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Abstract: In this article, we develop efficient robust method for estimation of mean and covari-

ance simultaneously for longitudinal data in regression model. Based on Cholesky decomposition

for the covariance matrix and rewriting the regression model, we propose a weighted least square

estimator, in which the weights are estimated under generalized empirical likelihood framework.

The proposed estimator obtains high efficiency from the close connection to empirical likelihood

method, and achieves robustness by bounding the weighted sum of squared residuals. Simulation

study shows that, compared to existing robust estimation methods for longitudinal data, the pro-

posed estimator has relatively high efficiency and comparable robustness. In the end, the proposed

method is used to analyse a real data set.
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§1. Introduction

Longitudinal data arise when a response variable is measured repeatedly through time

for independent subjects. A major character of longitudinal data is the within-subject cor-

relation and between-subject heterogeneity. Many authors consider the estimation of mean

parameter and covariance matrix for longitudinal data. Liang and Zeger [1] introduced the

technique of generalized estimating equations (GEE) for marginal mean model. Qu et al. [2]

showed how to exploit the within-subject correlation based on QIF methods to improve

the efficiency of the GEE based estimator. Ye and Pan [3] proposed an approach for joint

modeling of mean and covariance structures within the GEE framework. An incomplete

list of related works includes [4–8].
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On the other hand, robustness study is also very important for longitudinal data

analysis, since one outlier in the subject level may generate a set of outliers in the sample

due to repeated measurements. Some literatures, e.g., [9–12], developed robust regression

methods for estimation on mean and covariance matrix. Qin and Zhu [13] proposed a

approach to achieve simultaneously robust estimation of both mean and covariance for

longitudinal data with dropouts. However, robustness gains usually entails some loss of

efficiency. The main purpose of this article is to improve the efficiency of estimator while

ensuring their resistance to outliers in finite samples for longitudinal data analysis.

The empirical likelihood (EL) method, first proposed by Owen [14], is a nonparametric-

likelihood-based approach and has attracted a great deal of interests, many authors ex-

tended the EL method to longitudinal data analysis, see [15–17]. The EL method enables

us to fully employ the information and incorporate side information through constraints

for making asymptotically efficient inference. Qin and Lawless [18] linked EL method and

estimating equations under moment restriction. They showed that EL estimator is asymp-

totically efficient if the moment specifications are correct and the likelihood score functions

are included as a subset of the restrictions. Bondell and Stefanski [19] proposed a robust

estimator in linear regression which has relatively high efficiency compared to other robust

estimators by using generalized EL methods.

Motivated by the efficiency of EL methods and the work of [19], we proposed a

more efficient estimation method to achieve simultaneously robust estimation of both

mean and covariance for longitudinal data. The advantages of the proposed method can

be summarized in four points. First, the proposed estimator is robust against possible

outliers in the dataset. Second, compared to the existing robust estimators, the proposed

estimator has relatively high efficiency in finite sample and comparable outlier resistance.

Third, different with the common GEE approach for longitudinal analysis, our method

does not need to specify the working correlation structure or model the parameters of the

covariance, and thus, the issue of correlation misspecification can be avoid. Fourth, unlike

other robust estimating equations based methods, and instead of choosing the tuning

threshold constants empirically by hand, our method depend on data driven weights which

can be estimated directly under the generalized EL framework.

The rest of this article is organized as follows. In Section 2, we develop the proposed

estimator. The algorithm that is used to compute the proposed estimator is discussed in

Section 3. Simulation studies are conducted to compare the performance of the proposed

estimator with existing ones in Section 4. A real data set analysis is presented in Section

5.
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§2. Proposed Method

2.1 Models

Suppose that we have a sample of n subjects with m observations over time for each

subject. We will consider the following linear regression model

yij = xT
ijβ + εij , i = 1, 2, . . . , n, j = 1, 2, . . . ,m, (1)

where yij is the jth observation on the ith subject, xij is a p-vector of covariance values,

β is a p-dimensional vector of unknown regression coefficients, εi = (εi1, εi2, . . . , εim)T are

independently distributed with mean 0m×1 and covariance matrix Σ, which is unknown

positive definite matrix.

