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§1. Introduction
Consider the following linear regression model
Y = xT:B + € (1)

where Y is a scalar response variable, z € R" is a vector of fixed design variable, 8 € R" is
g

a vector of regression parameters, and error € € R is a random variable. Let x1,%2,-++ , 2
be the design vectors, Y7, Y2, - -, Y, be the corresponding observations, and €;, €3, - , €,
be the random errors. We assume that €1, €2, - , €, are 1.i.d. random errors with mean 0

and unknown variance o2, where 0 < ¢? < oo0.

Let
QUI 1
T3 Y2
Xm=| . |: Yo=
"L';rz Yn
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and suppose that Rank(X(,)) = 7. Then the least square estimator of 3 is

Br = (X[ X(n) " X[y Yiny-

n)

A commonly used estimator of o2 is

1 n

Z e?u'a (2)

n—"Ti=1

-~ 1 ) 8,
Gn = ———Y(m) ~ X(m)Bn) (Vi) = X(n)Br) =

where en; = y; — :L'ZTB\”, 1<i<n.

The estimation of error variances plays an important role in regression predictions,
diagnostics and model selection procedures. For example, based on (15) below, to con-
struct the confidence region of 8 in the linear model, we need to obtain a good estimator
of the variance. The asymptotic properties of 2 are studied extensively. For instance,
Zhao[l investigated the strong convergence of 2. Chen 2] obtained the Berry-Esseen
bound of (52 — 62)/+/Varg2. Fu et al.l®l obtained the precise asymptotics in the law of
the logarithm for the first moment of the error variance estimator.

Note that E(e) = 0 and E(e?) = o?. Using E(e?) = o2 and the Quasi observation
values ep; of e, the empirical likelihood (EL) estimator of o2 would be n ™! i e2., which
has the same asymptotic efficiency as 52 while 52 is unbiased. Our aim in th;sjlarticle is to
construct an empirical likelihood (EL) estimator of o2 by using the auxiliary information
E(e) = 0. Under some regularity conditions, it is shown that the asymptotic distribution
of the estimator is a normal distribution with asymptotic variance not larger than that
of 52. We note that the closed form of the asymptotic variance of 52 is not given in the
existing literatures. In this article, the closed forms of the asymptotic variances of 52 and
its improved version are all given, which are especially useful to construct the confidence
intervals for the error variance. When the design points form a random sequence, Shi (4
studied the EL estimator of error variance in a linear model. We note that the statistical
linear models with non-random design points is also an important research topic theoret-
ically and practically and usually the techniques used to treat non-random designs are
more involved and the non-random case occurs extensively in application fields.

The EL method as a nonparametric technique for statistical inference in the non-
parametric setting has been introduced by Owen!®% and has many advantages over its
counterparts like the normal-approximation-based method and the bootstrap method;
see, for instance, [7] and [8]. Three striking properties of the empirical likelihood are the
Wilks’ theorem, Bartlett correction and ability to use auxiliary information. Chen and

Qin 9 have shown that the empirical likelihood method can be naturally applied to make
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more accurate statistical inference in finite population estimation problems by employing
auxiliary information efficiently. Zhang (10] applied the empirical likelihood technique to
propose a new class of M-functional estimators as well as quantile estimators in the pres-
ence of some auxiliary information. More results of the empirical likelihood inference with
auxiliary information can be seen in [11] and [12], among others.

The rest of this paper is organized as follows. The main results of this paper are
presented in Section 2. Results of a simulation study on the finite sample performance of
the new variance estimator are reported in Section 3. Some lemmas to prove the main

results are presented in Section 4. The proof of the main results is presented in Section 5.

§2. Main Results

To use the auxiliary information E(e) = 0, based on the Quasi observation values

{eni, 1 < i < n} of e, we now define the following empirical likelihood function

R= sup {sz

PL1,P2, " sPn

sz—l p; =0, szem—o}
i=1

n
It is easy to obtain R = [] p;, where

i=1
1 1
=T 1<i<n, 3
where A € R is determined by
n
4
; 14 )\em )
Thus, with the use of the auxiliary information E(e) = 0, the new estimator of o2 is
n el — Z bie m’ (5)

Use ||z|| to denote the Ly norm of z, and Agin(A) and Amax(4) to denote the least and
largest eigenvalues of a matrix A respectively. To obtain the asymptotical distribution of
AfL «1» We need the following assumptions:

(A1) Theey,eg,--- ,e,areiid. random variables with E(e;) =0, 0 < Var(e1) = 02 < 00
and there exists § > 0 such that E|e;}**% < oo.
(A2) fax |lzs)] = O(1) and there are constants C; > 0, ¢ = 1,2 such that 0 < Cy <

Amin(n ™ X( )X(n)) < Amax(n‘lX(Tn)X(n>) < Cq < 0.



