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Abstract: We establish the Hausdorff dimension of the graph of general Markov processes on Rd

based on some probability estimates of the processes staying or leaving small balls in small time. In
particular, our results indicate that, for symmetric diffusion processes (with α = 2) or symmetric
α-stable-like processes (with α ∈ (0, 2)) on Rd, it holds almost surely that

dimH GrX([0, 1]) = 1{α<1} + (2− 1/α)1{α⩾1,d=1} + (d ∧ α)1{α⩾1,d⩾2}.

We also systematically prove the corresponding results about the Hausdorff dimension of the range
of the processes.
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1 Introduction and Main Result

Random fractal is a hot subject in the development of modern probability theory. In
particular, the fractal properties of sample paths for stochastic processes play an important
role in random fractal theory, which can be traced back to Lévy’s research[1] on Brownian
motion in the 1940s. Since then, stable processes or other Lévy processes, with Brownian
motion as a special case, have been widely studied; see [2–5] and the survey paper [6].
So far, fractal properties of sample paths for Lévy processes have been fruitful; see [7–
12] as well as the book [13]. Among them, there are numerous significant works on the
Hausdorff dimension of the range and the graph of Lévy processes. For example, the
Hausdorff dimension of the range of symmetric α-stable process was studied in [14–16],
and the corresponding results for the graph of symmetric stable process were considered
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in [2]. Recently, the uniform Hausdorff and packing dimension of the range of a large
family of Markov processes have been proven in [17], and the Hausdorff dimension of the
range and the graph of stable-like processes are also considered in [18]. However, it seems
that the Hausdorff dimension of the graph of general Markov processes is not available.
One purpose of the present paper is to fill this gap. In the following we first describe the
assumptions and the setting of our paper, and then present our main result.

Consider a strong Markov process X := {(Xt)t⩾0, (Px)x∈Rd} with state space Rd,
which is defined on some probability space (Ω, F, P). Denote the range of X by X([0, 1]) :=

{x ∈ Rd : x = Xt for some t ∈ [0, 1]}, and the graph of X by GrX([0, 1]) := {(t,Xt) ∈
[0, 1] ×Rd : t ∈ [0, 1]}. We will investigate Hausdorff dimensions of the range and graph
(random) sets above of the process X under the following assumption. For any x ∈ Rd

and r > 0, let B(x, r) := {y ∈ Rd : |x− y| < r}.

Assumption (A)

(i) There exist constants c1, α1 > 0 such that for all x ∈ Rd, t ∈ [0, 1] and r ∈ (0, 1),

Px(Xt ∈ B(x, r)c) ⩽ c1
t

rα1
. (1)

(ii) There exist constants c2, α2 > 0 such that for all x ∈ Rd, t ∈ (0, 2] and r ∈ (0, 1),

Px(Xt ∈ B(x, r)) ⩽ c2

( r

t1/α2

)d
. (2)

Before stating our main result, we provide some comments on the assumption above.

Remark 1 (i) Without loss of generality, we can assume that α2 ⩽ α1. Note
that Px(Xt ∈ B(x, r)c) ⩽ Px(τB(x,r) ⩽ t), where τB(x,r) = inf{t > 0 : Xt /∈ B(x, r)}.
There are a few results to verify Assumption (A)(i), e.g., see [19; Chapter 5] for a
large class of Feller processes on Rd.

(ii) Suppose that the process X has a transition density (i.e., heat kernel). Then, (1)
is concerned with the probability estimate of the process X exiting the ball B(x, r),
which is related to off-diagonal estimates of the heat kernel, while (2) is the proba-
bility estimate of the process X hitting the ball B(x, r) that is related to on-diagonal
estimates of the heat kernel.

The main result of the paper is as follows.

Theorem 1 (i) Suppose that Assumption (A)(i) holds. Then, P-a.s., the Haus-
dorff dimension of the range for the strong Markov process X satisfies

dimH X([0, 1]) ⩽ d ∧ α1,
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and the Hausdorff dimension of the graph for the strong Markov process X satisfies

dimH GrX([0, 1]) ⩽ 1{α1<1} + (2− 1/α1)1{α1⩾1, d=1} + (d ∧ α1)1{α1⩾1, d⩾2}.

