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Abstract: In this paper, we consider the estimation problem for partially linear models with ad-

ditive measurement errors in the nonparametric part. Two kinds of estimators are proposed. The

first one is an integral moment-based estimator with deconvolution kernel techniques, associated

with the strong consistency for the estimator. Another one is a simulation-based estimator to avoid

the integrals involved in the integral moment-based estimator. Simulation studies are conducted

to examine the performance of the proposed estimators.
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§1. Introduction

A partially linear model is modeling the scalar response Y and covariates (X, Z) as

Y = XTβ + g(Z) + ε, (1)

where (X, Z) ∈ Rp×R1, X = (X1, X2, . . . , Xp)
T, g(·) is an unknown link function, and β

is an unknown vector in Rp. Model error ε is independent with (X, Z) satisfies E(ε) = 0

and E(ε2) < ∞. This semiparametric regression model (1) has the simplicity of linear

regression model but also has the flexibility of allowing nonparametric regression affects,

it has been widely used in many applications. Two comprehensive references of statistical

methodologies and applications for partially linear models are [1] and [2]. The goal of this
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paper is to develop a new estimation procedure for β and g(·) when covariate Z in the

nonparametric component is measured with additive errors:

T = Z + U,

where the measurement error U , independent of (Y,Z,X), is a random error with known or

unknown density function fU (u). To avoid the “curse of dimensionality” in nonparametric

regression, we only consider that Z is univariate in this paper.

Measurement error data or errors-in-variables data is common in practice, due to the

measuring mechanism or the nature of the environment in medical or health related studies

and others. Statistical analysis may cause serious bias in estimation if we substitute the

observed surrogates for the unobserved error-prone variables, see for examples [3, 4]. To

eliminate the effect of the measurement error, various statistical procedures have been

developed for statistical inference in measurement error models. [5] is a comprehensive

book containing many classical references and techniques for linear models. [6] and [7]

are comprehensive references containing recent research developments of nonlinear and

semiparametric regressions. Recently, Cheng et al. [8] presented a method for checking

the goodness of fit in the restricted measurement error model, which is employed when

certain study variables are not observable by direct measurement and if some information

about the unknown regression coefficients is available a priori. Sørensen et al. [9] studied

the impact of measurement error on linear regression with the lasso penalty. Yang et

al. [10] proposed a corrected empirical likelihood method to make statistical inference for

a class of generalized linear measurement error models based on the moment identities of

the corrected score function.

For estimating β, the “ Pesudo-β ” method proposed by Liang and Wang [11] cannot

be directly used, because it is challenging to estimate E(Yi |Zi), E(Xi |Zi) as {Zi, i =

1, 2, . . . , n} are unobserved. To solve this problem, Zhu and Cui [12] proposed an integral

moment-based estimation procedure with deconvolution techniques to estimate β and g(·)
by involving an integration on Rp+2 space, which is computational burden. In this paper,

we propose a new integral moment-based estimator which only needs integration on R1

space. Moreover, a simulation-based estimator also considered to reduce the integration

used in the integral moment-based estimator. We first consider the estimation procedures

when density function fU (u) of U is known, then we develop our estimators by using

replicated data when fU (u) is unknown. A simulation study is conducted to evaluate

the performance of our proposed estimators. The reminder of the paper is organized as

follows: In Section 2, we proposed our estimation procedures. In Section 3, we provide a

simulation study to examine the performance of the estimation.
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§2. Methodology Development

2.1 Constructing an Integral Moment-Based Deconvolution

Estimator

Suppose that {Xl, Tl, Yl}nl=1 are i.i.d. observations and generated from the following

model Yl = XT
l β + g(Zl) + εl,

Tl = Zl + Ul,

where Ul is the measurement error, independent of {Xl, Zl, εl}. It follows that E(Y |Z) =

g(Z) + [E(X |Z)]Tβ, and then we have

Y − E(Y |Z) = [X − E(X |Z)]Tβ + ε. (2)