To simultaneously estimate the parameters in β and Σ, we perform the modified

Cholesky decomposition of Σ. According to the positive definite property of Σ, there

exists a unique lower triangular matrix C with 1’s being the diagonal entries and a unique

diagonal matrix D with positive diagonals such that

Cov (Cεi) = CΣCT = D. (2)

Denote ei = (ei1, ei2, . . . , eim)T = Cεi and D = diag(d2
1, d

2
2, . . . , d

2
m), then we haveεi1 = ei1,

εij = cj1εi1 + cj2εi2 + · · ·+ cj,j−1εi,j−1 + eij , i = 1, 2, . . . , n, j = 2, 3, . . . ,m,
(3)

where cjk is the negative of the (j, k)-component of C.

Based on relationship (3), and similar to [13], we can rewrite model (1) asyi1 = xT
i1β + ei1,

yij = xT
ijβ + cj1εi1 + cj2εi2 + · · ·+ cj,j−1εi,j−1 + eij , i = 1, 2, . . . , n, j = 2, 3, . . . ,m.

(4)

Note that in (4), the errors εijs are unknown, similar to [13], we use the predicted value

ε̂ij = yij−xT
ij β̂j , where β̂j is the robust estimator of β which based on the jth observation

of the n independent subjects, and β̂j can be obtained by solving the following robust

estimating equations
n∑
i=1

xijωijψ(yij − xT
ijβj)/dj = 0, (5)

where ψ(·) is chosen to limit the influence on outliers in response, and a common choice is

Huber’s score function ψc(x) = min{c,max{−c, x}} for some constant c, normally chosen
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to be between 1 and 2. Following [20, 21], we choose the weights ωij = ω(xij) as the

Mahalanobis distance in the form

ωij = ω(xij) = min
{

1,
[ b0

(xij −mx)TS−1
x (xij −mx)

]r/2}
(6)

with r > 1, and mx, Sx are some robust estimates of location and scale of xij . We refer

to [10,20] for details.

Then, we replace εij in (4) with ε̂ij , and let c = (c21, c31, c32, . . . , cm,m−1)T, θ =

(βT, cT)T, zi1 = (xi1, 0m×(m−1)/2)T, and for j = 2, 3, . . . ,m, zij = (xT
ij , 0(j−2)×(j−1)/2, ε̂i1, ε̂i2,

. . . , ε̂i,j−1, 0(m−1)×m/2−(j−1)×j/2)T. We can reparameterized model (4) as

yij = zT
ijθ + eij , i = 1, 2, . . . , n, j = 1, 2, . . . ,m. (7)

So, if the coefficients θ and the variance of eij can be consistently estimated, a consistent

estimate of β and Σ can be obtained simultaneously.

2.2 Proposed Estimator

By assigning a probability mass pij to each observation yij , we define the element-wise

generalized empirical likelihood function as

L(P, θ) = inf
pij ,θ

{ n∑
i=1

m∑
j=1

pij ln(Npij) | pij > 0,
n∑
i=1

m∑
j=1

pij = 1,

n∑
i=1

m∑
j=1

pij(yij − zT
ijθ)zij = 0,

n∑
i=1

m∑
j=1

pij(yij − zT
ijθ)

2 6 σ̂2
OLS

}
, (8)

where N = n×m, P = (p11, p12, . . . , p1m, p21, p22, . . . , p2m, . . . , pn1, pn2, . . . , pn,m)T, σ̂2
OLS =

N−1
n∑
i=1

m∑
j=1

(yij − zT
ij θ̂OLS)2, and θ̂OLS is the ordinary least square estimator of model (7).

