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Abstract: An absorbing Markov chain is an important statistic model and widely used in al-

gorithm modeling for many disciplines, such as digital image processing, network analysis and so

on. In order to get the stationary distribution for such model, the inverse of the transition matrix

usually needs to be calculated. However, it is still difficult and costly for large matrices. In this

paper, for absorbing Markov chains with two absorbing states, we propose a simple method to

compute the stationary distribution for models with diagonalizable transition matrices. With this

approach, only an eigenvector with eigenvalue 1 needs to be calculated. We also use this method

to derive probabilities of the gambler’s ruin problem from a matrix perspective. And, it is able to

handle expansions of this problem. In fact, this approach is a variant of the general method for

absorbing Markov chains. Similar techniques can be used to avoid calculating the inverse matrix

in the general method.
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§1. Introduction

An absorbing Markov chain is a classical stochastic process, widely applied in many

fields, such as cyber security analytics [1] and digital image processing [2]. In these applica-

tions, some events or features are always set to the absorbing states and Markov chains are

used to construct the model. It is necessary to compute the stationary distribution which
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is an important parameter to estimate the stability or efficiency of these systems. Con-

ventional calculations generally involve computing the inverse of the transition matrix [3],

which is still not easy to calculate for large matrices. However, in this paper, for Markov

chains with two absorbing states and diagonalizable transition matrices, we propose a

simple method to compute the stationary distribution. Instead of computing the inverse

matrix, this approach solves the stationary distribution by calculating an eigenvector with

eigenvalue 1, which is only equivalent to solving a system of linear equations. This method

can be used to derive analytic results for some problems, e.g. the gambler’s ruin problem.

We discuss a kind of one-dimensional random walk problem, which can also be de-

scribed by an absorbing Markov chain. The transition matrix is the same after each step,

showing a typical feature of a time-homogeneous Markov chain.

Here an absorbing Markov chain that satisfies the following model is defined.

In an ordered and finite state space S = {s1, s2, s3, · · · , sN}, where N is the number

of states, a random walk can be performed. The observed sequence of random variables

is X1, X2, X3, · · · , while the agent moves h steps forward or backward to the next state

with a certain probability and the following restrictions.

1. The probability of moving forward or backward is non-zero.

2. h ∈ Z and 0 6 h 6 N − 2 for each h.

3. s1 and sN are two absorbing states, also called boundaries. When the agent reaches

s1 or sN , the walk ends.

4. If it would go out of the boundaries after moving, set the next state to the nearest

boundary.

5. If the next state is not s1 and sN , the probability of moving h steps forward or

backward is the same. That is

P(Xt+1 = si±h |Xt = si) = P(Xt+n+1 = sj±h |Xt = sj),

where t and n are any time, si±h, sj±h, si and sj are not s1 and sN .

This is a time-homogeneous Markov chain. In each transition, let the probability of

not moving be t0 and probabilities of moving h steps forward and backward be th and t−h

respectively. According to the Restriction 4, the probability of reaching each boundary is

the summation of probabilities of crossing this boundary. Therefore, the transition matrix
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P = (pij)N×N can be written as

P =



1 0 0 0 · · · 0 0 0

N−2∑
i=1

t−i t0 t1 t2 · · · tN−4 tN−3 tN−2

N−2∑
i=2

t−i t−1 t0 t1 · · · tN−5 tN−4
N−2∑

i=N−3
ti

N−2∑
i=3

t−i t−2 t−1 t0 · · · tN−6 tN−5
N−2∑

i=N−4
ti

...
...

...
...

. . .
...

...
...

N−2∑
i=N−3

t−i t−(N−4) t−(N−5) t−(N−6) · · · t0 t1
N−2∑
i=2

ti

t−(N−2) t−(N−3) t−(N−4) t−(N−5) · · · t−1 t0
N−2∑
i=1

ti

0 0 0 0 · · · 0 0 1



, (1)

where pij is the probability of moving from state i to state j.

