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1 Inroduction

High dimensionality, heterogeneity, and the existence of outliers make variable selec-
tion for censored survival data challenging. There are numerous studies in the literature on
variable selection for regression problems with and without censoring. Recently, various
regularization methods have been proposed for feature selection in high-dimensional data
analysis, which has become increasingly prominent and important across various research
fields. These methods include, but are not limited to, the LASSO[1], the smoothly clipped
absolute deviation (SCAD)[2–4], the least angle regression (LARS) algorithm[5], the elastic
net[6–7], the adaptive LASSO[8], and the Dantzig selector[9]. On the other hand, variable

∗ This project was supported by the Outstanding Youth Foundation of Hunan Provincial Department
of Education (Grant No. 22B0911).

† Corresponding author, E-mail: weiwei1631028@163.com.
Received on May 7, 2022. Revised on March 22, 2023. Accepted on April 20, 2023.



784 Chinese Journal of Applied Probability and Statistics Vol. 40

screening methods for high-dimensional survival data are mostly based on the partial-
likelihood of the Cox model. For example, Fan et al.[10] and Sihai-Dave-Zhao and Li[11]

investigated marginal screening based on the Cox proportional hazards model. However,
in practice, the true models often remain unknown, and it is unclear whether these meth-
ods will perform well under model misspecification. More importantly, these penalized
algorithms are effective for mean regressions and parametric models, yet face simultaneous
challenges of computational efficiency, statistical accuracy and algorithmic stability when
the predictors are ultrahigh dimensional and the sample size is relatively small[12].

A computationally simple method for very high-dimensional data that performs well
in practice is sure independence screening, as demonstrated in the classical regression
context in [13]. In this method, the outcome variable is regressed on each covariate sep-
arately. Sure independence screening recruits the features that have the best marginal
utility. In the context of least squares regression for a linear model, this corresponds to
the largest marginal absolute Pearson correlation between the response and the predic-
tor. Correlation screening is a crude yet effective way to decrease the dimensionality of
data. However, as pointed out in [14], the Pearson correlation might not work well for
censored survival data because it cannot be reliably estimated , especially when the cen-
soring rate is high. In addition, its performance can be significantly affected by outliers
in predictors because correlation is not a robust measure for association. Such outliers
pose challenges for theoretical studies of screening methods, most of which require tail
probability conditions for the covariates. To address these challenges, Song et al.[14] pro-
posed censored rank independence screening for high-dimensional survival data. However,
their method may be adversely affected by the heterogeneity that is often present in high-
dimensional data. To this end, Wu and Yin[15] propose a conditional quantile screening
method for high-dimensional survival data with heterogeneity, which enables us to select
features that contribute to the conditional quantile of the complete or censored response
given the covariates. See [16–22] for further developments. It is worth noting that He et
al.[23] also proposed a quantile adaptive sure independent screening procedure for high-
dimensional survival data with heterogeneity. However, compared to He et al.[23], the
computational cost in [15] is significantly lower, as the former involves fitting marginal
spline-based quantile regression models, which are quite computationally expensive. In
this paper, we propose a censored composite conditional quantile screening (cCCQC-SIS)
method for high-dimensional survival data. Our proposed method has several advantages.
First, it is robust against the existence of outliers. This robustness is derived from the
censored conditional quantile coefficient. Second, it is a non-model-based method, so it
works for a wide class of survival models. In particular, the cCCQC makes use of all
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useful information across quantiles. There have existed several papers which utilize the
composite quantile idea in other statistical problems. These methods include, but are not
limited to, [24–26]. In this work, we apply the same principle in the context of feature
screening for survival data.

The rest of this paper is organized as follows. In Section 2, we introduce the notion of
the cCCQC, and the corresponding sure screening property and rank consistency property
are rigorously justified. In Section 3, we evaluate the finite sample performance of our
proposals through Monte Carlo simulations. The technical details are provided in the
Appendix.

2 Method

2.1 The Censored Composite Conditional Quantile Coefficient

To introduce the notion of the censored composite conditional quantile coefficient (cC-
CQC), we shall provide a brief discussion on the censored composite conditional quantile
coefficient. Let Y denote the response variable of interest, C denote the censoring variable,
and z = (Z1, Z2, · · · , Zp)

⊤ denote the p-dimensional vector of covariates. Further, define
X = min(Y,C) and ∆ = I(Y < C). Here I(·) denotes the indicator function. The ob-
served data are independent and identically distributed copies of {X,∆, (Z1, Z2, · · · , Zp)

⊤}
and are denoted by {Xi,∆i, (Zi1, Zi2, · · · , Zip)

⊤}ni=1. Throughout the paper, we assume
that the censoring variable C is independent of the response Y and the covariates z.

The censored conditional quantile (CCQ) coefficient is given by

CCQ(X,Zk, τ) = E
{

E
[
{τ − wτ (F )I(X < Qτ (Y ))}I(Zk < Z̃k)|Z̃k

]}2
, (1)

where τ ∈ (0, 1), F (y) = P(Y ⩽ y), the weight function

wτ (F ) =

1, if ∆ = 1 or F (C) > τ ,

τ−F (C)
1−F (C) , if ∆ = 0 and F (C) ⩽ τ ,

redistributes the masses of censored observations to the right[15,27], Z̃k is i.i.d. copy of Zk

and Qτ (Y ) is the τ × 100%th quantile of Y .
Motivated by Zou and Yuan[24], Kong and Xia[28] and Xu[29], we here propose the

censored composite conditional quantile coefficient (cCCQC), i.e.,

cCCQC(X,Zk) = E
∫ 1

0

{
E
[
{τ − wτ (F )I(X < Qτ (Y ))}I(Zk < Z̃k)|Z̃k

]}2
dτ, (2)

The CCQ in (1) is very useful for handling heterogeneity. However, with a limited
sample size, there is variability in the set of selected variables as τ changes, even if just
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slightly. Such variability is clearly undesirable for interpretation. More importantly, some
important variables are likely to be missed, simply due to chance, if we perform vari-
able selection at any given τ . Therefore, one can anticipate that cCCQC is more stable
than CCQ, as it takes advantage of all useful information across quantiles to enhance the
stability of CCQ.