The estimator reduced from function in (8) is a generalization of the empirical likeli-

hood estimator, which is based on minimization of Cressie-Read discrepancy statistic (see

[22–24]). The Cressie-Read minimum discrepancy estimators are based on minimizing

the difference between the empirical distribution, that is, the N -dimensional vector with

all elements equal to 1/N , and the estimated weights subject to the restrictions being

satisfied.

The proposed estimate method is a two stage estimator. Firstly, by minimizing L(P, θ)

in (8), we can get P̂ = (p̂11, p̂12, . . . , p̂n,m) and θ̃. Secondly, the proposed estimator, which

is denoted θ̂, is weighted least squares estimator based on P̂ . Specifically,

θ̂ = (ZTWZ)−1ZTWY, (9)
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where Z = (z11, z12, . . . , zn,m), Y = (y11, y12, . . . , yn,m)T, W = diag{p̂11, p̂12, . . . , p̂n,m}.
The advantages of the proposed estimator can be explained from three aspects. First,

the weights used in (9) are determined as close as to equal weights as possible, since the

weights are obtained by minimizing the distance between equal weights and estimated

weights p̂ij . So, we expect the proposed estimator obtain high efficiency when the errors

are normally distributed. Second, the proposed estimator obtain robustness by down-

weighting observations that do not fit model (7) well. We can see this from the last

moment restriction in (8). In fact,

n∑
i=1

m∑
j=1

p̂ij(yij − zT
ij θ̃)

2 6 σ̂2
OLS =

1

N

n∑
i=1

m∑
j=1

(yij − zT
ij θ̂OLS)2 6

1

N

n∑
i=1

m∑
j=1

(yij − zT
ij θ̃)

2,

since N−1
n∑
i=1

m∑
j=1

p̂ij = N−1, it follows that
n∑
i=1

m∑
j=1

(p̂ij −N−1)(yij − zT
ij θ̃)

2 6 0. Thus, the

estimated weights p̂ij and the squared residuals (yij−zT
ij θ̃)

2 are negative correlated, and the

proposed estimator tends to assign small weights to large squared residuals and vice versa.

Third, many robust estimators (see [25, 26]) are also weighted least squares approaches

while they construct weights based on an initial measure of outlyingness, however, the

proposed estimator use a data-driven weights, since the weights are estimated directly

within a generalized empirical likelihood framework.

The proposed estimate method is a generalization of the work of [19], which focused

on cross-sectional data analysis. The work of [19] showed that, such two-stage estimator

can simultaneously obtain full efficiency under the normal distribution and retaining the

asymptotic breakdown point of 1/2. Based on Cholesky decomposition and reparameteri-

zation, we generalize this estimate method to longitudinal data analysis under regression

model. When compared with existing robust estimator for longitudinal data, the proposed

estimator is shown via simulation, to remain higher efficiency and comparable outlier re-

sistance.

Now, we summarize the estimation procedures as following.

Step 1. Based on the jth observation of each subject solving the robust estimating

equation (5) to get a robust estimate of β, β̂j , and then get the predicted value

ε̂ij = yij − xT
ij β̂j .

Step 2. Based on model (7), minimizing the generalized empirical likelihood function

(8), to obtain the estimated weights p̂ij , then obtain the proposed estimator of

θ = (βT, cT)T, θ̂ = (β̂T, ĉ T)T. Furthermore, we can obtain the predicted values

êij = yij − zT
ij θ̂ and get the robust estimates of variance d2

j through the median

absolute deviation.
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Step 3. Based on Cholesky decomposition, and with the estimate ĉ and d̂ 2
j , we can get

the estimate of covariance matrix Σ̂.