262 Chinese Journal of Applied Probability and Statistics Vol. 37

(A3) ns8 — 0o and pg — 0* — p3o2s2 > c for some constant ¢ > 0, where

s2=1-(n é ) (n7 Xy Xry) 7 (7 > zi).

i=1

n
Remark 1 Note that n X7 . X,y = n™! > z;2] and in many published articles
(n)“*(n) =7

n‘lX{n)X(n) = ¥ + 0p(1) for some positive matrix X is supposed, which implies
0<Cr < )\min(n_lx(Tn)X(n)) Amax(n~ Xn)X(n)) C2 < .

Further, s2 = n=17[I, — X(n)(X(Tn)X(n))‘lX(Tn)]ln, where 1, = (1,1,---,1)". It can be

22

seen that 0 < s2 < 1. From (6) below, one can see that u4 — o — o is the asymptotic
u3

variance of \/—a We need the assumption that the asymptotic variance is bounded away

n,el*

from 0.

We now state the main results, which establish the asymptotic normality of the esti-

mators of error variances.

Theorem 2 Suppose that conditions (A1) to (A3) are satisfied. Then as n — o0,

\/u:/: (Uii #20_)232 4, N(@©,1), (6)

and
Vr@i— o) 4, no, 1), (7)
e
where p1; = E(C{), Jj=3,4
Remark 3 Theorem 2 shows that Ez,el has smaller asymptotic variance than G2 or
the same asymptotic variance as 52. To the best of our knowledge, this is the first time the
explicit form of the asymptotic variance of 8% is given. We also note that 3721’61 and 3% have
the same asymptotic variance when the skewness of e; is 0, especially as e; ~ N(0,0?). In
addition, it is also noted that s2 = 0 when the covariate z in (1) includes 1 (i.e. intercept
term), which indicates that the new estimator G2, has the same asymptotic variance as
G2. In this case, a ol May not be recommended However, in many application cases,
centralization or standardlzatlon of {z;} and {y;} is used, where the intercept term vanishes

~2
and Op el May be used.

Remark 4 Let u, satisfy P(|N(0,1)| < uq) = a for 0 < a < 1, where N(0,1) is the
standard normal random variable. It follows from Theorem 2 that the EL based confidence

interval for o2 with asymptotically correct coverage probability a can be constructed as
ymp y gep

[3727., ’U,a\/— nel+ua\/-]
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where a = (liy — 6% — i2672s2) /n, @ =n~! Z 1. 5 =2,8,4 with 2 = fi;. On the other

hand, the confidence interval for o2 based on the estimator 52 with asymptotically correct

coverage probability & can be constructed as
[62 — uaVb, 62 +uaVh],

where b = (fig — 7*)/n.

§3. Simulation Results

We conducted a small simulation study on the finite sample performances of ’a\fh o and

G2. For this purpose, we used the model
Yi=zf+e (8)

with z; = i/(n+ 1) +u;, ¢ = 1,2,--- ,n, the u;’s were generated from the uniform
distribution U[—1,1] with a given seed so that they remained fixed in the simulations,
and the {e;, i = 1,2, --- ,n} were generated respectively from e; ~ N(0,1), e; ~ x2 — 1,
e1 ~ exp(l) — 1 and e; ~ U(-0.5,0.5), where § = 2.