Note that the sum of each row is 1:

N−2∑
i=1

t−i + t0 +
N−2∑
i=1

ti = 1. (2)

According to the Restriction 1,

N−2∑
i=1

t−i > 0 and
N−2∑
i=1

ti > 0. (3)

By adjusting the row and column positions of the absorption states, x1 and xN , P

can be rewritten as

Ps =

(
I2 0

R T

)
, (4)

where I2 is a 2× 2 identity matrix, R and T = (aij)(N−2)×(N−2) are

R =


N−2∑
i=1

t−i
N−2∑
i=2

t−i
N−2∑
i=3

t−i · · ·
N−2∑

i=N−3
t−i t−(N−2)

tN−2
N−2∑

i=N−3
ti

N−2∑
i=N−4

ti · · ·
N−2∑
i=2

ti
N−2∑
i=1

ti


T

, (5)
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and

T =



t0 t1 t2 · · · tN−4 tN−3

t−1 t0 t1 · · · tN−5 tN−4

t−2 t−1 t0 · · · tN−6 tN−5
...

...
...

. . .
...

...

t−(N−4) t−(N−5) t−(N−6) · · · t0 t1

t−(N−3) t−(N−4) t−(N−5) · · · t−1 t0


. (6)

In the following pages, all identity matrices are presented by I; and T in Equation (4)

is called the transient matrix, not only for our model, but also for all absorbing Markov

chains.

Equation (4) is the canonical form of transition matrices of absorbing Markov chains.

According to [4],

P k =

(
I2 0

R T

)k

=

(
I2 0

Rk T k

)
,

where

Rk = (I + T + T 2 + · · ·+ T k−1)R =
k−1∑
m=0

TmR;

since lim
k→∞

T k = 0 and (I − T )−1 =
∞∑

m=0
Tm,

lim
k→∞

P k
s =

(
I2 0

R∞ 0

)
and R∞ = (I − T )−1R. (7)

If the limit lim
k→∞

P k
s is known, it is easy to calculate the stationary distribution by

multiplying the initial distribution. In addition, by adjusting the row and column positions

of lim
k→∞

P k
s , lim

k→∞
P k can also be obtained. Equation (7) is a general method to solve for

absorbing Markov chain models. However, an inverse of a matrix needs to be calculated,

which is difficult for large matrices.

It is obvious that the matrix power is the key to calculating the stationary distribution.

If a matrix is diagonalizable, it is easy to get its matrix power. In addition, there is a close

relationship among diagonalization, eigenvalues and eigenvectors. Fortunately, considering

the particularity of this problem, eigenvalues and eigenvectors of the transition matrix have

some special properties, which is elaborated in Sections 2 – 3. Then a better approach to

this problem could be derived from these properties.

The paper is organized as follows. In Section 2, we present a proposition of eigenval-

ues of the transition matrix. Then, in Section 3, the condition of diagonalization of this
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transition matrix is provided. Based on this condition, we propose a simple method to

compute the stationary distribution. In Section 4, we use this method to derive probabili-

ties of the gambler’s ruin problem from a matrix perspective, and compute the stationary

distribution of a numeric example of the complex expansion of the gambler’s ruin prob-

lem. The relationship between the proposed approach and the conventional method is also

discussed. Finally, we end with conclusions in Section 5.

§2. Eigenvalues of the Transition Matrix

The power of a matrix is closely linked with eigenvalues and eigenvectors. Now a

proposition of eigenvalues of this transition matrix will be given and forms the base of this

new method.

Proposition 1 If a transition matrix satisfies Equations (1), (2) and (3), the norm

of its eigenvalues are not greater than 1 and the algebraic multiplicity of eigenvalue 1 is 2.