§3. Algorithm

To handle the constrained minimization problem in (8), we can set it in Lagrangian

form, the Lagrange function is

L0(P, θ,Λ) =
n∑
i=1

m∑
j=1

pij ln(Npij)− λ1

( n∑
i=1

m∑
j=1

pij − 1
)

− λT
2

n∑
i=1

m∑
j=1

pij(yij − zT
ijθ)zij − λ3

n∑
i=1

m∑
j=1

pij [(yij − zT
ijθ)

2 − σ2
T ], (10)

where Λ = (λ1, λ
T
2, λ3)T is the Lagrange multipliers, and σ2

T is a target residual scale

determined via a initial estimate which satisfy σ2
T 6 σ̂2

OLS. Taking the derivatives of

equation (10) with respect to each pij , θ, λ1, λ2 and λ3, and setting them to zero reveals

λ2 = 0 and yields following equations

pij = p∗ij
/ n∑
i=1

m∑
j=1

p∗ij , and p∗ij = exp{λ3(yij − zT
ijθ)

2 − σ2
T }, (11)

n∑
i=1

m∑
j=1

p∗ij [(yij − zT
ijθ)

2 − σ2
T ] = 0,

n∑
i=1

m∑
j=1

p∗ij(yij − zT
ijθ)zij = 0.

(12)

Since we can substitute pij given in (11), the constrained minimizing problem is reduced

to solve equations (12), and find θ and Lagrange multiplier λ3. However, these equations

are not easy to handle since there is no analytical solution. In literature, this problem is

generally solved by Newton-type numerical algorithms, see [14,27]. In this paper, similar to

[19], we solve alternative saddle-point equations, which are showed equivalent to equations

(12).

Denote J(λ3, θ) = N−1
n∑
i=1

m∑
j=1

exp{λ3[(yij−zT
ijθ)

2−σ2
T ]} and J1(λ3, θ) = ∂J(λ3, θ)/∂λ3,

J2(λ3, θ) = ∂J(λ3, θ)/∂θ. Based on examining the first and second derivatives of J(λ3, θ),

it can showed that, J(λ3, θ) is convex in λ3 for fixed θ and concave in θ for fixed λ3. We

refer to [19] for detail analysis. Thus, we can obtain the estimate of λ3 and θ by alternat-

ing minimization-maximization algorithm. Specifically, we solve the following equations,

iterating between θ and λ3

J1(λ3, θ) = 0, and J2(λ3, θ) = 0. (13)
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Expanding (13) and comparing it to (12) reveals their equivalence.

Now, we summarize the computational algorithm in the following.

Step 1. Define σ2
T = min{σ̂2

LTS, ασ̂
2
OLS}, where σ̂2

LTS = N−1
n∑
i=1

m∑
j=1

(yij − zT
ij θ̂LTS)2, and

θ̂LTS denote the least trimmed square estimator of model (8), and 0 < α < 1

is fixed constant near to 1 to exclude the boundary cases. We use α = 0.95 in

the simulation study.

Step 2. Assign initial values for θ and set a tolerance value ε∗.

Step 3. Minimize J(λ3, θ) with respect to λ3 for fixed θ by solving J1(λ3, θ) = 0, and

denote the solution by λ∗3(θ).

Step 4. Maximize profiled function J(λ∗3(θ), θ) with respect to θ, and denote the up-

dated estimate by θ∗.

Step 5. Repeat step 3 and step 4 until ‖θ∗ − θ‖ < ε∗, and denote the resulted estimate

of λ3, θ by λ̃3, θ̃ respectively.

Step 6. Compute the estimate weights by (11).

Step 7. Compute the proposed weighted least square estimate θ̂ by (9).

Step 8. With the estimate θ̂ and based on Cholesky decomposition, we obtain the esti-

mate β̂ and Σ̂.

§4. Simulation Study

In this section, we present a simulation study to investigate the finite sample efficiency

and robustness of the proposed estimator. Comparisons are made with two other robust

estimators. One is the estimator proposed by Qin and Zhu [13], denoted by Qin-R, which is

based on Cholesky decomposition for covariance matrix and robust estimating equations.

Although [13] focused on the estimation for longitudinal data with dropouts, the estima-

tion procedures are also adaptive to complete data set, which can be adjusted by simply

changing all the missingness indicator to 1. We compute the estimator in complete data

case and compare it to the proposed estimator. The other one is the estimator proposed

by He et al. [10], denoted by He-R, which is obtained under the robust GEE framework.