From (2), in the population level, a least squares estimator is obtained as

β = [E(X⊗2)− E[{E(X |Z)}⊗2]]−1[E(XY )− E{E(X |Z)E(Y |Z)}], (3)

where A⊗2 = AAT for any vector or matrix A. If Z is observable and error-free, the

estimator β in (3) is implemented as usual, see for example [1, 2, 4, 13]. In the scenario

considered in this paper, the covariate Z is unobserved and measured with errors, then

the deconvolution techniques are used to take into account for solving the estimation

problems in (3). Generally, the deconvolution problem is notoriously very hard. For

estimating β, Zhu and Cui [12] proposed a moment based deconvolution estimator by using

integration on Rp+2 space, which is computational burden. In fact, (3) motivates us

to propose an estimator of β by directly estimating E(X⊗2), E(XY ), E[{E(X |Z)}⊗2]
and E{E(X |Z)E(Y |Z)}. Among these arguments, the later two are most concerned,

because Z is unobserved. In the following, we propose the estimators of E[{E(X |Z)}⊗2],
E{E(X |Z)E(Y |Z)} and illustrate the advantage that these estimators are only needed

to integrated on R1 space, not on Rp+2 space.

Throughout this section we first assume that the density function fU (u) of measure-

ment error U is known. To estimate E[{E(X |Z)}⊗2] and E[E(X |Z)E(Y |Z)], we should

estimate E(X |Z = z) and E(Y |Z = z) first, and this is accomplished by using local linear

smoothers proposed by Delaigle et al. [14]. The main idea of [14] is to find an unbiased

score function Lk(·), such that, for k = 0, 1, 2,

E[(Tl − z)kLk,h(Tl − z) |Zl] = (Zl − z)kKh(Zl − z), (4)

where Lk,h(·) = h−1Lk(·/h). However, it is very difficult to directly work out the explicit

expression Lk,h(·) in the integral equation (4). To solve this problem, Delaigle et al. [14]
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developed a remarkable methodology to find a solution by using Fourier transform as

follows.

Denote φm as the Fourier transform of function m(·) and denote φS as the character-

istic function of a random variable S. The closed form of Lk,h(·) satisfying equation (4) is

solved by the following Fourier version equation,

E{φ{(Tl−z)kLk,h(Tl−z)}(t) |Zl} = φ(Zl−z)kKh(Zl−z)(t). (5)

The Appendix A.1 in [14] shows the solution of (5) is

Lk,h(u) = u−kKU,k(u) and KU,k(u) = i−k
1

2π

∫
e−itu

φ
(k)
K (t)

φU (−t/h)
dt, (6)

where i is the imaginary unit, and φ
(k)
K (t) is the k-th derivative of φK(t). Define mx(z) =

E(X |Z = z) = (mx1(z),mx2(z), . . . ,mxp(z))
T with mxs(z) = E(Xs |Z = z) for s =

1, 2, . . . , p and my(z) = E(Y |Z = z). Using Lk,h(u) obtained in (6), the local linear

smoothing estimators of my(z) and mxs(z) are constructed as

m̂y(z) =
n∑
l=l

ωl(z)Yl

/ n∑
l=l

ωl(z), m̂xs(z) =
n∑
l=l

ωl(z)Xsl

/ n∑
l=l

ωl(z), (7)

where ωl(z) = KU,k,h(Tl − z){Sn,2(z) − (Tl − z)Sn,1(z)} with KU,k,h(u) = h−1KU,k(u/h),

and Sn,k(z) =
n∑
l=l

(Tl− z)kKU,k,h(Tl− z) for k = 1, 2. Moreover, the density function fZ(z)

of Z is estimated as

f̂Z(z) =
1

n

n∑
l=1

KU,0,h(Tl − z). (8)

As E[{E(X |Z)}⊗2] =
∫
m⊗2x (z)fZ(z)dz and E[E(X |Z)E(Y |Z)] =

∫
mx(z)my(z)fZ(z)dz,

together with (7) and (8), the related integral moment-based deconvolution estimators are

obtained as

Ê[{E(X |Z)}⊗2] =

∫ a1

a0

m̂⊗2x (z)f̂Z(z)dz, (9)