(ii) Suppose that Assumption (A)(ii) holds. Then, P-a.s., the Hausdorff dimension of
the range of strong Markov process X satisfies

dimH X([0, 1]) ⩾ d ∧ α2,

and the Hausdorff dimension of the graph for the strong Markov process X satisfies

dimH GrX([0, 1]) ⩾ 1{α2<1} + (2− 1/α2)1{α2⩾1, d=1} + (d ∧ α2)1{α2⩾1, d⩾2}.

The approach of Theorem 1 is partly motivated by those in the literature; see [5–6,18]
for details. To prove the upper bound of the Hausdorff dimension of the range of Markov
processes, we will make full use of the finite variation property of its sample paths, while we
adopt the density theorem via the sojourn time of the process to obtain the corresponding
lower bound. In particular, according to Remark 1(ii) one can see that the assertion (ii)
for the range covers [20; Theorem 1.4], where the corresponding result for Feller processes
is proved under on-diagonal estimates for heat kernel.

To study the Hausdorff dimension of the graph of the process, we consider the space-
time process (G(t))t⩾0 := (t,Xt)t⩾0 in Rd+1, and therefore the graph of X can be viewed as
the range of (G(t))t⩾0. Since projecting the range into the time axis or the space axis does
not increase the corresponding Hausdorff dimension, we can use bounds for the Hausdorff
dimension of the range to obtain lower bounds for the graph, and further refine the lower
bound when d = 1 and α2 > 1 by applying the density theorem. For the upper bound
of the Hausdorff dimension of the graph, we not only use the finite variation property
of its sample paths, but also apply the upper box-counting dimension when d = 1 and
α1 > 1. It should be emphasized that the statement of Theorem 1 is more delicate and
more general than known results in [2–3,18].

The remainder of the paper is organized as follows. In Section 2, we provide some
preliminaries concerning on the Hausdorff dimension and useful related tools. Section 3 is
devoted to the proof of Theorem 1. In the final section, we take two examples to illustrate
the power of Theorem 1.

2 Preliminaries

In this section, we review the definition of the Hausdorff dimension and useful related
tools, which are used to prove Theorem 1. For more details, one can refer to [6,21–22].
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For any δ > 0, let Φ be the class of functions φ : (0, δ) → (0,∞) that are right
continuous, monotone increasing with φ(0+) = 0, and satisfy that there exists a finite
constant K > 0 such that

φ(2s)

φ(s)
⩽ K, 0 < s < δ/2.

Definition 1 For any φ ∈ Φ, the φ-Hausdorff measure of E ⊆ Rd is defined by

φ-m(E) = lim
ε→0

inf
{ ∞∑

i=1

φ(2ri) : E ⊆
∞⋃
i=1

B(xi, ri), ri < ε

}
, (3)

and the Hausdorff dimension of E is defined by

dimH E = inf{α > 0 : sα-m(E) = 0}. (4)

Next, we introduce the definition of the box-counting dimension of a Borel set, which
is often used to prove the upper bound of its Hausdorff dimension. For any ε > 0 and any
Borel set E ⊆ Rd, let N(E, ε) be any quantity of the following terms:

(i) The smallest number of balls with radius ε that can cover E;

(ii) The largest number of disjoint balls with radius ε and centers in E;

(iii) The smallest number of d-dimensional intervals with side length ε that cover E;

(iv) The number of binary d-dimensional intervals with side length ε = 2−n and inter-
secting E;

(v) The smallest number of balls with diameter less than 2ε that can cover E.

Definition 2 The upper and lower box-counting dimension of E ⊆ Rd are defined
by

dimB E = lim sup
ε→0

logN(E, ε)

− log ε
and

dimB E = lim inf
ε→0

logN(E, ε)

− log ε ,

respectively. If dimB E = dimB E, the common value is called the box-counting dimension
of E.

It is easy to verify that the upper and lower box-counting dimension defined by
N(E, ε) taking any of the five numbers above are the same. The following lemma shows
the relationship between the upper box-counting dimension and the Hausdorff dimension;
see [21; Theorem 4.6] for the proof.
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Lemma 2 For any Borel set E ⊆ Rd, we have

dimH E ⩽ dimB E.

As indicated by Lemma 2, the upper bound of dimH E can be derived from the upper
bound of dimB E. Another approach to bounding the Hausdorff dimension of the range
for a stochastic process relies on its p-variation.