Proof Suppose that λ is an eigenvalue of the transition matrix P , then |λI − P |
= 0, so that

(λ− 1)2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ− t0 −t1 −t2 · · · −tN−4 −tN−3
−t−1 λ− t0 −t1 · · · −tN−5 −tN−4
−t−2 t−1 λ− t0 · · · −tN−6 −tN−5

...
...

...
. . .

...
...

−t−(N−4) −t−(N−5) −t−(N−6) · · · λ− t0 −t1
−t−(N−3) −t−(N−4) −t−(N−5) · · · −t−1 λ− t0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0,

and hence

λ = 1 or

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ− t0 −t1 −t2 · · · −tN−4 −tN−3
−t−1 λ− t0 −t1 · · · −tN−5 −tN−4
−t−2 −t−1 λ− t0 · · · −tN−6 −tN−5

...
...

...
. . .

...
...

−t−(N−4) −t−(N−5) −t−(N−6) · · · λ− t0 −t1
−t−(N−3) −t−(N−4) −t−(N−5) · · · −t−1 λ− t0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (8)

Obviously, 1 is an eigenvalue whose algebraic multiplicity is not less than 2. The

second solution of λ in Equation (8) is the same as eigenvalues of the Toeplitz matrix

T in Equation (6). Suppose that β is an eigenvalue of T whose eigenvector is x =
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(x1, x2, x3, · · · , xN−2)T, then Tx = βx. Let |xk| = max
16i6N−2

|xi| = ‖x‖∞. Consider the

k-th row of the above equation,

N−2∑
j=1

akjxj = βxk or (β − akk)xk =
∑
j 6=k

akjxj ,

and hence

|β − akk||xk| 6
∑
j 6=k

|akj ||xj | 6 |xk|
∑
j 6=k

|akj |.

The eigenvector must be non-zero, so |xk| > 0. Then

|β − akk| 6
∑
j 6=k

|akj |. (9)

Two sides of Equation (9) are equal if and only if |xj | = |xk| for all j 6= k. From

Equation (2) and Equation (9),

|β| 6 |akk|+
∑
j 6=k

|akj | 6 1. (10)

What interests us is whether the range of β satisfies

|β| < 1. (11)

Assume |β| = 1 and its eigenvector x = (x1, x2, x3, · · · , xN−2)T. If |β| = 1, then

|akk| +
∑
j 6=k

|akj | = 1 and |xj | = |xk| are valid for all j 6= k in Equation (9) and Equation

(10). And since |xk| is the infinity norm, k could be any integer of 1, 2, 3, · · · , N − 2.

Because elements of T are non-negative,

N−2∑
j=1

akj = 1, k = 1, 2, 3, · · · , N − 2. (12)

Let k = 1. According to Equation (12) and Equation (2)
N−2∑
j=1
|a1j | = t0 +

N−3∑
i=1

ti = 1,

N−2∑
i=1

t−i = 0.

Obviously, it contradicts Equation (3). Hence the assumption |β| = 1 is false, i.e.

|β| 6= 1. Note that we have |β| 6 1 from Equation (10). Therefore, Equation (11) is

true and the norm of the eigenvalues of T is less than 1. And according to Equation (8),

Proposition 1 is true. �

The range of eigenvalues of the transition matrix has been figured out. And the

algebraic multiplicity of eigenvalue 1 is 2, which is the key to the simple approach to

compute the stationary distribution elaborated in the next section.
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§3. The Stationary Distribution

The stationary distribution depends on the initial distribution and the transition

matrix. Let π0 be the initial distribution and πk be the distribution after k-step transition.

For a time-homogeneous Markov chain,

πk = π0P
k. (13)

If the limit lim
k→∞

P k exists and is found, π∞ is the stationary distribution and could

be easily determined for any starting distribution. Furthermore if P is diagonalizable, it

will be easy to find this limit. Now a proposition about diagonalization will be proposed.

Proposition 2 If a transition matrix P satisfies Proposition 1, a necessary and suf-

ficient condition for P to be diagonalizable is that its transient matrix T is diagonalizable.