For each of the four cases, we generated 3,000 random samples of incomplete data
{(z:,Y:),i=1,2,--- ,n} for n = 60, 100, 150, 500 and 1,000 from model (8). Based on
the simulation samples, we evaluated the biases, sample variances, estimated variance and
) and Var (¢

n,el) denote, re-

relative efficiencies for 52 o and 2. In more details, Bias(c2 O el
spectively, the average of 3,000 biases of & an’ o and the sample variance of 3,000 estimators
372; - In addition, \7217(82 el) denotes the average of 3,000 estimated variances, i.e. the es-
j =2,3,4 with 52 = [i;. Bias(52),

timators (fis— 04 — 126 ~2s2) /n, where fi; = n~* }: e,

Var (52) and Var (52) are defined similarly. Fmally, e(G3,62 ;) = Var (52 ,;)/Var (52) de-
notes the relative efficiency. Simulation results for e; ~ N(0,1), e; ~ x?—1, e; ~ exp(1)-1
and e; ~ U(—0.5,0.5) were reported in Tables 1, 2, 3 and 4, respectively. In additional
simulations, we considered the comparison of the mean squared errors (MSE) of the esti-
mators and founded that the results were similar to the comparison of the Var (an o) and
Var (52). To save the space, we do not present these results here.

We observe from the simulation results that the proposed variance estimator has
significantly improved the usual variance estimator in terms of the asymptotic efficiency

when the underline error has a skewed distribution.
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Table 1 Biases, variances and efficiencies when e; ~ N(0, 1)

n__ Bies(3h,) Bias(@) Var(62,) Var(8d) Var(6l.) Var(63) (62,524
60 -0.0081 0.0100 0.0346 0.0350 0.0308 0.0327 0.9892
100 -0.0048 0.0057 0.0200 0.0199 0.0193 0.0201 1.0077
150 -0.0131 -0.0066 0.0131 0.0132 0.0127 0.0130 0.9912
500 0.0013 0.0030 0.0041 0.0041 0.0040 0.0040 1.0001
1,000  -0.0007 0.0001 0.0020 0.0020 0.0020 0.0020 0.9983
Table 2 Biases, variances and efficiencies when e; ~ x% — 1
n_ Bias(32,) Bias(32) Var(32,) Var(3) Var(dl,) Var(3?) e(62,52,,
60 -0.0978  -0.0321 0.5597 0.8797 0.4608 0.8361 0.6363
100 -0.0410 0.0354 0.3771 0.5639 0.3078 0.5455 0.6687
150 -0.0144 0.0025 0.2206 0.3365 0.2122 0.3621 0.6558
500 -0.0093 0.0030 0.0744 0.1142 0.0691 0.1118 0.6517
1,000 0.0076 0.0084 0.0396 0.0568 0.0364 0.0575 0.6974
Table 3 Biases, variances and efficiencies when e; ~ exp(1) —1

n_ Bias(d2,,) Bias(2) Var(52,) Var(d2) Var(sl,) Var(52) e(6%,52,)
60 -0.0278 -0.0100 0.0953 0.1217 0.0735 0.1207 0.7835
100 -0.0165 -0.0005 0.0464 0.0757 0.0455 0.0724 0.6133
150 -0.0187 -0.0097 0.0360 0.0508 0.0316 0.0493 0.7087
500 0.0048 0.0104 0.0121 0.0167 0.0113 0.0169 0.7229
1,000  -0.0061 -0.0034 0.0053 0.0078 0.0053 0.0078 0.6812

Table 4 Biases, variances and efficiencies when e; ~ U(—0.5,0.5)

n  Bias(62,) Biss(32) Var(62,) Var(32) Var(32,) Var(32) e(52,32,)
60 -0.00170 -0.00028 0.00009 0.00009 0.00009 0.00009 0.9810
100 -0.00079 0.00007 0.00005 0.00006 0.00005 0.00006 0.9818
150 -0.00064 -0.00009 0.00003 0.00003 0.00004 0.00004 0.9926
500 -0.00006 0.00010 0.00001 0.00001 0.00001 0.00001 0.9974
1,000 -0.00001 0.00008 0.00001 0.00001 0.00001 0.00001 0.9967

In addition, using the same models and the simulated samples as above and taking
the nominal level o = 0.95, we conducted a small simulation study to compare the finite
sample performances of the confidence intervals for the error variance ¢? based on Ez,el

and G2, respectively. The coverage probabilities (CP) and the average lengths (AL) of
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the confidence intervals for o2 in 3,000 simulations were shown in Tables 5—8. From the
simulation results, we can see that the CP of the confidence intervals based on 372%@! and
72 all converge to the nominal level a = 0.95 as n is large enough. In addition, the AL of
the confidence intervals based on ’a\,zml are uniformly shorter than that of the confidence

intervals based on 52, which agrees with the results of Theorem 2.