Definition 3 Let f : [0, 1] → Rd be a càdlàg function. For any p > 0, the p-
variation of f is defined by

Vp(f, [0, 1]) := sup
m−1∑
j=0

|f(tj+1)− f(tj)|p, (5)

where the supremum in (5) is taken over all finite partitions 0 = t0 < t1 < · · · < tm−1 <

tm = 1, with m ⩾ 1, of the interval [0, 1].

The following lemma was first proposed by [4; (3.3)], see also [20; Remark 1.3].

Lemma 3 If f : [0, 1] → Rd is a càdlàg function with finite p-variation, then

dimH f([0, 1]) ⩽ p ∧ d.

The following lemma, known as the density theorem in the literature, was first in-
troduced in [23]. It is highly effective for obtaining the lower bound of the Hausdorff
dimension; see [6] and references therein for further details. For any Borel measure µ on
Rd and φ ∈ Φ, the upper φ-density of µ at x ∈ Rd is defined by

D
φ
µ(x) := lim sup

r→0

µ(B(x, r))

φ(2r)
.

Lemma 4 Given φ ∈ Φ, there exists a positive constant K such that for any
nonnegative Borel measure µ on Rd with 0 < ∥µ∥ := µ(Rd) < ∞ and every Borel set
E ⊆ Rd,

K−1µ(E) inf
x∈E

{Dφ
µ(x)}−1 ⩽ φ-m(E) ⩽ K∥µ∥ sup

x∈E
{Dφ

µ(x)}−1. (6)

3 Proof of Theorem 1

3.1 Proof of Hausdorff dimension of the range

The proof of the Hausdorff dimension of the range of the process X stated in Theorem
1 is split into two parts. Roughly speaking, we prove the upper bound by the finite
variation of the sample paths, and verify the lower bound by applying the density theorem.

(Upper bound) First, we prove the upper bound of the Hausdorff dimension of the
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range of X. By Assumption (A)(i) and [19; Theorem 5.19], for all p > α1 with p ⩾ 1,

Vp(X, [0, 1]) < ∞, a.s.,

where Vp(X, [0, 1]) is the p-variation of the process X on [0, 1] given in (5).

Furthermore, by Lemma 3, we know that if f : [0, 1] → Rd is a càdlàg function with
finite p-variation, then dimH f([0, 1]) ⩽ p ∧ d, a.s. Letting p → α1,

dimH X([0, 1]) ⩽ α1 ∧ d, a.s.

The proof is complete.

(Lower bound) Next, we prove the lower bound of the Hausdorff dimension of the range
of X. For any t0 ∈ [0, 1) and r ∈ (0, 1), define

T (t0, r) :=

∫ t0+1

t0

1{|Xt−Xt0 |⩽r} dt.

For simplicity, we write T (0, r) as T (r). By Assumption (A)(ii), for all x ∈ Rd and
0 < r < 1,

Ex[T (r)] = Ex

[∫ 1

0
1{|Xt−x|⩽r} dt

]
=

∫ 1

0
Px (Xt ∈ B(x, r)) dt

⩽
∫ rα2

0
1dt+ c1

∫ 1

rα2

( r

t1/α2

)d
dt ⩽ c2r

α2∧d(1 + log r−1).

Combing this with Fubini’s theorem and the Markov property implies that for all n ⩾ 2,

Ex[T (r)n] = Ex

∫ 1

0
· · ·
∫ 1

0

n∏
j=1

1{|Xsj−x|⩽r} ds1 · · · dsn


⩽ n!

∫
0⩽s1⩽···⩽sn⩽1

Ex

n−1∏
j=1

1{|Xsj−x|⩽r}1{|Xsn−Xsn−1 |⩽2r}

 ds1 · · · dsn

= n!

∫
0⩽s1⩽···⩽sn⩽1

Ex
{
1⋂n−1

j=1 {|Xsj−x|⩽r}EXsn−1

[
1{|Xsn−Xsn−1 |⩽2r}

]}
ds1 · · · dsn

⩽ nEx[T (r)n−1] sup
x∈Rd

Ex[T (2r)] ⩽ n!

(
sup
x∈Rd

Ex[T (2r)]

)n

⩽ cn3n!r
n(α2∧d)(1 + log r−1)n

with c3 ⩾ c2. Thus, for any u > 0,

Ex
[
euT (r)

]
= 1 +

+∞∑
n=1

un

n!
Ex [T (r)n] ⩽ 1 +

+∞∑
n=1

uncn3r
n(α2∧d)(1 + log r−1)n.