Let F̂n(y) = 1 − Ŝn(y), where Ŝn(y) is the Kaplan-Meier estimator of Y based on
{(Xi,∆i)}ni=1. The τth sample quantile F̂−1

n (τ) is an estimator of Qτ (Y ) when Y is
subject to right censoring. By invoking (2), a natural estimator of cCCQC is given by

̂cCCQC(X,Zk)
def
=

1

n

n∑
j=1

∫ 1

0

{
1

n

n∑
i=1

(τ − wiτ (F̂n)I(Xi < F̂−1
n (τ)))I(Zik < Zjk)

}2

dτ

≈ 1

n2

n∑
j=1

n∑
s=1

{
1

n

n∑
i=1

(τs − wiτs(F̂n)I(Xi < F̂−1
n (τs)))I(Zik < Zjk)

}2

(3)

where τs = s
n+1 , s = 1, · · · , n and wiτs(F̂n) is denoted in an obvious way. The integral

approximation is straightforward by invoking the precursor work of [24,30]. For the pur-
pose of high-dimensional screening, we focus on rather than the asymptotic properties of
̂cCCQC(X,Zk) but instead the desirable sure screening and rank consistency properties

of ̂cCCQC(X,Zk).

Following the work of Kong and Xia[28], and for the sake of technical convenience, we
focus on rather than the case (0, 1) but instead the following truncated version [δ∗, 1− δ∗]:

cCCQCT(X,Zk) = E
∫ 1−δ∗

δ∗

{
E
[
{τ − wτ (F )I(X < Qτ (Y ))}I(Zk < Z̃k)|Z̃k

]}2
dτ, (4)

and

̂cCCQCT (X,Zk)
def
=

1

n

n∑
j=1

∫ 1−δ∗

δ∗

{
1

n

n∑
i=1

(τ − wiτ (F̂n)I(Xi < F̂−1
n (τ)))I(Zik < Zjk)

}2

dτ

(5)

for some small δ∗ ∈ (0, 1). This is due to the fact that the uniformity in τ of the strong
Bahadur-type representation of F̂−1

n (τ) cannot be met by all τ ∈ (0, 1). See the proof
given in the Appendix for more details. Nevertheless, such truncation need not cause
much concern. The reasons are two-fold. On one hand, the integral in (2) is approximated
by summing over a sequence of discretized τ values. On the other hand, the cCCQC which
is derived based on (0, 1) is expected to closely resemble, if not completely identical to,
that based on [δ∗, 1 − δ∗], provided that δ∗ is small enough. In practice, we follow the
work by [24,28] to choose δ∗ = 1/n.
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2.2 A Screening Procedure

In this section we design a sure independence screening procedure based on the cCCQC
for high-dimensional survival data. Let A denote the index set of the active variables:

A = {k : P(Y > t|z) depends functionally on Zk} .

With a sample of size n, we aim to select the set of active variables zA. The following
assumptions are needed.

Assumption 1 The truly important predictors satisfy

min
k∈A

cCCQCT (X,Zk) ⩾ 2cnt− 1
2 , for some constants c > 0, 0 < t ⩽ 1/2.

Assumption 2 F (y) is twice differentiable; the density function of Y ,f(y), is uni-
formly bounded away from zero and infinity, and its derivative f ′(y) is bounded uniformly
on [Qδ∗(Y )− ε,Q1−δ∗(Y ) + ε] for some 0 < ε < 1.

Assumption 3 G(x) = P(C ⩽ x) is twice differentiable, the density function of C,
g(x), is uniformly bounded away from zero and infinity, and its derivative g′(x) is bounded
uniformly on [Qδ∗(Y )− ε,Q1−δ∗(Y ) + ε] for some 0 < ε < 1.

Assumption 4 Let L denote the maximum follow-up variable; then P(L ⩾ Y ) ⩾
τ0 > 0 for some positive constant τ0.

Assumption 1 requires the signals of the important predictors to be strong enough
to be detectable by the cCCQC. Similar conditions are widely assumed in the marginal
screening literature. See, for example, [14–15]. Assumptions 2–4 are common in the
survival analysis literature to ensure that the Kaplan-Meier estimator and its inverse
function are well behaved.

If the signal level is not too small, i.e., Assumption 1 is true, we suggest the cCCQC-
SIS procedure which retains the predictors indexed by

Â =
{
k : ̂cCCQCT (X,Zk) ⩾ cnt− 1

2 , k = 1, · · · , p
}
, (6)

where c and t are specified in Assumption 1.
With the above Assumptions, we can easily establish the desirable sure screening

property for the cCCQC-SIS procedure without assuming the marginal distribution func-
tions of either z or Y , or both, have exponential tails.

Theorem 1 (Sure Screening Property) Suppose the Assumptions 1–4 hold. Then,
we can show that there exists a sufficiently small constant sn such that

P
(
A ⊆ Â

)
⩾ 1−O

[
|A|
{

exp(−c1n
2t) + exp(c2n log(1− 1

2
snn

t− 1
2 ))

}]
,
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where |A| denotes the cardinality of the index set A,

One can expect that Y depends more upon zA than upon zAc , though such depen-
dence can be nonlinear. Intuitively speaking, cCCQCT (X,Zk), for k ∈ zA, is greater than
cCCQCT (X,Zk), for k ∈ zAc , if we use the cCCQC to measure nonlinear dependence.
Such an intuition is formulated in the following assumption.