Table 5 Coverage probabilities (CP) and average lengthes (AL) of the 72
and 52 based confidence intervals for o2 with e; ~ N(0,1)

CP AL
n a el C 33;,31 oa
60 0.909 0.915 0.6694 0.6894
100 0.917 0.926 0.5352 0.5451
150 0.921 0.929 0.4360 0.4413
500 0.941 0.945 0.2466 0.2474
1,000 0.950 0.948 0.1748 0.1751

Table 6 Coverage probabilities (CP) and average lengthes (AL) of the 52,
and 52 based confidence intervals for ¢? with e; ~ x? — 1

Cp AL
n G el 7 G el on
60 0.729 0.754 2.1563 2.8599
100 0.799 0.827 1.8781 2.4710
150 0.858 0.872 1.6068 2.0895
500 0.893 0.908 0.9717 1.2389
1,000 0.915 0.926 0.7207 0.9090

Table 7 Coverage probabilities (CP) and average lengthes (AL) of the 52
and 52 based confidence intervals for o? with e; ~ exp(1) — 1

CP AL
n Oael CH Gael A
60 0.793 0.811 0.9156 1.1476
100 0.866 0.862 0.7585 0.9446
150 0.874 0.874 0.6488 0.8033
500 0.906 0.917 0.4005 0.4892

1,000 0.926 0.920 0.2800 0.3401
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Table 8 Coverage probabilities (CP) and average lengthes (AL) of the Ei el
and G2 based confidence intervals for 0% with e; ~ U(—0.5,0.5)

Cp AL
n el oa Gnel a;
60 0.925 0.934 0.0366 0.0373
100 0.932 0.937 0.0291 0.0287
150 0.952 0.954 0.0236 0.0238
500 0.957 0.955 0.0130 0.0130
1,000 0.952 0.950 0.0092 0.0092

§4. Lemmas

To prove our main results, we need some lemmas. The leading term of the proposed
variance estimator is presented in a linear-quadratic form of independent random variables
in the first lemma. A central limit theorem for linear-quadratic forms of independent

random variables is given in the second lemma.

Lemma 5 Suppose that conditions (A1) to (A3) are satisfied. Then
— = d
VAT Xy X)) 2 (Bn — B) = N(0, 0%1), 9)
Wy, = llilaéx leni| = o ( 1/(4+5)) (10)
1 n
= 3 eni N N(0,02) for the s2 appearing in (A3), (11)
1 n
. Z pi+op(1),  §=23,4, (12)
= n
A= = Z éni + n‘1/2op(1), (13)
LSS
~ 1z - _
072L,el = ﬁ Zl(egn -0 2,‘-"3em') + Op(n 1/2)a (14)
3=

where p; = E(e{), j=2,3,4.
Proof Proof of (9): To prove (9), we only need to show, for any given [ € R” with
IZ]l = 1, that
— = d
Sn = U\/n(n™ X[y X)) /% (Bn — B) = N(0,0?). (15)

Note that
Sn=n"YUT (01 XT X ()72 E zie;.
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It can be shown that
Var (Sy) = o:"l = o2
and

™ Eln Y2 (n"1XT. X ) V2mses]® < On=1/? L
> B2 (07 Xy K)oz < On7M2 el = o(1),

where the conditions (Al) and (A2) are used. We thus have (15) by the Liapounov’s

central limit theorem.

Proof of (10): (9) and the condition (A2) imply that Bn—B = O,(n~%2). Further,
Ele1[**? < oo leads to max |e;| = op(nt/4+9))_ Tt follows that
<ign

wp = max |2] (B — Bn) + €i| = Op(n™"/?) max ||m]| + op(n?/4+9)) = o, (n!/(4+9)),
1ig<n 1<ign

which implies (10).
Proof of (11): Put
Ap=In — X(n)(X{n)X(n))_IXgn)’ En=(en,e2,°*,en)’s lo=(1,1,---,1)T,
5ij=1 ifi=j and 5ij=0 ifi;éj,
n
where I, is the identity matrix. Then Z eni = 1], ApEy,. Noting that X (n )1n = > z;, We
i=1