In particular, letting u = 1
2c3rα2∧d(1+log r−1)

, Ex
[
euT (r)

]
is bounded by 2. This along with
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the Markov inequality again gives us that for any λ > 0 and 0 < r < 1,

Px
(
T (r) ⩾ λc3r

α2∧d(1 + log r−1)
)
= Px

(
euT (r) ⩾ euλc3rα2∧d(1+log r−1)

)
⩽ e−uλc3rα2∧d(1+log r−1)Ex

[
euT (r)

]
⩽ 2e−λ/2.

Here,
∞∑

m=1

Px
(
T (2−m) ⩾ c3m2−m(α2∧d)(1 + log 2m)

)
⩽ 2

∞∑
m=1

e−m/2 < ∞.

By the Borel-Cantelli lemma, almost surely there exists a random variable m0 := m0(ω) ⩾
1 so that for any m ⩾ m0,

T (2−m) < c3m2−m(α2∧d)(1 + log 2m), a.s.

For all r small enough, let m be the unique integer such that 2−m−1 ⩽ r < 2−m. Then,
for any ε > 0, almost surely

T (r)

r(α2∧d)−ε log r−1
⩽ T (2−m)

m(log 2)2(−m−1)[(α2∧d)−ε]

=
T (2−m)

c3m2−m(α2∧d)(1 + log 2m)

c32
−m(α2∧d)(1 + log 2m)

(log 2)2(−m−1)[(α2∧d)−ε]

<
c3(1 + log 2m)2−(m+1)ε

(log 2) ⩽ c4 := c4(ε),

where c4(ε) is independent of m. Following the arguments above, we can obtain that there
is a constant c5 > 0 so that for any t0 ∈ [0, 1)

lim sup
r→0

T (t0, r)

r(α2∧d)−ε log r−1
⩽ c5, a.s.

By Lemma 4, there is

φε-m(X([0, 1])) ⩾ c6 a.s.,

where φε(r) = r(α2∧d)−ε log r−1. In particular, we arrive at that the lower bound of the
Hausdorff dimension of the range of X on [0, 1] satisfies

dimH X([0, 1]) ⩾ (α2 ∧ d)− ε, a.s.

Letting ε → 0, we can prove the desired assertion.

3.2 Proof of Hausdorff dimension of the graph

The proof of the assertion for the graph stated in Theorem 1 is similar to that for
the range, but it requires significantly more effort in the case of one dimension. We
first consider upper bounds by applying the variation again and the upper box-counting



No. 6 CHEN Z H: Hausdorff Dimension of Range and Graph for General Markov Processes 949

dimension, and then study lower bounds by the projection approach and the density
theorem as well.

(Upper bound) (1) Let p > α1 with p ⩾ 1. Consider the p-variation of the time-space
process (G(t))t⩾0 := (t,Xt)t⩾0 in Rd+1. Then, almost surely

Vp(G, [0, 1]) := sup
0=t0⩽t1⩽···⩽tn=1

n−1∑
i=0

|(ti+1, Xti+1)− (ti, Xti)|p

⩽ 2p−1 sup
0=t0⩽t1⩽···⩽tn=1

n−1∑
i=0

(
|ti+1 − ti|p + |Xti+1 −Xti |p

)
⩽ c1

(
sup

0=t0⩽t1⩽···⩽tn=1

n−1∑
i=0

|ti+1 − ti|p + sup
0=t0⩽t1⩽···⩽tn=1

n−1∑
i=0

|Xti+1 −Xti |p
)

⩽ c1 (1 + Vp(X, [0, 1])) < ∞,

where the first inequality is due to the fact that for all q ⩾ 1 and a, b ⩾ 0, (a + b)q ⩽
2q−1(aq + bq), the second inequality follows from p ⩾ 1, and in the last inequality we
used the Assumption (A)(i) and [19; Theorem 5.19] (see the arguments in the previous
subsection). Then, by Lemma 3, we have

dimH G([0, 1]) ⩽ p ∧ d, a.s.

Thus, if 0 < α1 < 1, then, letting p = 1,

dimH GrX([0, 1]) ⩽ 1, a.s.

due to d ⩾ 1. If α1 ⩾ 1, then, letting p → α1, almost surely

dimH GrX([0, 1]) ⩽ α1 ∧ d =

1, d = 1;

α1 ∧ d, d ⩾ 2.

(2) Next, we will refine the upper bounds for the case that d = 1 and α1 > 1.