Ê[E(X |Z)E(Y |Z)] =

∫ a1

a0

m̂x(z)m̂y(z)f̂Z(z)dz, (10)

where m̂x(z) = (m̂x1(z), m̂x2(z), . . . , m̂xp(z))
T. As a consequence, the final estimator of β

is proposed as

β̂ =
[ 1

n

n∑
l=1

X⊗2l − Ê[{E(X |Z)}⊗2]
]−1[ 1

n

n∑
l=1

XlYl − Ê{E(X |Z)E(Y |Z)}
]
. (11)

It is easily seen that the estimators proposed in (9) – (11) need one-dimensional integration,

which is more computational efficient than [12]. Moreover, the estimator of nonparametric
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function g(·) is obtained as

ĝ
β̂
(z) =

n∑
l=l

ωl(z)[Yl −XT
l β̂ ]

/ n∑
l=l

ωl(z). (12)

In the following, we present the strong consistency properties of β̂ and ĝ
β̂
(z). To

establish asymptotic property of estimators, we need to impose some regularity conditions.

As the common assumptions imposed in the deconvolution problems, the tail behavior of

the characteristic function of measurement error U will impact on the convergence rate of

m̂y(z), m̂xs(z) and ĝ
β̂
(z).

Condition O Ordinary smooth error of order η: the characteristic function of φU (·)
satisfies φU (t) 6= 0 for all t, and

lim
t→+∞

tηφU (t) = c and lim
t→+∞

tη+1φ′U (t) = −cη

for some positive constants c and η. Moreover, ‖φ′U (t)‖∞ < ∞; For 0 6 k 6 3,

‖φ(k)K (t)‖∞ < ∞,
∫

[|t|η + |t|η−1]|φ(k)K (t)|dt < ∞; For 0 6 k, k′ 6 2,
∫
|t|2η|φ(k)K (t)| ·

|φ(k
′)

K (t)|dt <∞.

Condition S Supersmooth error of order η: the characteristic function of φU (·) satisfies

φU (t) 6= 0 for all t, and

d1|t|η1 exp{−|t|η/γ} 6 |φU (t)| 6 d2|t|η2 exp{−|t|η/γ}, as |t| → ∞,

for some positive constants d1, d2, η1, η2, γ and η. Moreover, φK(t) is supported in

[−1, 1] and sup
t∈[−1,1]

|φ(k)K (t)| <∞ for 0 6 k 6 2.

The above ordinary smooth error conditions are followed from [3, 14–18]. For example,

the Condition O for ordinary errors contains the Gamma distribution, double exponential

distribution and the Condition S for supersmooth errors contains Cauchy errors, Gaussian

errors and their convolutions. Moreover, the extra conditions on the Fourier transfor-

mation of kernel function K(t) are also needed to establish the asymptotic property of

estimators. See more details in [14]. We now list some conditions for our asymptotic

results.

(A1) The characteristic functions φZ(t) and φU (t) satisfy
∫∞
−∞ |φZ(t)|dt <∞, and φU (t) 6=

0 for all t; φ
(k)
K (t) is not identically zero, furthermore, for all h > 0 and 0 6 k 6 2,∫∞

−∞
∣∣φ(k)K (t)/φU (t/h)

∣∣dt <∞.

(A2) The kernel function K(·) is symmetric about 0 and supported on a compact interval,

moreover, satisfying m-th order kernel:∫
K(u)du = 1,

∫
|u|mK(u)du <∞, for 0 6 m 6 5.
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(A3) fZ(·), my(·) and mxs(·) have three bounded and continuous derivatives on Z , and

Z is the bounded support of Z. Moreover, the density function fZ(·) > 0 on the

support of Z.

(A4) sup
z∈Z
|m(j)

y (z)| <∞, sup
z∈Z
|m(j)

xs (·)| <∞ for j = 0, 1, 2 and s = 1, 2, . . . , p. Furthermore,

E(Y 2 |Z = z) and E(X2
s |Z = z) are both bounded on Z for s = 1, 2, . . . , p.

The following lemma establishes the convergence rate of n−1
n∑
l=1

[(Tl− z)/h]kLk,h(Tl−

z), which is used to establishes the strong consistency of the estimator β̂ and ĝ
β̂
(z). The

following lemma is proved in analogous to Theorem 2.1 in [19], we omit the details.