Assumption 5 lim inf
p→∞

{
min
k∈A

cCCQCT (X,Zk)− max
k∈Ac

cCCQCT (X,Zk)

}
⩾ d1, where

d1 is a positive constant.

Assumption 5 imposes an assumption on the gap of signal strength between active
and inactive features. With Assumption 5, we can easily establish the ranking consistency
property for the cCCQC-SIS procedure.

Theorem 2 (Rank Consistency Property) In addition to the Assumptions 1–5, we
further assume that p = o

{
exp

(
ant+ 1

2

)}
for any fixed a > 0. Then

lim inf
n→∞

{
min
k∈A

̂cCCQCT (X,Zk)− max
k∈Ac

̂cCCQCT (X,Zk)

}
⩾ 0,

almost surely.

Theorem 2 ensures that the important predictors will be ranked prior to the unimpor-
tant ones with an overwhelming probability, if the signals between the important predic-
tors and the unimportant ones are distinguishable. We shall demonstrate the usefulness
of these asymptotic properties in Section 3.

3 Numerical Studies

In this section, we conduct simulations and a real data illustration to evaluate the
empirical performance of the proposed cCCQC-based screening method. Our simulation
studies are conducted using Matlab code. We compare our screening procedure (cCCQC-
SIS) with the following three competitors: the censored rank independence screening [14;
CR-SIS], the censored conditional quantile coefficient based sure independence screening
[15; CCQτ -SIS] and the sure independent ranking and screening procedure for censored
regression [16; cSIRS]. We adopt the following three criteria to compare the performance of
different independence screening procedures. These three criteria are generally correlated
with each other, so we present the results based on only one or two criteria in some cases
to conserve space.

The minimal model size which is required to include all truly important covariates. We
denote this quantity by S . If an independent screening procedure has the sure screening
property, S is expected to be close to the number of truly important predictors. We
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report the minimum, the first quartile, the median, the third quartile and the maximum
number of S for each independence screening method out of 1000 replications.

The selection probability that all active predictors are ranked in either the top
[n/ logn] or (n − 1) positions, where [a] denotes the integer part of a. We denote this
quantity by PA. This measurement counts the proportion that all truly important pre-
dictors are selected out of 1000 replications. If an independence screening procedure has
the sure screening property, PA is expected to be close to 1.

The selection probability that an individual important predictor is ranked in either
of the top [n/ logn] or (n − 1) positions. We denote this quantity by PS . It can also be
used to assess the sure screening property. In addition, it is helpful to understand which
predictors are mostly likely missed by a specific independent screening procedure. We
expect the value of PS to be close to 1 if an independent screening procedure is able to
identify each important covariate.

Example 1 Consider the simple linear model:

Yi = Zi,1 + 0.8Zi,2 + 0.6Zi,3 + 0.4Zi,4 + 0.2Zi,5 + εi. (7)

The high-dimensional covariates zi = (Zi,1, Zi,2, · · · , Zi,p)
⊤ is generated from a multivari-

ate normal population with mean zero and covariance matrix Σ =
(
0.8|k−k′|

)
p×p

. The
error term εi is drawn from the standard normal or standard cauchy distribution. We
consider a sample size of n = 100 and set the number of covariates to p = 1000 . We take
the censoring variable C to be min(C̃, L), where C̃ is generated from Un(1, L+2) with L

being the study duration variable, which is chosen to yield a censoring rate of about 30%.
We consider two quantile levels τ = 0.50 and τ = 0.75, respectively.

It can be seen from Tables 1 and 2 that in most scenarios, our proposed method
performs the best for example 1, followed by CCQ0.50-SIS, cSRIS, CCQ0.75-SIS and CR-
SIS. However, the difference among them is small. This indicates that cCCQC-SIS, cSRIS,
CCQτ -SIS and CR-SIS are all capable of detecting the linear relationship.

Example 2 Consider the following linear model with heterogeneity:

Yi = Zi,1 + 0.8Zi,2 + 0.6Zi,3 + 0.4Zi,4 + 0.2Zi,5 + exp(Zi,6 + Zi,7 + Zi,8)εi. (8)

The covariates and the error term are simulated as in model (7). The L is also chosen
to yield a censoring rate of about 30%. However, to accommodate the heterogeneity, we
consider two quantile levels τ = 0.40 and τ = 0.75, respectively.

It can be clearly seen from Tables 1 and 3 that the proposed cCCQC-SIS performs
the best for Example 2. In particular, Table 3 indicates that our proposal can detect the
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Table 1 The quantiles of the minimum model size S for Examples 1, 2 and 3
Model Error Method min 25% 50% 75% 95% 99% max

Model (3.1) Normal cCCQC-SIS 5 5 5 5 5 5 16
CR-SIS 5 5 5 5 21 441 838

CCQ0.50-SIS 5 5 5 5 5 7 28
CCQ0.75-SIS 5 5 5 5 5 12 52

cSRIS 5 5 5 5 5 5 19
Cauchy cCCQC-SIS 5 5 5 5 6 27 132

CR-SIS 5 5 7 87 503 942 997
CCQ0.50-SIS 5 5 5 5 8 33 136
CCQ0.75-SIS 5 5 5 7 21 182 782

cSRIS 5 5 5 5 9 40 167

Model (3.2) Normal cCCQC-SIS 8 9 20 49 114 437 938
CR-SIS 9 141 616 871 959 994 1000