Let {λ(j) : j ⩾ 0} be a sequence of partitions, with λ(j) = { k
2j

: k = 0, · · · , 2j},
of [0, 1] into subintervals Ij,k := [ k

2j
, k+1

2j
] with k = 0, · · · , 2j−1, and all having the same

length 2−j for any j ⩾ 0. Denote the oscillation of the process X in the dyadic interval
Ij,k by

Osc(X, Ij,k) := sup{|Xt −Xs| : s, t ∈ Ij,k} = sup
t∈Ij,k

Xt − inf
s∈Ij,k

Xs.

Fix j ⩾ 0. For each k ⩾ 0, GrX(Ij,k) can be covered by at most 2jOsc(X, Ij,k)+2 squares
of side length 2−j . Let N(E, δ) represent the smallest number of sets with diameter at
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most δ to cover E. Thus, for all p > α1, almost surely

N([0, 1], 2−j) =
2j−1∑
k=0

(
2jOsc(X, Ij,k) + 2

)
⩽ 2j

2j−1∑
k=0

Vp(X, Ij,k)
1/p + 2 · 2j

⩽ 2j

2j−1∑
k=0

Vp(X, Ij,k)

1/p

(2j)1/p + 2 · 2j

⩽ 2j(2−1/p)Vp(X, [0, 1])1/p + 2 · 2j ,

where in the first inequality we used the definition of p-variation, and in the second in-
equality we used the Hölder inequality. Therefore, by p > 1,

dimH GrX([0, 1]) ⩽ dimB GrX([0, 1]) = lim sup
δ↓0

logN([0, 1], δ)

− log δ ⩽ 2− 1

p
, a.s.,

where the first inequality follows from Lemma 2. Letting p → α1, we obtain

dimH GrX([0, 1]) ⩽ 2− 1

α1
, a.s.

(Lower bound) (3) For any t > 0, let G(t) := (t,Xt). Then, the graph of X can be
viewed as the range of G. Note that the dimension of the range of G does not increase, if
projecting the range of G onto the time axis and the space axis. Thus, the lower bound
for the dimension of the graph satisfies

dimH G([0, 1]) ⩾ dimH(X([0, 1])) ∨ dimH([0, 1]) ⩾ max{d ∧ α2, 1}, a.s.,

where the last inequality follows from the lower bound of the Hausdorff dimension of the
range. Thus, when 0 < α2 < 1, we have

dimH GrX([0, 1]) ⩾ 1, a.s.;

when α2 ⩾ 1, almost surely

dimH GrX([0, 1]) ⩾ d ∧ α2 =

1, d = 1;

d ∧ α2, d ⩾ 2.

(4) In this part, we will improve the lower bound for the case that d = 1 and α2 > 1.
The idea of the proof is similar to that in Section 3.1, and the main difference is that we
will use time-space sojourn time.

For any t0 ∈ [0, 1), s ∈ [0, 1] and a > 0, define

T̃t0(a, s) :=

∫ t0+s

t0

1{|Xt−X0|⩽a} dt.

For simplicity, we write T̃ (a, s) := T̃0(a, s) =
∫ s
0 1{|Xt−X0|⩽a} dt. In particular, by the
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Assumption (A)(ii), for any x ∈ Rd and a, s > 0,

Ex[T̃ (a, s)] = Ex

[∫ s

0
1{|Xt−x|⩽a} dt

]
=

∫ s

0
Px(|Xt − x| ⩽ a) dt

⩽ c1

∫ s

0
at−1/α2 dt ⩽ c2as

1−1/α2 .

For any n ⩾ 2, applying Fubini’s theorem,

Ex[T̃ (a, s)n] = Ex

[(∫ s

0
1{|Xt−x|⩽a}dt

)n]
=

∫ s

0
· · ·
∫ s

0
Ex

[
n∏

i=1

1{|Xti−x|⩽a}

]
dt1 · · · dtn

= n!

∫
0⩽t1⩽···⩽tn⩽s

Ex

[
n∏

i=1

1{|Xti−x|⩽a}

]
dt1 · · · dtn

⩽ n!

∫
0⩽t1⩽···⩽tn⩽s

Ex

[
n−1∏
i=1

1{|Xti−x|⩽a}1{|Xtn−Xn−1|⩽2a}

]
dt1 · · · dtn

= n!

