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Abstract

In this paper we give. by using Hardy—type inequalities, characterizations of the logarithmic Sobolev in-
equalities for birth-death process and diffusion process on the line.
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§1. Introduction

Logarithmic Sobolev inequalities are an essential tool in the study of many problems (Sec, for example,
[1][2][3]). Recent vears, many efforts have been made to verify whether a Markov process to satisfy logarithmic
Sobolev inequality. Especially, [4][5][6][7] gave some sufficient conditions for general symmetric forms. The main
purpose of the present paper is to give a characterization for the logarithmic Sobolev inequalities for birth—dcath
process and diffusion process on the line. OQur main tools are Hardy—type inequalities with weights, and an idea,
due to Bobkov and Gdtze([8]), which transforms logarithmic Sobolev inequalities into Poincaré—type inequalitics
in an Orlicz space.

Let (E,7) denote a probability space, and L,(E,7) the usual Ly—space with norm || - ||,. Assume on it
there is a Dirichlet form (D.D{D)) with Markov generator L. We will say that (F,w. L) satisfies the logarithmic
Sobolev inequality if for all f € D(D),

Ent(/?) < 2D(f, 1), 1)

where Ent(f) = [ flog fdn — [ fdwlog [ fdm for f > 0. Denote « the greatest number in (1.1), which is called
the log—Sobolev constant.
Suppose ¥, N : R — R, the Young functions ¥(z) = |z|log(1 + |z|]) and N(z) = ¥(2?); the Orlicz space

Ly = Ly(E, ) consists of all measurable functions with norm

v =t {2 >0: / N(f/N)dr <1} < oo,

Define similarly the Orlicz space Ly = Lg(E, ). Then ||f2)l¢ = |If[I%-
In [8], (1.1) is connected to a Poincaré-type inequality in the Orlicz space Ly. Precisely, (1.1) is equivalent
to

= [ saal], < 2ps.p) (12)

1th—§-d<a§ d.
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In what follows. £ = R or E = Z;. To understand the method better, we begin with the birth—death

Process.

§2. Birth—death process

Consider a birth-death process a; > 0 (i > 1), b; > 0 (i 2 0) on E = Z_. Suppose that the process is posi-
o0
tively recurrent, ie. Y. pn 3. (i) ! =ocand p:= Y p, < oo, where g =1, pn = boby -+ bn_1/ajas---an.
n>0 i>n n=0
Denote T, = jn/u, the symmetric probability. Define

o0 oC n 1
6=sup}:7r,-<——log§:7ri>§;;,

n>li=n i=n

and

_ . o o n 1
6 =limsup Y u,-( - log_E pi) N —.

n—o0 i=n i=n =1 Kil;
Theorem 2.1 The logarithmic Sobolev constant « for the above process satisfies
187 < a < bt
. 1
with ¢; = éﬁ(l - ﬂ'o)[—' log(1 — 7'('0)], o =0{(1—+1- Tfo)-r‘).
Especially, o > 0 if and only if § < co.

To prove the theorem. we need some preparations.
Lemma 2.2 Let (F,7) be an arbitrary probability space, for f in Ly (E, ),

7= [ sar] <2050 @y
JE HN .
If fla = 0 for a measurable subset A with 7(A) > 0, then

(2.2}

v Ll Ll

Proof Denote ¥~! the inverse function of ¥, by the definition, we get ||1]%, = ||1]j¢ = (T~(1))~! < 1.
It follows from the facts || flly < Iffl2 < YIS |~ that [|f — f fdrllv < (| fllx + [1flh - i~ < 2)iflin- This
prove (2.1). To prove (2.2). using the Cauchy—-Schwarz inequality and the facts above, we have for f|4 = 0.

| [ san| =] [ f1acan| < VTR < V= AT DI

Hence,

it <[5 = [ e | [ sanfini <[5 - [ san] o+ TR,

Therefore,

N S P
Iflln < -~ 1—-7.-(A)]|f /deHN-
Proposition 2.3 Define

DU
*= BT

where F = {f € D(D): f(0) = 0}\{0}. Then we have

1. -
30 <a<3a(l—-V1-m)72.
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Proof Suppose (1.1) is fulfilled with log-Sobolev constant o > 0. So by (1.2), we get

7= [ sanl, < 20019, (23)

Thus for any f € F. it follows from Lemma 2.2 that

Conversely. suppose that & > 0. Vf € D(D), set f = f~f(0), then f € F and D(f, f) = D(f. f), f— [ fdr =
f— [ fdm. So by Lemma 2.2, we have

7= [ san] < 4iFi% < 214.9)

Hence by (1.2), we get a > 5@, which completes the proof. O

In light of Proposition 2.3, we need only to estimate &. To this aim, the following Hardy—type inequality in

the discrete setting is useful (cf.[9] Appendix). Let u;, v; be two positive sequences on £. define. for f(0) = 0.