CCQ0.40-SIS 30 114 274 482 712 921 986
CCQ0.50-SIS 13 72 150 372 636 905 977
CCQ0.75-SIS 8 9 19 61 213 845 966

cSRIS 8 11 29 88 305 910 978
Cauchy cCCQC-SIS 8 8 22 56 144 581 945

CR-SIS 24 161 717 926 979 998 1000
CCQ0.40-SIS 8 184 405 548 772 961 998
CCQ0.75-SIS 8 8 28 81 281 801 959

cSRIS 8 12 32 94 326 922 989

Model (3.3) Normal cCCQC-SIS 6 6 10 26 60 404 845
CR-SIS 7 18 166 658 909 991 1000

CCQ0.50-SIS 6 8 19 61 151 493 861
CCQ0.75-SIS 6 6 13 60 210 614 969

cSRIS 6 6 18 44 89 453 890
Cauchy cCCQC-SIS 6 6 21 50 133 446 958

CR-SIS 6 12 101 553 895 992 1000
CCQ0.50-SIS 6 11 48 105 275 674 987
CCQ0.75-SIS 6 7 23 106 321 740 956

cSRIS 6 9 39 90 117 522 980

Table 2 The empirical probabilities PS and PA for Example 1
PS PA

Model Size Error Method X1 X2 X3 X4 X5

(n− 1) Normal cCCQC-SIS 1.00 1.00 1.00 1.00 1.00 1.00
CR-SIS 1.00 1.00 0.98 0.95 0.92 0.88

CCQ0.50-SIS 1.00 1.00 1.00 1.00 1.00 1.00
CCQ0.75-SIS 1.00 1.00 1.00 1.00 1.00 1.00

cSRIS 1.00 1.00 1.00 1.00 1.00 1.00
Cauchy cCCQC-SIS 1.00 1.00 1.00 1.00 0.96 0.96

CR-SIS 1.00 0.95 0.90 0.86 0.80 0.71
CCQ0.50-SIS 1.00 1.00 1.00 0.97 0.94 0.89
CCQ0.75-SIS 1.00 1.00 0.98 0.93 0.86 0.78

cSRIS 1.00 1.00 1.00 0.97 0.93 0.91
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Table 3 The empirical probabilities PS and PA for Example 2
PS PA

Model Size Error Method X1 X2 X3 X4 X5 X6 X7 X8

(n− 1) Normal cCCQC-SIS 1.00 1.00 1.00 1.00 1.00 0.98 0.91 0.80 0.74
CR-SIS 0.69 0.76 0.73 0.58 0.38 0.19 0.14 0.11 0.04

CCQ0.40-SIS 1.00 1.00 0.99 0.95 0.64 0.31 0.24 0.25 0.05
CCQ0.50-SIS 1.00 1.00 0.98 0.97 0.73 0.49 0.46 0.38 0.16
CCQ0.75-SIS 0.98 1.00 1.00 0.99 0.96 0.90 0.80 0.68 0.63

cSRIS 1.00 1.00 1.00 1.00 0.97 0.95 0.88 0.75 0.64
Cauchy cCCQC-SIS 0.98 0.98 0.98 0.96 0.95 0.95 0.94 0.88 0.70

CR-SIS 0.52 0.55 0.48 0.35 0.27 0.18 0.09 0.08 0.03
CCQ0.40-SIS 0.98 0.98 0.95 0.80 0.43 0.27 0.28 0.32 0.03
CCQ0.50-SIS 0.94 0.95 0.92 0.86 0.47 0.35 0.32 0.36 0.09
CCQ0.75-SIS 0.89 0.90 0.91 0.90 0.87 0.89 0.74 0.63 0.53

cSRIS 0.97 0.96 0.97 0.94 0.94 0.92 0.87 0.72 0.57

Table 4 The empirical probabilities PS and PA for Example 2 with p = 4000,
cauchy error, model size n− 1 and the active covariates spread out

PS PA

Method X2001 X2002 X2003 X2004 X2005 X2006 X2007 X2008

cCCQC-SIS 0.95 0.97 0.96 0.95 0.91 0.92 0.90 0.89 0.76
CR-SIS 0.50 0.52 0.49 0.37 0.23 0.22 0.14 0.13 0.06

CCQ0.40-SIS 0.96 0.95 0.96 0.86 0.45 0.30 0.29 0.34 0.11
CCQ0.50-SIS 0.95 0.95 0.94 0.89 0.46 0.37 0.36 0.40 0.18
CCQ0.75-SIS 0.91 0.92 0.92 0.93 0.88 0.90 0.78 0.66 0.59

cSRIS 0.96 0.94 0.96 0.95 0.90 0.91 0.89 0.75 0.65

Table 5 The empirical probabilities PS and PA for Example 2 with the heavy
censoring case, normal error and model size n− 1

PS PA

Method X1 X2 X3 X4 X5 X6 X7 X8

cCCQC-SIS 0.89 0.90 0.86 0.91 0.94 0.86 0.84 0.77 0.62
CR-SIS 0.54 0.60 0.61 0.49 0.30 0.13 0.09 0.08 0.01

CCQ0.40-SIS 0.88 0.87 0.85 0.90 0.52 0.20 0.15 0.13 0.02
CCQ0.50-SIS 0.90 0.92 0.86 0.90 0.64 0.40 0.37 0.28 0.10
CCQ0.75-SIS 0.87 0.89 0.85 0.89 0.92 0.82 0.63 0.56 0.41

cSRIS 0.81 0.85 0.83 0.88 0.90 0.81 0.76 0.63 0.49
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Table 6 The empirical probabilities PS and PA for Example 3
PS PA