∫
0⩽t1⩽···⩽tn−1⩽s

Ex

{
1⋂n−1

i=1 {|Xti−x|⩽a}

·
∫ s

tn−1

EXtn−1

[
1{|Xtn−Xtn−1 |⩽2a}

]
dtn
}

dt1 · · · dtn−1

= (n− 1)!

∫
0⩽t1⩽···⩽tn−1⩽s

Ex

{
1⋂n−1

i=1 {|Xti−x|⩽a}

· n · EXtn−1

[
T̃ (2a, s− tn−1)

]}
dt1 · · · dtn−1

= nEx
[
T̃ (a, s)n−1

](
sup
x∈Rd

Ex[T̃ (2a, s)]

)
⩽ n!

(
sup
x∈Rd

Ex[T̃ (2a, s)]

)n

⩽ cn3n!a
nsn(1−1/α2)

with c3 ⩾ c2. Thus, for all u > 0,

Ex[euT̃ (a,s)] = 1 + Ex

[ ∞∑
n=1

unT̃ (a, s)n

n!

]
= 1 +

∞∑
n=1

un

n!
Ex[T̃ (a, s)n]

⩽ 1 +
∞∑
n=1

cn3u
nansn(1−1/α2).

Letting u = 1
2c3as1−1/α2

, Ex[euT̃ (a,s)] is bounded by 2. Applying this and the Markov
inequality, we find that for any λ > 0,

Px(T̃ (a, s) ⩾ λc3as
1−1/α2) = Px(euT̃ (a,s) ⩾ euλc3as1−1/α2

) ⩽ e−uλc3as1−1/α2Ex[euT̃ (a,s)]

⩽ 2e−λ/2.
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In particular,
∞∑

m=1

Px(T̃ (2−m, 2−m) ⩾ c3m2−m(2−1/α2)) ⩽ 2

∞∑
m=1

e−m/2 < ∞,

Therefore, by the Borel-Cantelli lemma, almost surely there exists m0 := m0(ω) ⩾ 1 so
that for all m ⩾ m0,

T̃ (2−m, 2−m) < c3m2−m(2−1/α2), a.s.

For all a small enough, let m be the unique integer such that 2−m−1 ⩽ a < 2−m. Then,

T̃ (a, a)

(log a−1)a2−1/α2
⩽ T̃ (2−m, 2−m)

c3m2−m(2−1/α2)
· c3m2−m(2−1/α2)

(log 2)m2−(m+1)(2−1/α2)
⩽ c4, a.s.,

where c4 is independent of m. Similarly, it can be proved that there exists a constant
c5 > 0 such that for any t0 ∈ [0, 1),

lim sup
a→0

T̃t0(a, a)

(log a−1)a2−1/α2
⩽ c5, a.s.

By Lemma 4,

lim sup
a→0

µ([t0, t0 + a]× [Xt0−a, Xt0+a])

φ(a)
⩽ c5, a.s.,

where φ(r) = r2−1/α2 log r−1. Thus,

φ-m(GrX([0, 1])) ⩾ c6, a.s.,

which implies that for all α2 > 1 and d = 1,

dimH GrX([0, 1]) ⩾ 2− 1/α2, a.s.

The proof is complete.

4 Examples

In this section, we present two examples such that Assumption (A) holds. Therefore,
Theorem 1 applies to these cases. Note that for functions f and g, the notation f ≍ g

means that there exist constants c1, c2, c3, c4 > 0 such that c1f(c2r) ⩽ g(r) ⩽ c3f(c4r),
and the notation f ≃ g means that there exist constants c1, c2 > 0 such that c1f(r) ⩽
g(r) ⩽ c2f(r).

Example 1 Consider a symmetric α-stable-like process X := (Xt)t⩾0 on Rd with
the infinitesimal generator as follows:

Lu(x) = lim
ε→0

∫
{y∈Rd:|x−y|>ε}

(u(x)− u(y))
c(x, y)

|x− y|d+α
dy,
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where α ∈ (0, 2), 0 < c1 ⩽ c(x, y) = c(y, x) ⩽ c2 < ∞. According to [24; Theorem 1.1],
the transition density function p(t, x, y) of the process X satisfies

p(t, x, y) ≃ t−d/α ∧ t

|x− y|d+α
, x, y ∈ Rd, t > 0.