2
IA12 0
fela(v) “Af”%z(v)

where Af(i) = f(i) — f(i —1){(: > 1) and for w = w or v, |]g|}L2(w) Z wng?(n), La(w) = {g: lighLow) < 00}

and

A=

@l’_a

B = sup || In.c0) | 2.5 (u) Z
n>1 =1

Then B< A< 16B.

Using the same argument on R as in {8], we can have the following natural generalization to the Orlicz spaces
for discrete settings. The proof is similar to that of the case on R ([8] Corollary 5.2), so we omit it.

Proposition 2.4 Let Ly(E,n) the Orlicz space defined as above. Define A and B with || - [|,(4) replaced
by the Orlicz norm || - ||x. Then B < A< 16B.

Proof of Theorem 2.1 Since ||f2|ly = ||f||3;, we have

B(n) = Mmooy lly = 1/ (m{[m 00))™).

Set, for 7 > 0, u; = m;, and v; = m;a;. Then for f € F, D(f,f) = HAinz(v) and || f2|lg = || fli%. Hence by
Proposition 2.4 and the definition of &. we get
m — n 1
sup 3(n) Z - <a™ ! <16supB(n) 3 —

n>1 n>1 i=1
Thus by Proposition 2.3 and Lemma 2.5 below, we arrive at the first assertion. Then the second assertion follows
easily. [J
Lemma 2.5 Tort >ty > 1, then

ct

ST o (24)

for ¢ = logto/to.
Proof The first inequality in (2.4), ie

w(%):é—tm-(ufé—t) <t,

ct
) < e llop
log <1+~logt) <c logt



will follow, for t > to. from (denote v = ¢ 1)

t
- —=—-12>0.

7 log(to) -

t
If set o(t) = 1" — ———— — 1, then ¢'(¥) = 71 — — ’
et ol y log(to) o) = ~log(to)
o(tp) > 0, ¢'(t) > 0. This proves the first inequality. The second inequality in (2.4)

\p(l—c%)—%l g(1+1—02—t)>t
can be read as

14 22 572
logt

and follows from 2¢'/2 > log t, which. however, is always truc for ¢ > 1. Thus Lemma 2.5 follows.

Corolllary 2.6 Set

W)= pn) T i

i>n+1

suppose that the limit v := lim =, exists and the limits involved below exist.
n—oo

(1) When v =0, then o > 0 if and only if

Sopi ~log Y i

I i>n i2n
im < 00
n—oo Hn/Gn
(2) When v = oo, then o > 0 if and only if
| r 108 fir, ;
Jim (—p1n log 1 )21 e <
(3) When v € (0, o0), then a > 0 if and only if
. n
nli-nc}o /an‘gl HiQi <% -
and
lim ——*2 log fin <
n—oo Ay

O

so we can choose v = 1o/ logts > 1 such that

(2.8)

Proof Denote &, = Y fin, then &, decreases to zero. Hence by Stolz’ theorem, § > 0 if and only if the

i>n
limit of the following cxpression is finite

n+1
-2 —log >omit Z——IOgE i
i=1 HiGi i2n+1 i=1 HiQi i>n

Eri1— &t
=:I(n) + Iy(n) + Is(n) + Is(n),

.97 .



where

no1 1‘; i
=5 A s £
i>n+1
=Y fin ) log(1 + n),

i=1 M

1 L p
b =( = w)(E o) tos (<5—) = b,

i>n+1 i=1 i i
i>n+41
R —pn log >Z Hi
- izn+l
L= ¥ w)lg T m=17"
i>n+l i>n+1 Hn+10n+1
:[, pilog >E e
i>n+1 i>n+
Ii(n) = = = T l3(n).
Hni1Gn41

(1) When v = 0, then it holds that p,/pp+1 — 1. Hence the limit for J3(n) may be writen as (2.5). Notice
that n log(1+1) — 1 as t — 0. the limit for I; (n) reduces to

lim i E—
n—0 (izg-'»l g ) ( 12:1 ﬂ'za'1)
which. by a criterion in [4], can be derived from (2.5).
Since I3(n) (resp. I1{n)) is dominated by I4(n) (resp. I3(n)), then a > 0 if and only if (2.5) holds.

(2) When v = oo, then it holds that g, / >~ p; — 1. Thus we can deduce (2.6) from Theorem 2.1 and the
i2n

definition of § directly.

