J) pU2(3)

. D A _
B = 7:0) A= e

In g — Reld) = SUHI) + ay — B(T)

ds(y,J) = S0 Ui9) )
w0 ) - vz + o)
4,(3) = = .

N,(+,-,-) is the bivariate normal cumulative distribution function and f;"(y) represents
the n -fold convolution of the probability density function f,(y).

Proof By the property of conditional expectation, we have

FrVFEIFRY (28)

E.(3) = KE{D(0, T)I{1(r)- >y E? Lz seryy Livirysp+y

From (11) and (12), we know

S(T) = S(0)exp { /O ' [r(u) _ ;af(u)} du + /O oy (u)AW, (1) — aL(T) + B(T)} 29)

V(T) = V(0)exp { / ' [r(u) _ ;ag(u)] du + / ) Ug(u)dWQ(u)} . (30)

So
Fr \V Fi

EC [Iixssery Livirysp+y

Q[ [ (W) < Il — Re@) + U@ +aL() - 5(0),

/O oy (u)dWy(u) > IHVZZ(;) — R:(J) + %U;(J)U‘-’f V]:TL)
Ny (L(T),3), da(3), 5(3)).

By computing the expectation over the observed losses L(T'), we get
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E\(3) = KE{D(0, T) L rcry> 1+ 2on Na(da (L(T), 3), dy (3), —p(I)) | 7 }
:Ke_)\T(J) i (Aq“nﬂ fLOO D(Ov T7J)N2(d1 (yv J)’ d2 (J)a _ﬁ(J)) Zn(y)dyy (31)

where D(0,7,J3) = D(0,T).

Let
dQs ! !
v = =ew{ [ owawi - § [ et )

By Girsanov’s theorem, W7 (t) = W, (t) — fot oy(u)du and W7 (t) = Wy(t) — pfot oy (u)du
are two standard Brownian motions with Cov(dW?(t),dW7(t)) = pdt under Q°. So

S(T) = S(0)exp { /O ' [T(u) + ;af(u)] du+ /0 oy (W) AW () — aL(T) + ,B(T)} 33)

V(T) = V(0)exp { / ) [r(u) - ;o—g(u)] du + / o (u)AWE () + / "o (u)ag(u)du} .

(34)
By the property of conditional expectation, we get
E,(J) = E® {D(O,T’J)I{L<T>—L(o>>L}EQ[S(T)I{K>S<T>}I{V<T)>D*}|fq)~( \/fTL]|ff} . (35)
From Bayes’ rule, we have
EC [S(D) sezscondivenzo [ Fr V Frl
—E° [ 7 V FE ES [S(T) Icssanlyvason | Fr \/J:%]

ns

g 1 ’ 2 Q° S(T) X L
=E |exp / oy (u)dWi(u) — 2/ oy(u)du ¢ | E 7775 Iz sernLivenzpy | Fr V Fr
0 0 T

=S(0)D(0,T,3)e T E?" [T x50y Lvirys oy | Fi V FE]

_S(0)D(0, T, 3)e-4C1QS [ / o2 (W) dWS (1) < In Si(o) _R(3) — %U;(J) +A(0,T),
[ o) > 0 B~ Ral0) + 5U30) — UE@IFE V]
—S(0)D(0, T, 3)e=4OD N, (dy(L(T),3), ds(3), — (7). (36)

Substituting (36) into (35), we get

E,(1) = e @ 3 “T,EJ”/ S(0)e™ " P ON,(ds(y,I), da(3), =) f7" (y)dy.  (37)
L

n=1

The proof is completed. O
Proposition 3 Let E;(J) and E,(J) be determined by (24) and (25). Then we have
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£u(0) = e e 52 B [0 o)1) Nl (0). du(0). ). (39
(1-0) = O )
E4(J) — o) ) g
< D N (0.9). s (0), 50 )
where
In 557 — Fr@) + 5UH0) = pUE(3) + oy — A(T)
d5(y,~]) - Ul( ) )
* 1
D Re(3) - UM
4@ = 0 S
U7)
In 557 — @) = GUHE) = pUE(3) + oy — B(T)
d(y,J) = U1 () )
D* 1 2 12
lnm - Ry(J) - iUT(J) - pUz?(3)
ds(J) = U2(3)
Proof Define
ny = dd%‘/ = exp {/O oo (u)dWsy(u) — ;/O Jg(u)du}. (40)

By Girsanov’s theorem, WY (t) = Wy(t) — p [ ox(u)du and WY (t) = Wy(t) — [ ou(u)du
are two standard Brownian motions with Cov(dW\ (t),dW} (t)) = pdt under QV. Simi-
lar to the calculation of E,(J) and E,(J), we get

oo

£ = KU e 5 0 [Ty )N, ,9), @), 9N )y (41

Define

i =S e { [ awanr - [ ot 42)

By Girsanov’s theorem, W7V (t) =W\ (t) — ft oy(u)du and  WPV(t) = WY (t)—
pf o1(u)du are two standard Brownian motions with Cov(dW Y (t), dWSV (1)) = pdt
under V. Similar to the calculation of E,(J), E;(J) and E;(J), we get
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E4(J):(1_w) —ArJ) i::
0,
T.3)°

<J ST

The proof is completed. |

(())

—outS(T) pen ()N (dy (3, 3), ds (3), p(3))dy. (43)