We also included the non-robust version of these two estimator for comparison, which are

denoted by Qin-NR and He-NR respectively.

4.1 Efficiency

To assess efficiency, we generated data from following regression model

yij = β0 + xij1β1 + xij2β2 + εij , i = 1, 2, . . . , n, j = 1, 2, . . . ,m, (14)
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where xij1 and xij2 are generated from standard normal distribution, β = (β0, β1, β2)T =

(1, 1, 1)T, εi = (εi1, εi2, . . . , εim)T are generated from multivariate normal distribution with

mean zero and covariance matrix Σ, which is set to be independent (Inde), exchangeable

(Exch) and one order autoregressive (AR(1)) respectively. The correlation parameter in

the case of Exch and AR(1) is taken to be 0.5. In our simulations, the constant r in the

weight function (6) and the constant c in the Huber’s function ψc(·) is chosen to be 1.5,

and working correlation structure is taken to be Exch for He-R and He-NR estimators.

The number of subject, n, is taken to be 30, 50, 100, 150, and the number of observation

for each subject, m, is set to be 4.

Based on 200 replications, we compute the relative efficiency (RE) by the ratio of

total mean squared errors (MSE) defined as

RE =
200∑
k=1

‖MSE(β̂MLE
k )‖2

/ 200∑
k=1

‖MSE(β̂k)‖2, (15)

where β̂MLE
k is the distribution specific maximum likelihood estimator, and β̂k is the study

estimator. We also compute the mean square error for the estimate of β0, β1 and β2 based

on the 200 replications. Similar to [13], we assess the performance in estimating the

covariance matrix by investigating the entropy loss (EL) and quadratic loss (QL) which

are defined as

EL = trace(Σ−1Σ̂)− ln |Σ−1Σ̂| −m; QL = [trace(Σ−1Σ̂− I)]2. (16)

It is easy to see the loss is zero when Σ̂ = Σ, so smaller loss indicate more accurate

estimation. Since [10] focused on the robust estimator for the mean, we only compare the

proposed estimator for covariance matrix to Qin-R and Qin-NR.

Table 1 – Table 3 summarize the simulation results for efficiency comparison. These

results are in line with our expectations. From Table 1, it is fair to say the proposed

estimator (denoted as P) is highly efficient even with sample size n = 30, n = 50, since the

proposed estimator always enjoy the largest relative efficiency and smallest mean square

error. Table 2 shows that, in no outlier case, the proposed estimator for the covariance

matrix also show its efficiency with less loss in terms of EL and QL. Table 3 shows the

higher efficiency of the proposed estimator by MSE. According to our experience obtained

from simulation study, in all cases, the bias are negligible relative to the standard deviation,

and hence the mean square error captures the variance comparisons very well. When we

compare He-R and Qin-R with their non-robust version estimators, it can be seen that

He-R and Qin-R seem to give slightly higher mean square error. This is the price that the

robust method must pay when there is, in fact, no outlier in the data, we shall see that

under contamination, He-NR and Qin-NR are less robust.



606 Chinese Journal of Applied Probability and Statistics Vol. 34

Table 1 Relative efficiency results with respect to β under normal

distribution (no contamination cases)

He-R He-NR Qin-R Qin-NR P

Inde. n = 30 77 80 66 88 99

n = 50 80 83 70 91 100

n = 100 84 81 73 89 100

n = 150 86 90 82 97 100

Exch. n = 30 84 89 76 90 98

n = 50 87 91 80 96 99

n = 100 87 96 81 92 99

n = 150 90 99 92 98 100

AR(1) n = 30 80 93 82 91 99

n = 50 85 97 87 98 99

n = 100 82 89 88 95 99

n = 150 91 94 92 99 100

Tabel 2 Simulation results for Σ under normal distribution (no

contamination cases)

Inde. Exch. AR(1)