(3) When v € (0.00), then I;(n) and Ir(n) (resp. I;(n) and I;(n)) dominate each other, whose limits are
finite if only if (2.7) (resp. (2.8)) holds. O

Example 2.7 Consider the birth-death process a; = 4, b;—; = ip (1 > 1) with p € (0,1), then v = p. and
by Corollary 2.6 (3), this process admits the logarithmic Sobolev inequality.

n

Example 2.8 For a, = n, y, = /\— then ¥ = oo, by Corollary 2.6 (2), direct calculus shows that

—pin log pn > const - A"logn/(n — 1)! a.nd Z LI Yo (k= DIYX* > (n = 1)1/A", so the desired limit is

- HECK k=1
infinite. Therefor the log-Sobolev constant a = O

But, if we change an but g, remain stable, a same calculus leads to that @ > 0 if and only if lima,/n > 0
(provided the limit exists).

Example 2.9 For 8 > 1, let yu; = i~?, a; unposed, this is the v = 0 case, if choose a; bigger than
i2log(n + 1), then a > 0 for all 8 > 1.

§3.  Diffusions on the line

d
Consider the diffusion operator L = a(m)—d—2§+b(m)—— on R. Assume that a(z) is strictly positive, and denote

d:

7y = f_oco a—(%exp[C(r)] Zy = [y (Zx) exp|C(z)], where C(z) = (t;dt Suppose that the diffusion is
non-explosive

* oC(y)
d:z:e"c(")/ € dy < oo, - 3.1
/R e (31)
dx
and positively recurrent i.e. Z := Zy + Z < co. Set p(dz) = —2—‘% exp|C(z)].
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Theorem 3.1 For the diffusion defined above, set. for x > 0,

z o LC(u) oo ,C(u)
() = — ~C(y) € € au/z
67(x) /0 e dy/z ol dulog (/x ) u/ ),

and for = < 0,

~ o . T oCu) 0 ,C(u)
5 (z) =— / e C(J)dy/ ) dulog (/ mdu/Z).
Jx o =00

T

Then L satisfics logarithmic Sobolev inequality (1.1) if and only if
limsup 6% (2) < oc.
r—300

More precisely, it holds that

-1 -1
c1 (sup 6~ (z) +sup 6"'(1‘)) <o< cz<sup &6~ (z) + sup 6+(:r:))
<0 >0 <0 >0

. 1,2 Z  Z RAS \/—‘——2
thhq_ga<-z—2-/logz—2+z—2/log—zz) s =121 = \/(Z1V Z5)/Z) .

(3.2)

(3.3)

For the proof of the theorem, we quote the following Hardy-type inequality with weights in [10]. which

extended to Orlicz spaces by [8] (Corollary 5.2). Let v is a Borel measure on [0, c0], denote by p,(z) the

absolutely continuous component of » w.r.t. Lebesgue measure.
Theorem 3.2 Lct A be the optimal constant in the inequality

Il < A /0 fa)du(z),  feC, f©)=o.

Then B < A < 4B, where
T dt
B =sup|I / _dt
a:>p0 u II’OO)H\I, 0 pu(t)

where by definition

Hizooylle = 1/@_1(_”([;_0@))'

Since w{(—~oc.0)) = Z1/Z > 0, then by Lemma 2.5, we have

Sl 00)) og (. )] < Mmooyl < el ([, 00) log ([, 00))]

z

_ Z
th ¢ = — —.
with ¢ Z/]og22

Proof of Theorem 3.1 Suppose o > 0, or equally, (1.2) holds with d > %a. Set i = fli—ec0-

fa = flig.y- then apply (1.2) to fi, fa to get
2 3 0
= [arl <2 [ aw)s@rar),
2 3 o0
2= [ retn] <2 [" o) (2enco)
Hence by Lemma 2.2,

. — 0
Il < 2(1-VZTZ) " [ a@r @),

10ty < 21~ VATE) " [ atw)saanta),

form which we can deduce the second inequality in (3.3) by Theorem 3.2 and (3.4).



Conversely. since (1.2) remains same if f is replaced by f + constant, we can assume f(0) = 0. Hence

f=fi+ fo. and by Lemma 2.2,
fo— '/fzdﬂ’”lv)z

Ir- [ salf, < (Jn - [ e, +

| [ 2 2 2
<a(|laf, +[zl,) <s(lal, +2le)-
Thus by Theorem 3.2 and (3.4), we obtain the first inequality in (3.3). Then Theorem 3.1 is proved. O

Remark Recently, Miclo proved in [11] the logarithmic Sobolev inequality for the birth-death process by

a similar method.
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