=1
have

n
Var ( > em-> = Var (17 AL E,,) = 021} Apl, = no?s2,
i=1

for the s appearing in (A3), and by the moment inequalities for the sums of independent

random variables,
=~ =1, T(,=1y%T -1 3
3 Elewi® = 3 B[ 316y — 0™ o] (0" Xy X)) ey

j=1
o = T 1
CZ{Z| i — N 1' (n~ X(nX(n)) xal E|ej|

—

.
Il
—

n 3/2
+ | 2 |65 — n7 el (T Xy X () 1%'|25(€:2‘)] }
32 (1+0n™2 max [|ifl® + Cn /% max J=:11°)

<C
=Cn(1+Cn~3/2 max ||xi(|)<0n.
1<ig<n

Thus (11) follows by n/(ns2)%2 = 1/(ns8)1/2 — 0 and the Liapounov’s central limit
n n

theorem.
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Proof of (12): Let A, = Va(Bn—B) = Op(1). We then have

1& 2 18 n1/25TA )2
- = TA
k3
Z 2 _on~ 3/226:1:TA +n2ZwTAzacZ
=1 i=1 i=1
Note that
3/2 - 1/2 1<
n32 Y ezl Ap =n7 max |z Op(1) - 07" 3 el
i=1 sisn i=1
=n"1/2 1r£1ax il Op(1) - Op(1) = 0p(1)
and that

n”? E Z]Arzi=n"" max llz:120p(1) = 05(1)-

i=1

Therefore, by the law of large numbers,
1 & o —15 2
=Y e =n"" > & +0p(l) = 2+ 0p(L).
N =1 i=1
Similarly, one can show that
12 :
E.Zlem=p,j +0p(1), j=3,4.
z:

We thus have (12).
Proof of (13): From (4), we have

1z A2 e2.
0=- - =y T
n :_4_31 Eni n El 1+ den;
It follows that
‘ Xn: |A| 1 zn:
& 1—|— |Alwn, n Enis

where wy, is defined in (10). Then from (11) and (12), we have

AL _ip
T3 Don n~7%5,0p(1).
Therefore,
A =n"Y25,0,(1) (16)

provided nt/(4+9) . n=1/25 5 0. Let 4; = Aen;. Then

masx |l = 0p(1). (17
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Using (4) again, we have

1z 12 e
0=— _ - ni

’ni;em n,=>:1 1+)\6m
1& 12 1 e3;

= = Cri — N\ — el + A2. _Sni
n 1.;1 " n zgl e 7,;1 1 +'Y'L

Therefore, combining with (12), (16) and (17), we may write
_ 12 - 12
A=[0"2+0p(1)] - }ZZ i+ 17 s 0p(1) - E;Iemls-

n
Using n 71 3" [eni|® = Op(1), 0< 82 < 1 and (11), we have
i=1

A= -2,

le

n 1 n
Z €ni + [n_l/zsnop(l) + n_lsgop(l)] =072 n Z eni t+ n—1/20p(1),
=1

i=1
which implies (13).
Proof of (14): From (5), (3) and (4), we have

2 7n A'n, e3

~ 12 € i
Tmel = n g +/\em - TL,E: em z—ll+)‘em
1 .n .2 n 22 n e;in
_né ”'__Eenz+?z;1+)\em

Using (11), (12), (13), (16) and max |Aeni| = 0p(1), we have
<isn

~2

Onel = (6127,1 -0 #3enz) + Op( )’I’L_l/zsn + Op(l)n_lsi

NgE]

1

Sim S
N

(efn- — 0'_2;1,36m') + op(n_1/2sn).

NgE]

1

ik

Thus (14) holds true by using 0 < s2 < 1. O
Let

II
i [\1:

n n
Z Qnij€ni€nj + Y Dni€ni,

where €,; are real valued random vanables, and the an;; and b,; denote the real valued

coefficients of the linear-quadratic form. We need the following assumptions in Lemma 6.

(C1) {ens, 1 < i< n} are independent random variables with mean 0 and

sup  Elen[HM

1<ign,n2l

<o

for some m; > 0;
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(C2) Foralll<i,j<n,n=l,an; = anji,

. .
sup Y |ans;| < oo,

and

L3
supn ™ 3 [l < o0
nzl =1

for some 72 > 0.