Model Size Error Method X1 X2 X3 X4 X5 X6

[n/ logn] Normal cCCQC-SIS 0.59 0.83 0.84 0.87 0.92 0.88 0.42
CR-SIS 0.26 0.43 0.46 0.44 0.23 0.18 0.06

CCQ0.50-SIS 0.49 0.70 0.68 0.68 0.82 0.68 0.26
CCQ0.75-SIS 0.43 0.60 0.69 0.70 0.87 0.70 0.34

cSRIS 0.44 0.57 0.63 0.69 0.89 0.68 0.30
Cauchy cCCQC-SIS 0.44 0.75 0.76 0.70 0.82 0.77 0.31

CR-SIS 0.37 0.45 0.41 0.42 0.29 0.15 0.11
CCQ0.50-SIS 0.40 0.60 0.56 0.52 0.65 0.45 0.13
CCQ0.75-SIS 0.39 0.53 0.55 0.60 0.78 0.65 0.23

cSRIS 0.36 0.52 0.54 0.57 0.73 0.60 0.19

(n− 1) Normal cCCQC-SIS 0.87 0.96 0.93 0.96 1.00 0.98 0.82
CR-SIS 0.42 0.62 0.63 0.62 0.47 0.38 0.18

CCQ0.50-SIS 0.78 0.90 0.89 0.91 0.97 0.92 0.60
CCQ0.75-SIS 0.65 0.82 0.86 0.89 0.99 0.96 0.56

cSRIS 0.66 0.80 0.83 0.85 0.98 0.94 0.52
Cauchy cCCQC-SIS 0.76 0.93 0.89 0.95 0.96 0.94 0.69

CR-SIS 0.47 0.60 0.60 0.55 0.41 0.29 0.24
CCQ0.50-SIS 0.60 0.80 0.81 0.83 0.92 0.87 0.48
CCQ0.75-SIS 0.57 0.76 0.79 0.85 0.94 0.90 0.47

cSRIS 0.62 0.83 0.82 0.84 0.90 0.81 0.48

heteroscedasitic errors with an over-whelming probability. As expected, cCCQC-SIS is
more stable than CCQτ -SIS in that the former takes advantage of all useful information
across quantiles. Also, the CR-SIS and cSRIS have unsatisfactory performance in this
example due to the heterogeneity.

Example 3 Consider the following nonlinear model including a three-way interac-
tion term:

Yi = X2
i,1 + 3Xi,2Xi,3Xi,4 + 5Xi,5Xi,6 + εi. (9)

We keep the rest of the set-up the same as in model (7). From Tables 1 and 4, it is
evident that the proposed cCCQC-SIS performs best for Example 3 in comparison with
the existing counterparts. However, the differences among them are substantial. This
indicates that compared to the existing choices, cCCQC-SIS has an excellent capability of
identifying the interactions.

Example 4 Upon the suggestion of a reviewer, we reconsider the model (9) using
log(Yi) instead of Yi. A small S tends to be associated with high proportions for PA and
PS . So we present the results based on the criterion S in this example to conserve space.
From the simulation results summarized in Tables 4–6, we can draw similar conclusions
to Example 1.
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Table 7 The quantiles of the minimum model size S for Example 4
Error Method min 25% 50% 75% 95% 99% max

Normal cCCQC-SIS 6 6 6 12 27 116 622
CR-SIS 6 8 55 129 420 604 1000

CCQ0.50-SIS 6 6 10 35 86 216 813
CCQ0.75-SIS 6 6 7 21 71 189 916

cSRIS 6 6 11 39 95 289 848
Cauchy cCCQC-SIS 6 6 7 17 38 224 889

CR-SIS 6 10 65 198 476 752 1000
CCQ0.50-SIS 6 8 20 46 98 314 933
CCQ0.75-SIS 6 8 15 40 85 233 908

cSRIS 6 8 24 56 102 335 950

Example 5 As an illustration, we apply the proposed screening method to the
analysis of microarray diffuse large-B-cell lymphoma (DLBCL) data of [31]. The DLBCL
is one of the most common types of lymphoma in adults of United States. However, the
survival rate after the standard chemotherapy is only about 35 to 40%. Thus it is of
interest in studying how the survival rate depends on an individual’s gene information
The outcome in the study was the survival variable of n = 240 DLBCL patients after
chemotherapy. Measurements of p = 7399 genes obtained from cDNA microarrays for
each individual patient were the predictors. Given such a large number of predictors and
small sample size, feature screening seems a necessary initial step as a prelude to any other
sophisticated statistical modeling that does not cope well with such high dimensionality.

In this data set, all gene expression levels are standardized to have mean zero and
standard deviation one during the exploratory data analysis. We split these data set into
a training set with n1 subjects and a test setwith n2 subjects. Here n1+n2 = 240. We first
apply the screening procedures to the training data set, and retain [n1/ logn1] covariates
during this screening stage. Considering that some truly unimportant covariates are also
retained in the screening stage, we next perform the lasso penalization to further remove
those irrelevant covariates. We then build an un-penalized Cox proportional hazards model
using the selected genes. We next apply the log-rank test to compare the prediction power
of different screening methods. Table 6 describes the Kaplan–Meier estimate of survival
curves for the two risk groups of patients in the testing data with the log-rank test yielding
different p-values. These results indicate our good prediction of the fitted model.