Proof Necessity is dealt first. Suppose that there exists an invertible matrix H

and a diagonal matrix Λ, satisfying HΛH−1 = P , i.e. P is diagonalizable.

H, Λ and H−1 could be partitioned as follows

H =


L11 L12 L13

L21 L22 L23

L31 L32 L33

 , Λ =


1 0 0

0 Λ1 0

0 0 1

 and H−1 =


R11 R12 R13

R21 R22 R23

R31 R32 R33

 . (14)

Sizes of blocks at the same positions of H, Λ and H−1 are the same. Let n = N − 2.

Then the sizes of the first row are 1×1, 1×n and 1×1, respectively. The sizes of the first

column are 1× 1, n× 1 and 1× 1, respectively. The second column of HΛH−1 satisfies
L11R12 +L12Λ1R22 +L13R32 = 0,

L21R12 +L22Λ1R22 +L23R32 = T ,

L31R12 +L32Λ1R22 +L33R32 = 0.

(15)

Similarly, since HH−1 = I,
L11R12 +L12R22 +L13R32 = 0,

L21R12 +L22R22 +L23R32 = I,

L31R12 +L32R22 +L33R32 = 0.

(16)

From Equation (15) and Equation (16),
L12(Λ1 − I)R22 = 0,

L22(Λ1 − I)R22 = T − I,

L32(Λ1 − I)R22 = 0.

(17)
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Obviously, diagonal elements of Λ1 − I are the eigenvalues of T − I. From Equation

(11), eigenvalues of T −I are not equal to 0. So that the determinant of Λ1−I is non-zero.

From the second sub-equation of Equation (17), |L22||R22| = 1. Thus L22 and R22 are

invertible. And since Λ1 − I is invertible,

L12 = 0 and L32 = 0. (18)

Note that, the second block in the second row of H−1H is actually I,

R21L12 +R22L22 +R23L32 = I. (19)

Form Equation (18) and Equation (19),

L22R22 = I. (20)

Then form Equation (17) and Equation (20),

L22Λ1R22 = T .

So that T is diagonalizable. The necessity is proved.

Then sufficiency. Suppose that there exist such two invertible matrices L22 and R22,

satisfying L22R22 = I, and a diagonal matrix Λ1 that satisfies L22Λ1R22 = T , i.e. T is

diagonalizable.

Let three block matrices be

H =


1 0 0

L21 L22 L23

0 0 1

 , Λ =


1 0 0

0 Λ1 0

0 0 1

 and G =


1 0 0

R21 R22 R23

0 0 1

 . (21)

Sizes of each blocks are the same as Equation (14). The condition for HG = I is
L21 +L22R21 = 0,

L22R22 = I,

L22R23 +L23 = 0.

(22)

Since L22 and R22 are known, we only need to find L21, L23, R21 and R23 to meet

Equation (22).

The condition for HΛG = P is
L21 +L22Λ1R21 = A,

L22Λ1R22 = I,

L22Λ1R23 +L23 = B,

(23)
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where A = (pj,1)(N−2)×1 and B = (pj,N )(N−2)×1 for j = 2, 3, 4, · · · , N − 1. p is the same

as the definition of the transition matrix P . According to our assumption, the second

sub-equations of Equation (22) and Equation (23) are true. A unique solution to L21,

L23, R21, and R23 can be sought by combining Equation (22) and Equation (23). So that

there exist H, Λ and G such that HG = I and HΛG = P . Hence P is diagonalizable.

The sufficiency is proved. Thus, Proposition 2 is true. �

From Proposition 2, the Toeplitz matrix has the same diagonalizable property with

transition matrix. Because of the properties of Toeplitz matrices, the workload of calcu-

lating its eigenvalues and determining whether it is diagonalizable is acceptable, especially

for some special Toeplitz matrices which have been fully studied, e.g. circulant matrices

(see, e.g. [5]). This greatly simplifies the problem of determining whether the transition

matrix can be diagonalized. So we mainly focus on this situation.