Lemma 1 Under conditions (A1) – (A4), we have

sup
z∈Z

∣∣∣ 1
n

n∑
l=1

(Tl − z
h

)k
Lk,h(Tl − z)− E

[(T − z
h

)k
Lk,h(T − z)

]∣∣∣ = O
(
γ1/2n

)
, a.s.,

γn,h = lnn/(nh1+2η) for ordinary error case, and γn,h = ln(nδn)/(nh), δn = exp{2h−η/γ}
for supersmooth error case.

Theorem 2 Under conditions (A1) – (A4),

(i) if the Condition O holds, as h → 0 and lnn/(nh1+2η) → 0, we have β̂
a.s.−→ β, and

ĝ
β̂
(z)

a.s.−→ g(z).

(ii) if the Condition S holds, as h → 0 and ln(nδn)/(nh) → 0, δn = exp{2h−η/γ}, we
have β̂

a.s.−→ β, and ĝ
β̂
(z)

a.s.−→ g(z).

Proof Let τn,h = h2 + γ
1/2
n,h . According the Lemma, it is easily seen that m̂xs(z) =

mxs(z) + O(τn,h), a.s., m̂y(z) = my(z) + O(τn,h), a.s. and f̂Z(z) = fZ(z) + O(τn,h), a.s..

Thus,

Ê[{E(X |Z)}⊗2] =

∫ a1

a0

m̂⊗2x (z)f̂Z(z)dz

=

∫ a1

a0

[mx(z) +O(τn,h)]⊗2[fZ(z) +O(τn,h)]dz

= E[m⊗2x (Z)] +O(τn,h), a.s..

Similarly, Ê[E(X |Z)E(Y |Z) = E[mx(Z)my(Z)] +O(τn,h), a.s.. Thus,

β̂ − β =
[ 1

n

n∑
l=1

X⊗2l − Ê[{E(X |Z)}⊗2]
]−1

×
[ 1

n

n∑
l=1

Xl[Yl −XT
l β]− Ê{E(X |Z)E(Y |Z)}+ Ê[{E(X |Z)}⊗2]β

]
. (13)
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Note that E[mx(Z)my(Z)] = E[m⊗2x (Z)]β + E[mx(Z)g(Z)], (13) is represented as

β̂ − β =
[ 1

n

n∑
l=1

X⊗2l − E[m⊗2x (Z)] +O(τn,h)
]−1

×
[ 1

n

n∑
l=1

Xlεl +
{ 1

n

n∑
l=1

Xlg(Zl)− E[mx(Z)g(Z)]
}

+O(τn,h)
]
.

By the strong law of large numbers, n−1
n∑
l=1

Xlεl
a.s.−→ 0 and n−1

n∑
l=1

Xlg(Zl)−E[mx(Z)g(Z)]

a.s.−→ 0, together with τn,h → 0, we obtain that β̂
a.s.−→ β. The consistency of ĝβ(z) is

completed by directly using Lemma and β̂
a.s.−→ β. �

A simulation-based estimator. To obtain estimators (9) – (11), the numerical

integration techniques are used, for example, the quadrature method. However, some

computational difficulties may occur when the objective integral functions are complex.

In this section, we consider a simulation-based approach by using Monte Carlo methods

to simulate the integrals, namely, the importance sampling techniques, see for example,

[20–22].

We choose a known density function fW (w) supported on [a0, a1] and generate an

i.i.d. sample {Wr, 1 6 r 6 N} from fW (w), then (9) – (10) are approximated by the

Monte Carlo simulators

̂̂
E[{E(X |Z)}⊗2] =

1

N

N∑
r=1

m̂⊗2x (Wr)f̂Z(Wr)

fW (Wr)
,

̂̂
E[E(X |Z)E(Y |Z)] =

1

N

N∑
r=1

m̂x(Wr)m̂y(Wr)f̂Z(Wr)

fW (Wr)
.

Then the simulation-based estimators of β and g(z) are proposed as

β̂S =
[ 1

n

n∑
l=1

X⊗2l −
̂̂
E[{E(X |Z)}⊗2]

]−1[ 1

n

n∑
l=1

XlYl −
̂̂
E{E(X |Z)E(Y |Z)}

]
,

ĝ
β̂S

(z) =
n∑
l=l

ωl(z)[Yl −XT
l β̂S ]

/ n∑
l=l

ωl(z).