Appdendix A: Proof of Theorem 1

The following Lemma paves the road for proving Theorem 1. Lemma 3 is the modified
version of Lemma S1 of [15]. Hence, the details are omitted here and a detailed technical
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Table 8 The p-values of the log-rank test for Example 5 with several
combinations of (n1, n2)

(n1, n2) cCCQC-SIS CR-SIS CCQ0.50-SIS CCQ0.75-SIS cSRIS

(120, 120) 0.001 0.034 0.120 0.060 0.021
(180, 60) 0.003 0.019 0.082 0.113 0.009
(80, 160) 0.004 0.134 0.107 0.085 0.115

report is available from the author.

Lemma 3 Let F be a class of distribution functions whose support is the same as
that of F , and let Y be the support of Y . For any ε > 0, let

Hτ (ε)
def
=

{
F ∗ ∈ F : sup

y∈Y
|F ∗(y)− F (Y )| ⩽ ε and |Qτ (Y

∗)−Qτ (Y )| ⩽ ε

}
,

where Y ∗ follows the distribution F ∗. Then

sup
τ∈[δ∗,1−δ∗]

sup
Hτ (ε)

|w (F ∗) I (X ⩽ Qτ (Y
∗))− w(F ∗)I (X ⩽ Qτ (Y ))|

⩽c01ε+ sup
τ∈[δ∗,1−δ∗]

I (Qτ (Y )− ε < Y ⩽ Qτ (Y ) + ε)

+ 3 sup
τ∈[δ∗,1−δ∗]

I (Qτ (Y )− ε < C ⩽ Qτ (Y ) + ε)

+ sup
τ∈[δ∗,1−δ∗]

I
(
F−1(τ − ε) < C ⩽ F−1(τ + ε)

)
,

where the constant c01 is independent of τ .

Proof of Theorem 1 Define

˜cCCQCT (Y,Xk)
def
=

1

n

n∑
j=1

∫ 1−δ∗

δ∗

{
1

n

n∑
i=1

(τ − wiτ (F )I(Xi < Qτ (Y )))I(Zik < Zjk)

}2

dτ.

Simple calculations yield

˜cCCQCT (Y,Xk) =
(n− 1)(n− 2)

n2

(
1

n− 2
R̃k1 + R̃k2

)
, (A.1)

where

R̃k1 =
2

n(n− 1)

∑
i<j

1

2

{∫ 1−δ∗

δ∗
(τ − wiτ (F )I(Xi < Qτ (Y )))2dτI(Zik < Zjk)

+

∫ 1−δ∗

δ∗
(τ − wjτ (F )I(Xj < Qτ (Y )))2dτI(Zjk < Zik)

}
def
=

2

n(n− 1)

∑
i<j

h1(Zik;Xi;Zjk;Xj ;F )
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and

R̃k2 =
6

n(n− 1)(n− 2)

∑
i<j<l

1

3

{
I (Zik < Zlk) I (Zjk < Zlk)

×
∫ 1−δ∗

δ∗
(τ − wiτ (F )I (Xi < Qτ (Y ))) (τ − wjτ (F )I (Xj < Qτ (Y ))) dτ

+

∫ 1−δ∗

δ∗
(τ − wjτ (F )I (Xj < Qτ (Y ))) (τ − wlτ (F )I (Xl < Qτ (Y ))) dτ

× I (Zjk < Zik) I (Zlk < Zik)

+

∫ 1−δ∗

δ∗
(τ − wlτ (F )I (Xl < Qτ (Y ))) (τ − wiτ (F )I (Xi < Qτ (Y ))) dτ

× I (Zlk < Zjk) I (Zik < Zjk)

}
def
=

2

n(n− 1)

∑
i<j

h2 (Zik;Xi;Zjk;Xj ;Zlk;Xl;F )

with h1 and h2 being the kernels of the U-statistics. Likewise, we have

̂cCCQCT (Y,Xk) =
(n− 1)(n− 2)

n2

(
1

n− 2
R̂k1 + R̂k2

)
, (A.2)

where R̂k1 is obtained by replacing F and Qτ (Y ) in R̃k1 with F̂n and F̂−1
n (τ), respectively,

and similarly for R̂k2.

Due to the fact I(·) is uniformly bounded, simple calculations yield∣∣∣R̂k1 − R̃k1

∣∣∣ ⩽ 2

n

n∑
i=1

∣∣∣∣∣
∫ 1−δ∗

δ∗
wiτ (F̂n)I(Xi < F̂−1

n (τ))dτ

−
∫ 1−δ∗

δ∗
wiτ (F )I(Xi < Qτ (Y ))dτ

∣∣∣∣∣ (A.3)

⩽ 2

n

n∑
i=1

sup
τ∈[δ∗,1−δ∗]

∣∣∣wiτ (F̂n)I(Xi < F̂−1
n (τ))− wiτ (F )I(Xi < Qτ (Y ))

∣∣∣ (A.4)

and∣∣∣R̂k2 − R̃k2

∣∣∣ ⩽ 1

n

n∑
i=1

sup
τ∈[δ∗,1−δ∗]

∣∣∣wiτ (F̂n)I(Xi < F̂−1
n (τ))− wiτ (F )I(Xi < Qτ (Y ))

∣∣∣ . (A.5)

Under Assumptions (A.2), (A.3) and (A.5), we have
∣∣∣∣∣∣F̂n − F

∣∣∣∣∣∣
∞

= O
(
n−1/2 (log(n))1/2

)
and

∣∣∣∣∣∣F̂−1
n −Qτ (Y )

∣∣∣∣∣∣
∞

= O(n−1/2
(
log(n))1/2

)
almost surely via invoking Lemma 8.4 in

[23].