Methods EL QL EL QL EL QL

n = 30 Qin-R 0.54 0.36 0.46 0.36 0.64 0.33

Qin-NR 0.21 0.20 0.29 0.23 0.25 0.28

P 0.18 0.19 0.28 0.21 0.24 0.25

n = 50 Qin-R 0.36 0.28 0.39 0.28 0.39 0.22

Qin-NR 0.18 0.19 0.18 0.19 0.21 0.19

P 0.18 0.18 0.14 0.13 0.20 0.16

n = 100 Qin-R 0.35 0.27 0.36 0.24 0.36 0.23

Qin-NR 0.19 0.17 0.15 0.15 0.25 0.16

P 0.18 0.14 0.18 0.13 0.20 0.15

n = 150 Qin-R 0.26 0.18 0.27 0.18 0.26 0.18

Qin-NR 0.08 0.10 0.08 0.10 0.08 0.12

P 0.05 0.08 0.13 0.12 0.08 0.09

4.2 Robustness

To investigate the robustness of the proposed estimator, we generate data from model

(14) under normal distribution, and consider two methods to create outliers.

C1. We randomly choose four data points, and perturb the covariate xij to xij − 2 and

their responses yij are replaced by yij + 2;
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C2. Eight data points are randomly chosen, and the way to perturb is the same as in

C1.

Tabel 3 Simulation results of mean square errors for β under normal

distribution (no contamination cases)

Inde. Exch. AR(1)

Methods β0 β1 β2 β0 β1 β2 β0 β1 β2

n = 50 He-R 0.0056 0.0064 0.0079 0.0084 0.0056 0.0052 0.0074 0.0043 0.0046

He-NR 0.0055 0.0064 0.0078 0.0082 0.0051 0.0049 0.0071 0.0042 0.0047

Qin-R 0.0064 0.0064 0.0074 0.0084 0.0043 0.0059 0.0079 0.0047 0.0059

Qin-NR 0.0060 0.0061 0.0070 0.0083 0.0046 0.0054 0.0072 0.0047 0.0059

P 0.0037 0.0052 0.0058 0.0064 0.0031 0.0048 0.0069 0.0035 0.0032

n = 100 He-R 0.0027 0.0028 0.0030 0.0035 0.0025 0.0028 0.0046 0.0029 0.0023

He-NR 0.0028 0.0028 0.0030 0.0036 0.0022 0.0027 0.0046 0.0028 0.0023

Qin-R 0.0028 0.0020 0.0031 0.0035 0.0021 0.0025 0.0043 0.0027 0.0026

Qin-NR 0.0027 0.0020 0.0029 0.0037 0.0020 0.0022 0.0044 0.0027 0.0024

P 0.0025 0.0024 0.0028 0.0030 0.0016 0.0019 0.0041 0.0019 0.0022

Tabel 4 Simulation results of mean square errors for β under contamination

cases, where n = 100

Inde. Exch. AR(1)

Methods β0 β1 β2 β0 β1 β2 β0 β1 β2

C1 He-R 0.0053 0.0069 0.0069 0.0090 0.2256 0.0057 0.0082 0.0058 0.0062

He-NR 0.0129 0.0172 0.0164 0.0179 0.0172 0.0165 0.0171 0.1059 0.0126

Qin-R 0.0042 0.0070 0.0059 0.0089 0.0054 0.0046 0.0079 0.0055 0.0048

Qin-NR 0.0081 0.0181 0.0163 0.0189 0.0164 0.0147 0.0157 0.0168 0.0152

P 0.0038 0.0040 0.0053 0.0058 0.0061 0.0046 0.0064 0.0056 0.0059

C2 He-R 0.0071 0.0103 0.0107 0.0073 0.0091 0.0094 0.0088 0.0103 0.0099

He-NR 0.0273 0.0358 0.0353 0.0279 0.0396 0.0388 0.0239 0.0348 0.0404

Qin-R 0.0055 0.0095 0.0109 0.0108 0.0080 0.0091 0.0089 0.0088 0.0101

Qin-NR 0.0149 0.0404 0.0431 0.0275 0.0395 0.0416 0.0231 0.0399 0.0428

P 0.0045 0.0091 0.0103 0.0070 0.0087 0.0105 0.0086 0.0069 0.0089

Table 4 and Table 5 show the simulation results for these experiments. It can be

seen from these tables, when data is contaminated by outliers, the mean square errors