Given the above assumptions (C1) and (C2), the mean and variance of @, are given
as (e.g. [13])

HQ = Z amm'm,

’L_

4 3
UQ =2 zl Z anzjanzanj + Z bguo-'m + Z[ mz(:“‘( ) 30;111) + 2bn‘iafnii'u'£1.i)]
i=1g4=1

with 02, = E(e2,) and p®) = E(e5,) for s = 3,4.
Lemma 6 Suppose that assumptions (C1) and (C2) hold true and n~ O'Q c for

some constant ¢ > 0. Then

Qn—te 4, N(0,1).

7Q
Proof See Theorem 1 and the remark 12 in [13]. O

§5. Proof of Theorem 2

Proof of Theorem 2 Denote %, = n_lX(Tn)X(n) and
Qn=ElAE, —0 %u3- 1T AE, = Elzlam]e,ej+2bmez,
=17=

where
An = In - n_IX(n)E X(n)a E’n = (ely €2, ,en)Ta 1n = (1a 1, Tty 1)T

Our first step is to obtain the asymptotic distribution of Q,. To this end, we first
check the conditions (C1) and (C2). By using the condition (A2), it can be shown that

n
2|am'j|:|1—n_153 n mj|+n_12|mT2 $J|
=1 1]

<14n71 Z |27 S ;] < 1+ max ||z]? < C,

1<i€n
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and that
n n n T 3
n~! > |bm~|3 =n"1 > Hl - (n_l > wj) E;Ixi] /.L3(7_2‘
i=1 =1 i=1
<C+C max ||z;|® < C.
1<ign

Therefore, the conditions (C1) and (C2) are satisfied.

n
We now derive the mean and variance of @Q,. Noting that n=! > z;z] = £, and
i=1

n
n~1 Y 2]5 1z, = r, we have
i=1

n n
po =02 Y ans =02 (1 —n"tal8 1 z) = o*(n—1),
i=1

i=1
n n n 7
2 =1, Te—1, 2
Unig = 2. 2 (6 —n B Ty)
i=1j=1 i=1j=1
= 1, Ty-1 2 %~ Tyl Tyl
= ;(1-—271, ;X i +n Zla:ii)n z;z; Xy mz)
1= J:

n
=SY(1-n12]8 ) =n—r,
=1

3

n
'21 aly; = 1(1 —n 7l 5 e)?
= %

[1—2n"Y2]= e + n2(2] 2 )

i
s

=1

=n—2r+ O(n_l max ||aci||4),
1<ign

]

3t = et 3 [1- (n7! S o) B

i=1 i=1 j=1
n n T
= ,u,gor_4 > [1 - 2(71"1 3 xj) Z;lxi
i=1 j=1
+ (n_l > m:,) Il D (n > x1>]
j=1 j=1
= /“30.4 ns72v
n n n T 1 1
> bniGnii = — pzo 2 > [1 - (n_l > a:j) >, x,] (1-n" x{Z;lxi)
i=1 i=1 j=1
n n T
= - M30_2 > [1 — (n_l > :z:J) Enlx, -n lmff.‘.;lxz
i=1 j=1
n T
+n7t (n_l > a:j) otz - x{E;lmi]
i=1

(]

— — o2 [nst v+ O( max i) .

1<ig<n
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It follows that
2 _ oSN 2 4 N2 2 NN[2 [, _ o4
oQ = 2 z E OniiO + Z bnia + Z[anii(/M 3o ) + 2bnzanzzﬂ3]
i=1j=1 i=1 i=1
=2(n —r)o* + p2o 2ns2 + (ug — 30*) [n —2r+ O(n‘1 ax ||a;z||4)]
[N
o2 -2 2 |4
2uzo [nsn r+ O(lrgglﬂmzﬂ )]

=n(us — o* — p2072s2) + O(1) + O( max ||xi]|4).
1<i<n

From p4 — 0% — 207252 > ¢ > 0 and Lemma 6, we have
—c2(n —
@ —on 1) - NO, 1),
gh 2242 |14
\/n(u4 ot — uso~2%s2) 4+ O(1) +O(1r2%||xz|[ )
ie. ) 12 )
no= _, +op(n'’%) —o*(n—r
n,el p( ) ( ) d N(O, 1)

|/t =~ ho=?s2) + O() + O max )
By Cramer-Wold device, we have

no, ., —0
-\/_( n,el ) d N(O, 1)’
Vi~ ot — pfo=2s2

which implies (6). Letting bp; = 0, 1 < 7 < n and following the prove of (6), one can see
that (7) holds true. The proof of Theorem 2 is thus complete. g
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