Employing arguments similar to those for dealing with (S11)–(S13) in [15] and com-
bining Lemma 3, we have that there exists a positive constant c1, c2, c3, c4 and c5 such
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that

P
(
1

n

n∑
i=1

sup
τ∈[δ∗,1−δ∗]

∣∣∣wiτ (F̂n)I
(
Xi < F̂−1

n (τ)
)
− wiτ (F )I (Xi < Qτ (Y ))

∣∣∣ ⩾ cnt− 1
2

)

⩽P
(
1

n

n∑
i=1

sup
τ∈[δ∗,1−δ∗]

I
(
Qτ (Y )− c1cn

t− 1
2 < Yi ⩽ Qτ (Y ) + c1cn

t− 1
2

)
⩾ 1

4
cnt− 1

2

)

+ P
(
3

n

n∑
i=1

sup
τ∈[δ∗,1−δ∗]

I
(
Qτ (Y )− c2cn

t− 1
2 < Ci ⩽ Qτ (Y ) + c2cn

t− 1
2

)
⩾ 1

4
cnt− 1

2

)

+ P
(
1

n

n∑
i=1

sup
τ∈[δ∗,1−δ∗]

I
(
Qτ (Y )− c3cn

t− 1
2 < Ci ⩽ Qτ (Y ) + c3cn

t− 1
2

)
⩾ 1

4
cnt− 1

2

)
⩽ exp

(
−c4n

2t
)
+ 2 exp

(
−c5n

2t
)
.

Using the result above, we get

P
(∣∣∣ ˜cCCQCT (Y,Xk)− ̂cCCQCT (Y,Xk)

∣∣∣ ⩾ 2cnt− 1
2

)
⩽P

(
n− 1

n2

∣∣∣R̃k1 − R̂k1

∣∣∣ ⩾ cnt− 1
2

)
+ P

(
(n− 1)(n− 2)

n2

∣∣∣R̃k2 − R̂k2

∣∣∣ ⩾ cnt− 1
2

)
⩽P

(∣∣∣R̃k1 − R̂k1

∣∣∣ ⩾ cnt− 1
2

)
+ P

(∣∣∣R̃k2 − R̂k2

∣∣∣ ⩾ cnt− 1
2

)
⩽ exp

(
−c6n

2t
)
. (A.6)

On the other hand, invoking the proof of Theorem 2 in [32], we can directly use the
theory of U-statistics to establish asymptotic property of ̂cCCQCT (Y,Xk). Our following
arguments are exactly parallel to those used in the proof of Theorem 2 of [32] with a
slight modification. Hence, the details are omitted here and a detailed technical report is
available from the author. In other words, it is easy to show that there exists a sufficiently
small constant sn ∈ (0, 2n

1
2
−t) such that

P
(∣∣∣C̃MDCT (Y,Xk)− CMDCT (Y,Xk)

∣∣∣ > cnt− 1
2

)
⩽ O

(
exp

(
c7n log

(
1− 1

2
snn

t− 1
2

)))
.

(A.7)

Combining (A.6) and (A.7) leads to the desired result.

Appdendix B: Proof of Theorem 2

Denote wk = cCCQC(X,Zk) and ŵk = ̂cCCQC(X,Zk). The proof of Theorem 2
follows the proofs of Theorem 2.2 in [33].

P
(

min
k∈A

ŵk − max
k∈Ac

ŵk < d1/2

)
⩽ P

(
min
k∈A

ŵk − max
k∈Ac

ŵk −
(

min
k∈A

wk − max
k∈Ac

wk

)
< −d1/2

)



No. 5 LIU W, LI Y Q: Censored Composite Conditional Quantile Screening 797

⩽ P
(∣∣∣∣min

k∈A
ŵk − max

k∈Ac
ŵk −

(
min
k∈A

wk − max
k∈Ac

wk

)∣∣∣∣ > d1/2

)
⩽ P

(
2 max
1⩽k⩽p

|ŵk − wk| > d1/2

)
⩽ O

[
p

{
n exp

(
−c1n

2t
)
+ exp

(
c2n log

(
1− 1

2
snn

t− 1
2

))}]
Noting that p = o

(
exp(ant+ 1

2 )
)

, then we have that for some sufficiently large N ,
∞∑

n=N

p

{
n exp

(
−c1n

2t
)
+ exp

(
c2n log

(
1− 1

2
snn

t− 1
2

))}
< c

∞∑
n=N

n−2 < ∞.

Hence, using Borel-Contelli Lemma leads to the desired result.

References
[1] TIBSHIRANI R. Regression shrinkage and selection via the lasso [J]. J R Stat Soc Ser B, 1996, 58(1):

267–288.
[2] FAN J Q, LI R Z. Variable selection via nonconcave penalized likelihood and it oracle properties [J].

J Amer Statist Assoc, 2001, 96(456): 1348–1360.
[3] KIM Y, CHOI H, OH H S. Smoothly clipped absolute deviation on high dimensions [J]. J Amer

Statist Assoc, 2008, 103(484): 1665–1673.
[4] ZOU H, LI R Z. One-step sparse estimates in nonconcave penalized likelihood models [J]. Ann Statist,

2008, 36(4): 1509–1533.
[5] EFRON B, HASTIE T, JOHNSTONE I, et al. Least angle regression (with discussion) [J]. Ann

Statist, 2004, 32(2): 409–499.
[6] ZOU H, HASTIE T. Regularization and variable selection via the elastic net [J]. J R Stat Soc Ser B,

2005, 67(2): 301–320.
[7] ZOU H, ZHANG H H. On the adaptive elastic-net with a diverging number of parameters [J]. Ann

Statist, 2009, 37(4): 1733–1751.
[8] ZOU H. The adaptive lasso and its oracle properties [J]. J Amer Statist Assoc, 2006, 101(476):