Suppose that there exists an invertible matrix C such that P = CDC−1, where

D = diag(λ1, λ2, λ2, · · · , λN−2, 1, 1). From Proposition 1, we have

|λi| < 1, i = 1, 2, 3, · · · , N − 2.

C is the matrix composed of eigenvectors. Let P∞ = lim
k→∞

P k, then

P∞ = C lim
k→∞

DkC−1,

where lim
k→∞

Dk = diag(0, 0, 0, · · · , 0, 1, 1).

Let x1 and x2 be the eigenvectors with eigenvalue 1 of P , where x1 = [x11, x12, x13,

· · · , x1N ]T and x2 = [x21, x22, x23, · · · , x2N ]T. Because of the form of the first and last row

of P , x11 and x1N are arbitrary. However, x11 and x1N cannot be 0 at the same time.

Otherwise the algebraic multiplicity of eigenvalue 1 would be no more than 1, which is

against Proposition 1. Similarly, x21 and x2N can be arbitrary, while x1 6= x2 must be

ensured. For simplicity, let

x11 = 0, x1N = 1, x21 = 1 and x2N = 0. (24)

Then

C lim
k→∞

Dk = (0,x1,x2).

C−1 can be written as C−1 = (fij)N×N . If, by whatever means, the last two rows

of C−1 are found, then P∞ can be easily determined. Since the stationary states are two
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absorbing states, s1 and sN , we have
P∞(1, 1) = 1, P∞(1, N) = 0;

P∞(N, 1) = 0, P∞(N,N) = 1;

P∞(i, j) = 0,

(25)

where i, j = 1, 2, 3, · · · , N , but they can’t be 1 or N at the same time.

From Equation (24) and Equation (25), the last two rows of C−1 are found to befN−1,N = 1/x1N = 1, fN−1,i = 0, i = 1, 2, 3, · · · , N − 1;

fN,1 = 1/x21 = 1, fN,j = 0, j = 2, 3, 4, · · · , N.
(26)

Thus, the unknowns of P∞ areP∞(k, 1) = x2kfN,1 = x2k/x21 = x2k;

P∞(k,N) = x1kfN−1,N = x1k/x1N = x1k,
(27)

where k = 2, 3, 4, · · · , N − 1. Note that the sum of these two probabilities is 1, we get

P∞(k, 1) + P∞(k,N) = 1. (28)

Therefore, it only needs to calculate one of them. If the transition matrix is diago-

nalizable with 0 and 1 at the proposed position of the eigenvector, then C is determined;

its inverse exists, and Equation (26) is satisfied. Hence Equation (27) is reasonable, and

the logic of our method is clear. We summarize it as Proposition 3.

Proposition 3 For our model, if its transition matrix is diagonalizable, only an eigen-

vector with eigenvalue 1 needs to be computed, whose first element and last element are 0

and 1 respectively. Then, lim
k→∞

P k can be determined from Equation (25) and Equation (27),

and the stationary distribution can be calculated with Equation (13).

Note that before using this method, it must ensure that the transition matrix is diag-

onalizable. Some judging techniques can be used, for example, the minimal polynomial [6].

In addition, the derivations in this section have nothing to do with the form of the

transient matrix. We only used Proposition 1. Hence, even for an absorbing Markov

chain which does not completely satisfy our model, Proposition 2 is still true if it satisfies

Proposition 1. When the transition matrix is diagonalizable, we could still use Proposition

3 to compute the stationary distribution quickly.
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§4. Examples

4.1 Gambler’s Ruin

Now we take this method to derive probabilities of the gambler’s ruin problem. It is

a classic problem in probability theory. Here is a quick review.

Suppose a gambler starts with m units of money, whose rival has n units of money.

The bet of each play is one unit of money and he has a probability a of losing (and c = 1−a
of winning) in each play. The game ends when either one of them goes broken. We are

interested in probabilities of losing and winning the game.

