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Abstract

This paper is concerned with there procedures to derive prior distributions with knowledge
of parameters in terms. By means of the entropy inequality, we simplify the proof of Zellner
(1984) and get the uniqueness for the maximal data information prior, A generalized ma—
ximal entropy prior is proposed, which improves the olassical maximal entropy principle in
some respeots. An intermediate solution for the [maximal relative prior is developed, from
whioch the maximal relative prior densities for & great number of distribution families
are presented.

§ 1. Introduction

In Bayesian stabistics, it is often desirable to have a posterior distribution fo
reflect the information in a given set of data. To achieve this objeotive, it is
necessary to employ a prior distribution that adds little information from the sample. '
Much work has been done to provide procedures for formulating such prior distribu-
tions, For example, Zellner (1984) presents the maximal daba information prior
(MDIP) which bears the idea that it provides maximal prior average data infor—
mation, with the information being represented by Shannon’s entropy. In the prese-
nt paper, Zellner’s [1] main result is more simply proved by means of the ent~
ropy inequality and we find that if MDIP exists, it must be unique. Further-
more, we present two tentative rules for the choice of priors——the generalized
maximal entropy prior (GMEP) and the maximal relabive prior (MRP). In compa-
rison with the olassical maximal entropy principle (of. Kullback 1953), CMEP
pays specioial attention to the obvious connection between the sample and the
parameters in every specific statistical problem. Very similar to MDIP, GMEP
oan be derived easily. MRP is just Lindley's rule (of. Lindley 1961). It seems
0 us that only result on it in the earlier liferature is that its asymptotio
spproximation was Jeffrey’s rule (of. [8],[4]). Since in Bayesian approach, the
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Aarge sample problem is not sensitive fo the ohoice of prior distribution (of [3];‘
[4]), it is of significance to study MRP for the small size sample. Although it is hard
to derive a MRP distribution for a general model, we develop an intermediate.
solution, from which we get the MRP's for a great number of distribution families,for
example, location parameters family, scale parameters family, efo, Much different from
MDIP and GMEP , MRP is invariant to any differentiable 1—1 transformabion either
for samples or for parameters, which also leads in an indirect way to derive MRP for
some special distribution families, especially we get the MRP for Weibull distri-
butions, In deriving MDIP and GMEP, only proper distribution densities can be
chosen (of. Theorem 1, 2), For this reason, Zellner (1984) introduces an artificial
restriotion which keeps the parameter space bounded. However the MRP densities may.
be improper (of. Theorem 3). Since improper prior seems necessary for some common
distribution families (for example, normal distribution), this restriction would bring .
some convenience in practice.

The plan of the paper is as follows, Section 2 discusses MDIP. Some resulfs on
GMEP are reported in Seotion 3. Seotion 4 deals with the MRP. Finally, we list the
above three kinds of prior densities for some wellknown distribution families in a.
table.

Before end ing this section, we explain some notations to be used in this paper
Suppose {p(y|8), € 6} is a distribution family, ¢ is a sample random variable (or
vecotr) whioh distributed, for some §€ 8, acocording to the probability density p(y|@).
with respeot to a Lebesgue measure, and @ is the parameter space which is a subset oft
some Euclidean space., We always assume that #*(8), x, (), and =,(§) indicate the
MDIP,GMEP, and MRP densities (with respect to Lebesgue measure) on © respective
ly, and o (f) indicate any prior density. Consequently, =.(8|y), ».(6]y), =(8]y) or-
w(8|y) and p*(y), p.(y), p(y) or p(y) indicate corresponding posterior densities and
marginal densities. For simplicity in notation, we shall not generally attempt to be
specific in desoribing the densibty functions. Thus, p(«) denotes the density for random
quantity # and p(y) that of y without any suggestion that & and y have the same
distributions. All densities we menbion are proper (i. e, its integration on total space
equals 1) unless deolared specifically.

§ 2. Maximal Data Information Priors.

Assume § has the density w(§), its Shannon’s entropy is defined fo be
H(8)=— |w(8)log w(8)dl.
Similarly, the cenditional entropy of y relative to @ is
H(y|0)= - [p(y|8)logp(y|0)dy @
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Zellner (1984) set — H(#) as the information measure in x(#), and — H (y|8) as the
information in the data distribution p(y|@). Then the prior average information in
p(y|d) is
I-—[H(y18)% §)d8=[x(6)d8 [p(y10)108p(y10)dv.
Consequently, this average informabion minus the information in the prior (@) 1s
Gi(m) = —H[H (y{0)]+H ()

~ [=()d8 [p(y|8)102p (416) ay~ [w (@) log m(8)a0. @

Definition 1. (Zellner 1984). A MDIP is a density function on @ which
maximizes G4(m), defined in (2).

Theorem 1. (Zellner 1984). If there exists a constant ¢ such that

w*(8) =c-exp{—H(y|6)} (3)
is a probability density funotion, H (y|d) is defined in (1), then x*(#) is the unique
MDIP.