Note that for all x ∈ Rd, t ⩾ 0 and r > 0,

Px(Xt ∈ B(x, r)c) =

∫
B(x,r)c

p(t, x, y) dy ⩽ c3

∫
B(x,r)c

t

|x− y|d+α
dy

= c3

∞∑
i=1

∫
B(x,2ir)\B(x,2i−1r)

t

|x− y|d+α
dy

⩽ c3

∞∑
i=1

∫
B(x,2ir)\B(x,2i−1r)

t

(2i−1r)d+α
dy

⩽ c3

∞∑
i=1

2idt

2(i−1)(d+α)rα
⩽ c4

t

rα
,

which means that Assumption (A)(i) holds with α1 = α, and

Px(Xt ∈ B(x, r)) =

∫
B(x,r)

p(t, x, y) dy ⩽ c5

∫
B(x,r)

t−d/α dy ⩽ c6
rd

td/α

gives us that the Assumption (A)(ii) is satisfied with α2 = α.

Example 2 Consider a symmetric diffusion process X on Rd with the infinitesimal
generator as follows:

Lu(x) =
1

2

d∑
i,j=1

∂

∂xi

(
aij(x)

∂u(x)

∂xj

)
,

where A(x) := (aij(x))1⩽i,j⩽d is a measurable d× d matrix-valued function on Rd that is
uniform elliptic and bounded in the sense that there exists a constant c ⩾ 1 such that

c−1
d∑

i=1

ξ2i ⩽
d∑

i,j=1

aij(x)ξiξj ⩽ c
d∑

i=1

ξ2i

for any x, ξ = (ξ1, · · · , ξn) ∈ Rd. It is well known that the process X has a joint Hölder
continuous transition density function p(t, x, y), which enjoys the following celebrated
Aronson’s estimates (see [25]):

p(t, x, y) ≍ t−d/2 exp
{
−|x− y|2

t

}
for t > 0 and x, y ∈ Rd. Clearly, for any x ∈ Rd and t, r > 0,

Px(Xt ∈ B(x, r)) ⩽ c1

∫
B(x,r)

t−d/2 dy ⩽ c2
rd

td/2
,

which yields that Assumption (A)(ii) holds with α2 = 2. On the other hand, for any
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x ∈ Rd and t, r > 0,

Px(Xt ∈ B(x, r)c) ⩽ c1

∫
B(x,r)c

t−d/2 exp
{
−c2|x− y|2

t

}
dy

⩽ c1

∞∑
n=1

∫
B(x,2nr)\B(x,2n−1r)

t−d/2 exp
{
−c2|x− y|2

t

}
dy

⩽ c1

∞∑
n=1

t−d/2 exp
{
−c2(2

n−1r)2

t

}
(2nr)d ⩽ c3 exp

{
−c4r

2

t

}
⩽ c5t

r2
,

and so Assumption (A)(i) holds with α1 = 2.

Remark 2 It can be observed that the arguments above to verify Assumption (A)
rely solely on heat kernel estimates for small time and small scaling. So it follows from [26;
Example 1.1] that Assumption (A) holds with α1 = α2 = α for a large class of symmetric
jump processes on Rd with jumping kernel

J(x, y) ≃ 1

|x− y|d+α
1{|x−y|⩽1} +

1

|x− y|d+β
1{|x−y|>1},

where α ∈ (0, 2) and β ∈ (0,∞). Therefore, Theorem 1 holds for these processes with
α1 = α2 = α.

Similarly, according to [27; Theorem 1.4] we can see that Assumption (A) holds,
and therefore Theorem 1 holds as well, with α1 = α2 = 2 for a large class of symmetric
diffusions with jumps.
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Markov 过程象集和图集的 Hausdorff 维数

陈芷禾

乐山师范学院数理学院, 乐山, 614000

摘 要: 在假定小时间内过程停留或离开小球概率估计的条件下, 我们建立 Rd 上一

般 Markov 过程图集的 Hausdorff 维数. 特别地, 我们的结果表明在 Rd 上对称扩散过

程 (α = 2) 或对称 α-stable 型过程 (α ∈ (0, 2)), 几乎处处有

dimH GrX([0, 1]) = 1{α<1} + (2− 1/α)1{α⩾1,d=1} + (d ∧ α)1{α⩾1,d⩾2}.

同时我们也系统地证明了 Markov 过程象集 Hausdorff 维数的相关结果.
关键词: Markov 过程; Hausdorff 维数; 象集; 图集
中图分类号: O211.6
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