Since the total money is m+ n, there are M = m+ n+ 1 states. Let the state space

be {0, 1, 2, · · · ,m + n}, where the number represents the money that this gambler may

have. The initial distribution can be written as π0 = (0, 0, · · · , 0, 1, 0, 0, · · · , 0) whose size

is 1×M . Only the (m+ 1)-th element is 1. Let P1 be the M ×M transition matrix, then

P1 =



1 0 0 · · · 0 0 0

a 0 c · · · 0 0 0

0 a 0 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · a 0 c

0 0 0 · · · 0 0 1


.

Obviously, this problem fits our model. Let N = m + n − 1 and an N ×N Toeplitz

matrix Q1 be

Q1 =



0 c 0 · · · 0 0 0

a 0 c · · · 0 0 0

0 a 0 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · a 0 c

0 0 0 · · · 0 a 0


.

To apply Proposition 2, we must determine whether the Toeplitz matrix Q1 is diag-

onalizable. As Q1 is a tridiagonal matrix, according to [7], its eigenvalues are

λt = −2
√
ac cos

tπ

N + 1
, t = 1, 2, 3, · · · , N.

Hence, Q1 has N different eigenvalues and is diagonalizable. And from Proposition

2, the transition matrix P1 is diagonalizable. Our method is applicable for this problem.
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Let an eigenvector with eigenvalue 1 of P1 be x1 = (x1, x2, x3, · · · , xM ]T. It must

satisfy

(I − P1)x1 =



0 0 0 · · · 0 0 0

−a 1 −c · · · 0 0 0

0 −a 1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · −a 1 −c
0 0 0 · · · 0 0 0





x1

x2

x3
...

xM−1

xM


= 0. (29)

Equation (29) can be written as

cxk+1 − xk + axk+1 = 0, k = 2, 3, · · · ,M − 1.

It is an order-2 homogeneous linear difference equation. According to [8], its charac-

teristic equation has this form

cr2 − r + a = 0, (30)

where r are characteristic roots of this linear difference equation. Since a + c = 1, it is

easy to find 1 − 4ac > 0. For the situations 1 − 4ac = 0 and 1 − 4ac > 0, the general

solutions are different. Hence these two cases must be discussed respectively.

If 1− 4ac = 0, then a = c = 0.5 and characteristic roots are 1. The general solution

would be

xj = (c1 + c2j)r
j = c1 + c2j.

From Equation (24), c1 = 1/(1−M) and c2 = 1/(M−1). Hence xj = (j−1)/(M−1).

Form Equation (25) and Equation (27), lim
k→∞

P k
1 can be calculated. For the stationary

distribution π∞, we have

π∞ = π0 lim
k→∞

P k
1 = (1− xm+1, 0, 0, 0, · · · , 0, 0, xm+1)

=
( n

m+ n
, 0, 0, · · · , 0, 0, m

m+ n

)
. (31)

Probabilities of losing and winning the game are n/(m + n) and m/(m + n) respec-

tively.

If 1 − 4ac > 0, the characteristic roots are r1 = a/c and r2 = 1 form Equation (30).

Since they are different, the general solution would be

xj = c1r
j
1 + c2r

j
2 = c1

(a
c

)j
+ c2.

From Equation (24), c1 = 1/[(a/c)M − a/c] and c2 = −(a/c)/[(a/c)M − a/c]. Hence,

xj = [(a/c)j−1 − 1]/[(a/c)M−1 − 1].
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Similarly, the stationary distribution π∞ is

π∞ = π0 lim
k→∞

P k
1 = (1− xm+1, 0, 0, 0, · · · , 0, 0, xm+1)

=
( 1− (c/a)m

1− (c/a)m+n
, 0, 0, · · · , 0, 0, (a/c)m − 1

(a/c)m+n − 1

)
. (32)

Probabilities of losing and winning the game are [1 − (c/a)m]/[1 − (c/a)m+n] and

[(a/c)m − 1]/[(a/c)m+n − 1] respectively.