for all estimator increase, especially for He-NR and Qin-NR. For the covariance matrix

estimation, the estimator of Qin-NR grows considerably large for QL, while the proposed

estimator had a better outlier resistance. In the case of outliers, it can be seen that He-R
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Tabele 5 Simulation results for Σ under contamination cases, where n = 100

Inde. Exch. AR(1)

Methods EL QL EL QL EL QL

C1 Qin-R 0.24 0.16 0.38 0.21 0.32 0.20

Qin-NR 0.81 0.21 1.72 0.36 1.57 0.35

P 0.19 0.10 0.34 0.26 0.42 0.22

C2 Qin-R 0.33 0.17 0.58 0.26 0.55 0.27

Qin-NR 2.43 0.38 6.05 0.76 5.52 0.75

P 0.18 0.09 0.61 0.38 0.54 0.28

and Qin-R gain a lot from using the robust estimate method. Compared with the best

performed estimator in each case, the proposed estimator always show comparable outlier

resistance.

In conclusion, compared with the existing robust estimators, the proposed estimator

show relatively high efficiency under normality, and has comparable resistance to con-

taminated data set. For the robust estimating equation based estimator, such as He-R

and Qin-R, the constant c in the Huber’s function ψc(·) and the constant r in the weight

function can tune the efficiency and robustness of the resulted estimator, and they need

be empirically specified in advance, different choice for these constant may show different

performance of the estimator. Unlike these methods, the proposed estimator is a weighted

least square estimator, and the weights are data driven, since the weights can estimated

directly base on generalized empirical likelihood method.

§5. Real Data Analysis

In this section, we applied the proposed estimate methods to analyze the longitudinal

CD4 cell count data. A complete description of the data can be found on Diggle P. J.’s

homepage: http://www.lancs.ac.uk/diggle/. The data used here is a subset of the com-

plete data and consists of 240 CD4 measurements from first 60 subjects available. The

root transformed CD4 counts are taken to be responses and the covariates include years

since seroconversion (T), age relative to arbitrary origin (A), smoking status by packs of

cigarettes (S1), recreational drug use yes/no (D), number of sex partners (S2), and de-

pression status by the mental illness score (S3). Many authors have analyzed this data

set. Wang et al. [8] fitted semi-parametric model and semi-parametric partial linear model

for this data and the covariate T entered the models nonparametrically. Qin and Zhu [21]

also fitted a partial linear mixed model for this data and give the robust estimation of
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the parameters in the model. Let yij denote the jth CD4 counts value measured for the

ith subject, and by Tij , Aij , S1ij , Dij , S2ij , S3ij the corresponding covariates values. We

standardize these data, and consider the following linear model:

yij = β0 + β1Ti + β2T2
i + β3Aij + β4S1ij + β5Dij + β6S2ij + β7S3ij + εij , (17)

where we include the T2 in the model to incorporate possible nonlinear relationship be-

tween T and response value. Then, we apply the methods used in simulation study to

model (17), and summarize the results in Table 6, where the results for the proposed es-

timator is based on 1 000 bootstrap sample of CD4 data set. It is clear that the proposed

estimator is similar to the robust estimators Qin-R and He-R, since these estimators show

the significance for covariate T and S1. Furthermore, T show positive effects on the CD4

numbers while S1 present negative effects. Meanwhile, non-robust estimator Qin-NR and

He-NR differ with the rest estimator on the significance for S3. This difference indicates

the influence induced by possible outliers in CD4 data. We apply the algorithm in section

3 to CD4 data, and compute the weights for the observations to identify possible outliers.