In order to deduce the closed-form expression for pricing the catastrophe put option
with credit risk in a regime-switching model, we need to know the distribution of J. In
particular, we consider N = 2, that is X (¢) switches between only 2 states, where state
e, and state e, represent a “good” economy and a “bad” economy, respectively. TaylorM
pointed out that a Markov chain with two states is sufficient to distinguish a normal
market from the one experiencing a crisis. Let fF(s,T) be the probability density of .J,
given X(0) =k, for ke {1,2}. As in Kovchegova et al."” and Yoon et al, for all
0<s<T, ff(s,T) satisties

fi(s,T) =e T 5(T — ) + 4/ )\ZS L2\ Avs(T — s) + Mo (2+/ Avs(T — s)],
[i(s,T) =7 T9[5(s) + 4/ )\V( Il 2/ Avs(T — s) + vy (2+/Avs(T — s)

where I,(z) is the modified Bessel function defined by

0 1 Z\onip
L= e

Let f,(s,T) be the probability density of .J;, and then

f(s,T) =< (fl(s,T), f1(s,T)), X0 > .
Therefore, combining Proposition 2 and Proposition 3, the price of the catastrophe put
option with credit risk in a regime-switching model is given by the following theorem.

Theorem 4 Let p(0,7") be determined by (21), and then the price of the catastro-

phe put option with credit risk in a regime-switching model is

p(0,T) = /Tp(O,T, s)fi(s,T)ds
_ / [E(s) — Ea(s) + Es(s) — Ea(s)] f1(s, T)ds. (44)

5 Numerical analysis

In this section, using the explicit formulae obtained in the previous sections, we

present some numerical analysis to examine how the parameters of the model affect the
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price of the catastrophe put option. We assume that the loss size conditional on a loss is
fixed at [ and that the trigger level is an integer multiple of the loss size, i.e., L = CI.
As explained in Jaimungal and Wang[z], and Jiang et al.m, the parameter C, which coin
the trigger ratio level, represents the ratio of the trigger level to the total expected loss
amount. In this predetermined loss case, the probability density function of loss sizes is
a Dirac density f.(y) = d(y — 1), and then E,(J),E;(J),E5(J) and E,(J) can be expressed

as follows:
@) = e 3 X 5o 7 3) 8 (.3), da(3). ~(3)), (5
£,(3) = e 55 A g(gomamterrioc v, a1, 3), (), (), (46)

Eg(J) = KMe—/\T(J) i ()‘T:L"]))n
Az ()" S(0)V(0)

_ () N
B =—p " L — D(0,T,3)

V(0)Nx(ds(nl,J), ds(I), p(I)), (47)

e et AT AT Ny (ds (nl, 3), ds(3), (3))-
(48)

Unless otherwise specified, the following parameters are fixed: T =5,V =9,
D =5D=8,C=2,a=0.2,l=3,r=(0.050.02), 6, =(0.1,0.4)",6, = (0.1,04)", A =
)

05 —05

Fig. 1 presents the relation between the strike price K and the catastrophe put
option price p for different  and X(0). Fixed w = 0.4,4 = (0.1,0.3)", p = 0.1, S(0) = 80,
we see that the catastrophe put option price p increases as the strike price K increases.
The catastrophe put option price p is higher when we start at the state e,. Fixed the
strike price K, we see that the catastrophe put option price p decreases as w increases.
Fig. 2 presents the relation between the share price S and the catastrophe put option
price p for different » and X(0). Fixed w = 0.4,»=(0.1,0.3)",p = 0.1, K = 80, we see
that the catastrophe put option price p decreases as the share price S increases. The
catastrophe put option price p is higher when we start at the state e,. Fixed the share
price S, we see that the catastrophe put option price p decreases as w increases.

Fig. 3 presents the relation between the strike price K and the catastrophe put
option price p for different A and X(0). Fixed w = 0.4,4 = (0.1,0.3)", p = 0.1, 5(0) = 80,
we see that the catastrophe put option price p increases as the strike price K increases.
The catastrophe put option price p is higher when we start at the state e,. Fixed the
strike price K, we see that the catastrophe put option price p increases as A increases.
Fig. 4 presents the relation between the share price S and the catastrophe put option
price p for different o and X(0). Fixed w = 0.4, = (0.1,0.3)",p = 0.1, K = 80, we see
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that the catastrophe put option price p decreases as the share price S increases. The

catastrophe put option price p is higher when we start at the state e,. Fixed the share

price S, we see that the catastrophe put option price p increases as A increases.
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Fig. 5 presents the relation between the strike price K and the catastrophe put
option price p for different p and X(0). Fixed w = 0.4,4 = (0.1,0.3)", p = 0.1, S(0) = 80,
we see that the catastrophe put option price p increases as the strike price K increases.
The catastrophe put option price p is higher when we start at the state e,. Fixed the
strike price K, we see that the catastrophe put option price p decreases as p increases.
Fig. 6 presents the relation between the share price S and the catastrophe put option
price p for different p and X(0). Fixed w = 0.4, = (0.1,0.3),p = 0.1, K = 80, we see
that the catastrophe put option price p decreases as the share price S increases. The
catastrophe put option price p is higher when we start at the state e,. Fixed the share

price S, we see that the catastrophe put option price p decreases as p increases.

125 X0
— X(0)=e,, p=0.1
1201 x0)=e,, p=-0.1
115}
110}
Q 105
X(0)=e,, p=0.1 s
1001 X(0)=e,, p=-0.1 __ .=~
95| =
90t
85 ' ' : '
80 82 84 8 88 90

K

Figure 5 The relation between K and p for different p and X(0)
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