2.2 Generalization: Unknown Measurement Error Distribution

If the density function fU (u) is unknown, the characteristic function φU (t) is estimated

by using replicated data. Suppose we further observe an external sample

T ′vd = Z ′v + U ′vd for 1 6 d 6 Nv and 1 6 v 6 m,

where the random variables Z ′v’s are i.i.d. and have the same distribution as Z, the U ′vd’s

are i.i.d. and has the same distribution as U , and the Z ′v’s and U ′vd’s are independent.
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From [23], a consistent estimator of φU (t) is given by

φ̂U (t) =
∣∣∣ 1

N(m)

m∑
v=1

∑
(k1,k2)∈Dv

cos{t(T ′vk1 − T
′
vk2)}

∣∣∣1/2,
where Dv denotes the set of 2−1Nv(Nv − 1) distinct pairs (k1, k2) with 1 6 k1 < k2 6 Nv,

N(m) = 2−1
m∑
v=1

Nv(Nv − 1), and we ignore values of v for which Nv = 1. Thus, an

estimator of Lk,h(u) is given by

L̂k,h(u) = u−kK̂U,k(u), K̂U,k(u) = i−k
1

2π

∫
e−itu

φ
(k)
K (t)

φ̂U (−t/h) + ρ
dt, (14)

where ρ > 0 is a ridge parameter. The ridge parameter entails the stability of the estimator

K̂U,k(u) without concern for fluctuations of the denominator in this integral. The ridge

parameter ρ could be taken as N(m)−κ for some positive constant κ. In other words, the

ridge parameter ρ converges to zero and entails that the estimator K̂U,k(u) is a consistent

estimator of KU,k(u) as N(m) goes to infinity. See more details in [23].

Let K̂U,k,h(u) = h−1K̂U,k(u/h). Followed by [23], according to (8), the estimator of

fZ(z) is constructed as

f̂Z(z)ρ =
1

M + n

n∑
l=1

K̂U,0,h(Tl − z) +
1

M + n

m∑
v=1

Nv∑
d=1

K̂U,0,h(T ′vd − z), (15)

where M =
m∑
v=1

Nv. Similar to (9) – (10), my(z) and mxs(z) are estimated as

m̂y(z)ρ =
n∑
l=1

ω̂l(z)Yl

/ n∑
l=1

ω̂l(z), m̂xs(z)ρ =
n∑
l=1

ω̂l(z)Xsl

/ n∑
l=1

ω̂l(z),

where ω̂l(z) = K̂U,k,h(Tl−z){Ŝn,2(z)−(Tl−z)Ŝn,1(z)} and Ŝn,k(z) =
n∑
l=1

(Tl−z)kK̂U,k,h(Tl−

z) for k = 1, 2.

Let m̂x(z)ρ = (m̂x1(z)ρ, m̂x2(z)ρ, . . . , m̂xp(z)ρ)
T,

Êρ[{E(X |Z)}⊗2] =

∫ a1

a0

m̂⊗2x (z)ρf̂Z(z)ρdz

and

Êρ[E(X |Z)E(Y |Z)] =

∫ a1

a0

m̂x(z)ρm̂y(z)ρf̂Z(z)ρdz,

the estimators of β and g(z) are obtained as

β̂ρ =
[ 1

n

n∑
l=1

X⊗2l − Êρ[{E(X |Z)}⊗2]
]−1[ 1

n

n∑
l=1

XlYl − Êρ{E(X |Z)E(Y |Z)}
]
, (16)
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ĝ
β̂ρ

(z) =
n∑
l=l

ω̂l(z)[Yl −XT
l β̂ρ]

/ n∑
l=l

ω̂l(z). (17)

Analogous to (16) – (17), the simulation-based estimators of β and g(z) are obtained as

β̂Sρ =
[ 1

n

n∑
l=1

X⊗2l −
̂̂
Eρ[{E(X |Z)}⊗2]

]−1[ 1

n

n∑
l=1

XlYl −
̂̂
Eρ{E(X |Z)E(Y |Z)}

]
, (18)

ĝ
β̂Sρ

(z) =
n∑
l=l

ω̂l(z)[Yl −XT
l β̂Sρ]

/ n∑
l=l

ω̂l(z), (19)

where

̂̂
Eρ[{E(X |Z)}⊗2] =

1

N

N∑
r=1

m̂⊗2x (Wr)ρf̂Z(Wr)ρ
fW (Wr)

,

̂̂
Eρ[E(X |Z)E(Y |Z)] =

1

N

N∑
r=1

m̂x(Wr)ρm̂y(Wr)ρf̂Z(Wr)ρ
fW (Wr)

.