The probabilities of losing and winning the game of these two cases are the same as

the result of classical methods [9, 10], demonstrating that our approach is suitable.

4.2 An Expansion of the Gambler’s Ruin Problem

Let us consider a numeric example. It is an expansion of the gambler’s ruin problem.

The difference is that the bet of each game is not just one unit of money. Suppose an

unfair game that the gambler starts with 100 units of money, whose rival have 99 units

of money. The initial distribution of him can be written as a 1 × 200 vector, π0 =

(0, 0, · · · , 0, 1, 0, 0, · · · , 0). Only the 101st element is 1.

In each game, probabilities of money changed for this gambler corresponds to Table

1.

Table 1 Probabilities of money changed in each game

Number of bet changes −3 −2 −1 0 +1 +2 +3

Probability 1/42 1/7 1/5 1/4 1/3 1/20 0

For example, the probability of losing two units of money is 1/7.

Let P2 be the transition matrix of this example, whose size is 200× 200. P2 could be

written as

P2 =


1 0 0

R1 T2 R2

0 0 1

 ,

where R1 = (11/30, 1/6, 1/42, 0, 0, · · · , 0)T and R2 = (0, 0, 0, · · · , 0, 0, 1/20, 23/60)T. T2 is

a 198×198 Toeplitz matrix whose first row and first column are (1/4, 1/3, 1/20, 0, 0, · · · , 0)

and (1/4, 1/5, 1/7, 1/42, 0, 0, · · · , 0)T respectively.

Let x1 be the eigenvector with eigenvalue 1 of P2, where x1 = (x1, x2, x3, · · · , x200)T.

Then

(P2 − I)x1 = 0. (33)
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x1 is a non-trivial solution of this linear equations. There are some methods to solve

this question, e.g. the singular value decomposition [11].

Form Equation (24), we could let x1 = 0 and x200 = 1. Therefore, Equation (33) can

be written as

(T2 − I)y1 = −R2, (34)

where y1 = (x2, x3, · · · , x189, x199)T. There is a unique solution to this equation, and y1 is

easy to calculate. This is our method. Then lim
k→∞

P k
2 can be calculated and the stationary

distribution could be figured out form any initial distribution, e.g. the gambler has m

units of money and his rival has 199−m units of money. For simplicity, we only compute

probabilities of losing and winning the game starting from 100 units of money.

To verify the correctness of the proposed approach, Equation (7) is still used to

compute the probabilities. The computed results of x101 are all 5.6010× 10−8 for the two

listed methods. For this gambler, probabilities of defeat and victory are 1− 5.6010× 10−8

and 5.6010 × 10−8 respectively. The result of the proposed approach is the same as

the general method mentioned is Equation (7), indicating the correctness of our sample

method.

In fact, there is a close relationship between the simple method and the general one.

If we multiply the inverse of T2 − I at both sides of Equation (34), it will be similar to

Equation (7). Hence this approach is a variant of the general method. So that in Equation

(7), the same technique can also be taken to avoid matrix inversion.

§5. Conclusions

In this paper, we proposed an easy calculation method to deal with the stationary

distribution for absorbing Markov chains with two absorbing states. In the models defined

by us, the norm of eigenvalues of the transition matrix are not greater than 1 and the

algebraic multiplicity of eigenvalue 1 is 2. If the transient matrix is diagonalizable, the

transition matrix is diagonalizable as well and we could use one eigenvector to calculate

the stationary distribution quickly. We have used this method to derive probabilities of the

classic gambler’s ruin problem. The result is consistent with other methods. Furthermore,

for complex expansions, our approach is still effective. In fact, it is a variant of the

conventional method. Hence, for all absorbing Markov chains, similar techniques can be

taken to avoid computing the inverses of transition matrices.
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