It can be seen from following Figure 1, the 32th, 58th, 150th, 198th, 225th observations

are heavily down-weighted. These means these observations are outliers of CD4 cell count

data under linear regression model.

Tabel 6 Coefficient estimates for CD4 data, with standard errors in parentheses.

We use the exchangeable working correlation structure for He-R and

He-NR methods. We show the significance (two side) at level 0.05 with

∗, or at level 0.01 with ∗∗

Intercept T T2 A S1 D S2 S3

He-R -0.0506 -0.2715∗∗ -0.0264 -0.0990 0.2944∗∗ 0.0920 0.1276 -0.0784

(0.0712) (0.0724) (0.0611) (0.0675) (0.0743) (0.0713) (0.0669) (0.0508)

He-NR -0.0511 -0.2761∗∗ -0.0261 -0.1121 0.2635∗∗ 0.1109 0.1324 -0.1181∗

(0.0593) (0.0608) (0.0714) (0.0694) (0.0822) (0.0749) (0.0752) (0.0520)

Qin-R -0.0484 -0.3056∗∗ -0.0279 -0.0585 0.3173∗∗ 0.0233 0.0313 -0.0691

(0.0670) (0.0684) (0.0595) (0.0738) (0.0775) (0.0688) (0.0667) (0.0523)

Qin-NR -0.0660 -0.2936∗∗ -0.0144 -0.0792 0.3143∗∗ 0.0103 0.0475 -0.1167∗

(0.0702) (0.0785) (0.0656) (0.0729) (0.0784) (0.0673) (0.0641) (0.0582)

P -0.0419 -0.2881∗∗ -0.0408 -0.0786 0.3005∗∗ 0.0963 0.1120 -0.0981

(0.0673) (0.0654) (0.05801) (0.0638) (0.0532) (0.0746) (0.0733) (0.0788)

We give the estimate for the correlation matrix of CD4 data set in Table 7. The

correlation matrix estimate for the proposed method is also base on 1 000 bootstrap sample

and the mean of resulted covariance matrix estimates. Compared with non-robust estimate
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weights labeled on vertical axis

method Qin-NR, the estimated correlation matrix by the proposed method and Qin-R

show relatively higher correlation among the four observations within each subjects.

Table 7 Correlation matrix estimates in the analysis of the CD4 data

Qin-R Qin-NR P

1.0000 0.9749 0.4914 0.5405 1.0000 0.5378 0.3548 0.2527 1.0000 0.7906 0.4059 0.4966

0.9749 1.0000 0.6598 0.5823 0.5378 1.0000 0.4186 0.3679 0.7906 1.0000 0.4275 0.6014

0.4914 0.6598 1.0000 0.5427 0.3584 0.4186 1.0000 0.2432 0.4059 0.4275 1.0000 0.3966

0.5405 0.5823 0.5427 1.0000 0.2527 0.3679 0.2432 1.0000 0.4966 0.6014 0.3966 1.0000

§6. Conclusion and Further Work

In this paper, we propose an efficient robust estimate for mean and covariance for

longitudinal data in regression models, which is more efficient under normal case, and also

enjoy comparable outlier resistance with existing robust estimator. The impressive finite

sample performance of the proposed estimator shows the power of generalized empirical

likelihood type estimator for tailoring estimators to achieve specific objectives, and this

may be due to the second order behavior of saddlepoint based procedures, see [24].

The breakdown properties and large sample variance estimation still require further
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careful investigation. Bondell and Stefanski [19] studied the breakdown properties and

asymptotic normality for independent data. However, it may be more complicated here

since we study the estimator of mean and covariance simultaneously based on Cholesky

decomposition, and the variation induced by the estimator ε̂ has to be considered.

To further enhance the estimator’s robustness is another interesting topic. A possible

way to achieve this goal is to consider additional constraints to bound influence and

leverage in (10), but this remain an open question and a possible line of future work.
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