§3. A Simulation Study

In this section, we run 500 simulations to investigate the performance of our proposed

methods. Considering the following model:

Y = X1β1 +X2β2 +X3β3 + 0.2Z3 + 0.3 cos(Z) + ε, (20)

β = (β1, β2, β3)
T = (4,−4, 1)T, Xi independently follows from N(0, 1) for i = 1, 2, 3,

Z ∼ N(0, 1.562) independently with X = (X1, X2, X3)
T, and model error ε ∼ N(0, 0.52),

independent with (XT, Z)T. Moreover, the following two cases for the error distribution

are considered.

Case 1 Ordinary smooth error: U is generated from a double exponential distribution

fU (u) =
√

2 exp{−2
√

2|u|}. The reliability ratio [5] Var (Z)/(Var (U) + Var (Z))

equals to 90.5%.

Case 2 Supersmooth error: U is generated from a normal distribution N(0, 0.52). The

reliability ratio Var (Z)/(Var (U) + Var (Z)) equals to 90.7%.

The Fourier transform of kernel function K(·) is given by φK(t) = (1− t2)31{|t| 6 1} [14].

From (10), we have that

KU,0(u) =
1

π

∫ 1

0
cos(tu)(1− t2)3

{
1 +

t2

h2

}
dt, Ordinary smooth error,

KU,0(u) =
1

π

∫ 1

0
cos(tu)(1− t2)3 exp

{ t2

2h2

}
dt, Supersmooth error.
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The expressions of KU,1(u) and KU,2(u) are obtained similarly under these two measure-

ment error settings. When the density function fU (u) is known, the sample size n is set

to be n = 500, 1 000; When the density function fU (u) is unknown, the extra replicated

sample to estimate φU (u) is set to be T ′vd = Z ′v + U ′vd, d = 1, 2. The sample size of v

for replicated data equals to n. Furthermore, Z ′vs are generated the same as Z, and U ′vds

are generated from the same distributions designed in Case 1 and Case 2, respectively.

The numerical integration method is used to obtain integral moment-based deconvolution

estimators β̂ and β̂ρ. For simulation-based estimators β̂S and β̂Sρ, the important sam-

pling density function fW (w) is chosen as N(0, 1) for Case 1 and Case 2. The important

sampling sample size N equals to 200. Moreover, the ridge parameter ρ equals to v−1 in

order to reduce the fluctuations of the denominator in the integral at (14).

The simulation results for estimators β̂, β̂S , β̂ρ and β̂Sρ are reported in Table 1. It

is seen that the means are all close to the true values β. As sample size n increases to

1 000, the values of MSEs decrease. Moreover, β̂ and β̂S are better than β̂ρ and β̂Sρ, the

latter two are impacted by a small price to pay for having to estimate φU (u).

Table 1 Simulation study for the example. The means, standard errors (SE)

and mean squares errors (MSE) for integral moment-based decon-

volution estimators β̂, β̂ρ and simulation-based estimators β̂S, β̂Sρ.

β̂ β̂S β̂ρ β̂Sρ

β Mean SE MSE Mean SE MSE Mean SE MSE Mean SE MSE

ordinary smooth error

β1 4.0078 0.1367 0.0186 3.9947 0.1286 0.0165 4.0157 0.1531 0.0236 4.0279 0.1605 0.0264

n = 500 β2 -3.9947 0.1387 0.0192 -4.0059 0.1232 0.0151 -3.9967 0.1483 0.0219 -4.0239 0.1443 0.0231

β3 1.0135 0.1316 0.0174 1.0034 0.1253 0.0156 1.0060 0.1530 0.0233 0.9882 0.1449 0.0210