1418–1429.
[9] CANDES E, TAO T. The Dantzig selector: Statistical estimation when p is much larger than n (with

discussion) [J]. Ann Statist, 2007, 35(6): 2313–2404.
[10] FAN J Q, FENG Y, WU Y C. Ultrahigh dimensional variable selection for Cox’s proportional hazards

model [J]. IMS Collections, 2010, 6: 70–86.
[11] Sihai-Dave-Zhao, LI Y. Principled sure independence screening for Cox models with ultrahigh-

dimensional covariates [J]. J Multivariate Anal, 2012, 105(1): 397–411.
[12] FAN J Q, SAMWORTH R, WU Y C. Ultrahigh dimensional feature selection: Beyond the linear

model [J]. J Mach Learn Res, 2009, 10: 2013–2038.
[13] FAN J Q, LV J C. Sure independence screening for ultrahigh dimensional feature space (with discus-

sion) [J]. J R Stat Soc Ser B, 2008, 70(5): 849–911.
[14] SONG R, LU W B, MA S G, et al. Censored rank independence screening for high-dimensional

survival data [J]. Biometrika, 2014, 101(4): 799–814.



798 Chinese Journal of Applied Probability and Statistics Vol. 40

[15] WU Y S, YIN G S. Conditional quantile screening in ultrahigh-dimensional heterogeneous data [J].
Biometrika, 2015, 102(1): 65–76.

[16] ZHOU T Y, ZHU L P. Model-free feature screening for ultrahigh dimensional censored regression [J].
Stat Comput, 2017, 27(4): 947–961.

[17] XU K, HUANG X D. Conditional-quantile screening for ultrahigh-dimensional survival data via
martingale difference correlation [J]. Sci China Math, 2018, 61(10): 1907–1922.

[18] ZHANG J, YIN G S, LIU Y Y, et al. Censored cumulative residual independent screening for
ultrahigh-dimensional survival data [J]. Lifetime Data Anal, 2018, 24(2): 273–292.

[19] PAN W L, WANG X Q, XIAO W N, et al. A generic sure independence screening procedure [J]. J
Amer Statist Assoc, 2019, 114(526): 928–937.

[20] XU K, HUANG X D. Feature screening for high-dimensional survival data via censored quantile
correlation [J]. J Sys Sci Complex, 2021, 34(3): 1207–1224.

[21] ZHANG J, LIU Y Y, CUI H J. Model-free feature screening via distance correlation for ultrahigh
dimensional survival data [J]. Stat Pap, 2021, 62(6): 2711–2738.

[22] XU K, SHEN Z, HUANG X D, et al. Projection correlation between scalar and vector variables
and its use in feature screening with multi-response data [J]. J Stat Computat Sim, 2020, 90(11):
1923–1942.

[23] HE X M, WANG L, HONG H G. Quantile-adaptive model-free variable screening for high-dimensional
heterogeneous data [J]. Ann Statist, 2013, 41(1): 342–369.

[24] ZOU H, YUAN M. Composite quantile regression and the oracle model selection theory [J]. Ann
Statist, 2008, 36(3): 1108–1126.

[25] FAN Y, TANG M L, TIAN M Z. Composite quantile regression for varying-coefficient single-index
models [J]. Commun Stat-theor M , 2016, 45(10): 3027–3047.

[26] ZHAO W H, LIAN H, SONG X Y. Composite quantile regression for correlated data [J]. Comput
Stat Data Anal, 2017, 109: 15–33.

[27] WANG H J, WANG L. Locally weighted censored quantile regression [J]. J Amer Statist Assoc, 2009,
104(487): 1117–1128.

[28] KONG E, XIA Y C. An adaptive composite quantile approach to dimension reduction [J]. Ann Statist,
2014, 42(4): 1657–1688.

[29] XU K. Model-free feature screening via a modified composite quantile correlation [J]. J Stat Plan
Infer, 2017, 188: 22–35.

[30] MA X J, ZHANG J X. Robust model-free feature screening via quantile correlation [J]. J Multivariate
Anal, 2016, 143: 472–480.

[31] ROSENWALD A, WRIGHT G, CHAN W C, et al. The use of molecular profiling to predict survival
after chemotherapy for diffuse large-B-cell lymphoma [J]. New Engl J Med, 2002, 346(25): 1937–1947.

[32] ZHU L P, LI L X, LI R Z, et al. Model-free feature screening for ultrahigh dimensional data [J]. J
Amer Statist Assoc, 2011, 106(496): 1464–1475.

[33] CUI H J, LI R Z, ZHONG W. Model free feature screening for ultrahigh dimensional discriminant
analysis [J]. J Amer Statist Assoc, 2015, 110(510): 630–641.



No. 5 LIU W, LI Y Q: Censored Composite Conditional Quantile Screening 799

高维生存数据的删失复合条件分位数筛选

刘薇 1 李应求 2

1 湖南财政经济学院数学与统计学院, 长沙, 410205
2 长沙理工大学数学与统计学院, 长沙, 410114

摘 要: 本文提出了一种删失复合条件分位数系数 (cCCQC), 用于评估高维删失回归模
型中各预测变量的相对重要性. cCCQC 利用了跨分位数的所有有用信息, 能够有效地检
测非线性效应, 包括交互作用和异质性. 此外, 基于 cCCQC 的筛选方法对异常值具有鲁
棒性, 并具有确定筛选性质. 模拟结果表明, 该方法在高维预测变量的生存数据集中表现良
好, 尤其是在变量高度相关的情况下.
关键词: 高维生存数据; 删失复合条件分位数系数; 特征筛选; 确定筛选性质; 排序相合性
中图分类号: O212.1
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