β1 4.0053 0.0923 0.0085 3.9995 0.0803 0.0064 3.9941 0.1059 0.0112 4.0017 0.1133 0.0128

n = 1000 β2 -3.9962 0.0953 0.0090 -3.9996 0.0783 0.0061 -4.0057 0.1071 0.0114 -4.0037 0.1055 0.0111

β3 1.0001 0.0884 0.0078 1.0027 0.0729 0.0053 0.9886 0.1053 0.0112 1.0040 0.0912 0.0083

supersmooth error

β1 4.0143 0.1374 0.0190 4.0003 0.1413 0.0210 4.0026 0.1409 0.0240 4.0011 0.1510 0.0227

n = 500 β2 -4.0030 0.1340 0.0179 -3.9845 0.1386 0.0214 -4.0026 0.1398 0.0255 -4.0022 0.1524 0.0232

β3 0.9975 0.1409 0.0198 1.0147 0.1578 0.0225 0.9981 0.1386 0.0262 1.0071 0.1611 0.0229

β1 4.0008 0.0909 0.0082 3.9977 0.1149 0.0131 3.9958 0.1089 0.0219 4.0011 0.1398 0.0174

n = 1000 β2 -4.0028 0.0990 0.0098 -3.9981 0.1225 0.0149 -3.9974 0.1043 0.0209 -4.0017 0.1183 0.0175

β3 0.9956 0.1038 0.0108 0.9980 0.1098 0.0120 0.9996 0.1098 0.0220 0.9877 0.1134 0.0156

To investigate the performance of estimators of g(·), we use the square root of average

square error (RASE) criteria:

RASE =
{
n−1grid

ngrid∑
k=1

[ĝ(zk)− g(zk)]
2
}1/2

, (21)
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where {zk, k = 1, 2, . . . , ngrid} are the grid points at which the estimate ĝ(zk) is evaluated

and ngrid = 200 is used. We compare the performances of estimators ĝ
β̂
(z), ĝ

β̂S
(z), ĝ

β̂ρ
(z)

and ĝ
β̂Sρ

(z) based on RASE. Numerical results are reported in Table 2. We can see that

all these four estimators of g(z) perform well. For each simulation, we compute the RASE

defined in (21) by using a sequence of 10 bandwidths ranging from [0.2, 0.4]. The optimal

bandwidth is selected to minimize the RASE among these 10 candidates. We conduct

one simulation and present the estimated curves of ĝ
β̂
(z), ĝ

β̂S
(z), ĝ

β̂ρ
(z) and ĝ

β̂Sρ
(z) for

samples of size n = 500 in Figures 1 – 2. It is seen that our estimation procedures works

well.

Table 2 Simulation study for the example. The means and standard errors (SE)

of RASE for estimators ĝβ̂(z), ĝβ̂S (z), ĝβ̂ρ(z) and ĝβ̂Sρ(z).

ĝβ̂(z) ĝβ̂S (z) ĝβ̂ρ(z) ĝβ̂Sρ(z)

RASE SE RASE SE RASE SE RASE SE

ordinary smooth error

n = 500 0.1011 0.0344 0.1096 0.0398 0.1023 0.0352 0.1081 0.0371

n = 1 000 0.0789 0.0249 0.0844 0.0270 0.0805 0.0253 0.0782 0.0277

supersmooth error

n = 500 0.1098 0.0372 0.1191 0.0419 0.1185 0.0430 0.1192 0.0455

n = 1 000 0.0832 0.0269 0.0848 0.0248 0.0848 0.0311 0.0870 0.0335
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Figure 1 Ordinary error case: Plots of (a) ĝβ̂(z) (dotted lines) and g(z) (solid line);

(b) ĝβ̂S (z) (dotted lines) and g(z) (solid line); (c) ĝβ̂ρ(z) (dotted lines) and

g(z) (solid line); (d) ĝβ̂Sρ(z) (dotted lines) and g(z) (solid line)
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Figure 1 Supersmooth error case: Plots of (a) ĝβ̂(z) (dotted lines) and g(z) (solid

line); (b) ĝβ̂S (z) (dotted lines) and g(z) (solid line); (c) ĝβ̂ρ(z) (dotted lines)

and g(z) (solid line); (d) ĝβ̂Sρ(z) (dotted lines) and g(z) (solid line)
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