Zellner {1] proved Theorem 1, however didn’t get the uniqueness. By means of the
well-known entropy inequality (Lemma 1, its proof is on page 15 of [2]), Zellner’s
proof can be simplified and the uniqueness follows subsequently.

Lemma l. (Entropy Inequality). Assume p;(x) and ps(s) are two probability
densities on R". Then

P1<9?)
IP1(w)Iog (@) dw=0

with equality if and only if p;=p, a.s..
Proof of Theorem 1. From (3) log #*(#)=1loge— H(y|#).For any density w(4),

via Lemma 1,

G () = [w(9) [log #*(6) ~log o—log =(6)1d8
= —logc—J‘m: (@) log %E?T))d@ <-loge
with equality if and only if # =a* a.s.. Hence
Gy(m)< —logo=G4(xm")
i.e. w* is the unique MDIP.
Some MDIP densities are presented in Table 1, which can be got via (3) easily.

§ 3. Generalized Maximal Entropy Prirs

Edwin Jaynes said in his letter to A. Zellner: MDIP can be recognized as
arestrioted maximum poinf, i. e. under the restriotion E[H (y|6)] =6, choose x(#) such
that H (@) attains its maximum.In this view, MDIP procedure also can be understood
as a speocial kind of maximal entropy principle. In fact, MDIP is only ruled by p(y|4),
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and dosen’t depend on the sample ¢, and p(y|@) represents the relationship betwesn g

and f, which is expliot for any parameter statistical problem, The maximal entropy

principle chooes w(#) which maximizes H () (i. e. § has the maximal uncertainty), yeb

pays no aftention to the p(y|f).We believe it is reasonable that for different p(y|6),

¢ bas different rules and effects. Hence it is more reasonable we should choose x(8) such

that contingent entropy H (y, #) attains its maximum, This @ (8) is called GMEP.
Now the joint density of (y, 6) is w(8)p(y|8), so

H(y, 6)=H (@, ) =~ [#(6)p|6)1og % (6)p(y|6)1dy 48

—— [a(6)36( p(y 18108 p(y16)dy ~ [ (9 10g w(8)d0
- BLH (y|6)]1+H ().
To stress the effect of prior, let
G2 () =E[H (y|0)]+H(). C))

Definition 2. A GMEP is a density function on € which maximizes G.(x),
defined in (4).

To compare (4) and (2), only difference between Gy(w) and G4(w) is the sign
before E[H (y|@)]. From the proof of Theorem 1, Theorem 2 follows immediately.

Theorem 2. If there exists a constant ¢ such that

o (8) =c-exp{H (y|6)} | (5)
is a probability density function, where H(y|#) is in (1), then x,(d) is the unique
GMEP. '

Corollary 1. Ifz=Ay+b, Ais a non-random non-singular matrix and b is a
constan bt vector. Then the GMEP for § associated with p(y|f) is identical to that with
p(z]9).

Corollary 1 indicates that GMEP dosen’t depend on the unit of measurement for
samples. This property also holds for MDIP (ef. [1] Theorem 2). The proof of Corollary
1 is trivial., (5) tells us that GMEP can be got from MIDP without any more caloula-
tion (cf, Table1).

§ 4. Maximal Relative Priors

Aoccording to Zellner's (1984) view, G4(w) = —H[H(y|0)] —[— H ()] which is the
difference of the two information quantities: — H (@) is the information for § in x(8)»
and —E[H (y|6)] is the prior average information for y in p(y|d). In other words,
Gyi(w)=H(§)—~E[H(y|0)], whioch is the decrement in entropy, but H(§) is the
entropy for § and E[H (y|6)] is the prior average entropy for y. Naturally, perhaps we
bould consider the decrement in the entropy for § after sampling ¢, which is

Go(w) = H(8) - E[H@|9)]. . ©
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Sometimes Gs(w) 1 called the information for parameter 4 in sample y (of. [2]). Now
2 @) = [p(y18)m(6)d8, @ (8]y) == (®)p(y|0)/p(y), thus

Ga(w) = [p(y)dy[(16]y)1og =(8]y)d8~ [w(8)log (6}
= [ (8)de[ p(y18)108 p(y|0)dy~ [p(o) 10w p(v)y

g
= [Ja@py10) 108 2L ay a0
which 1s just Lindley information (of. [8]) and it is a suitable measurement for the
relativity between y and 4.

Definition 3. A MRP is a density function on © which maximizes Gs(x), defined
in (6).

It seems very hard fto get an explioi expression for MRP like Theorem 1 or
Theorem 2. Theorem 3 presents an intermediate solution for MRP, On the other hand,
the MRP may be improper, i.e., ite integrand on parameter may be infinite, this is
much different from MDIP or GMEP,

Theorem 8. If there exists a prior =,(#) (may be improper) for whioch

(|8 o
_[P(ylﬂ) log IX0) dy=o0 )

where p,(y)=Im(9)p(y|0)d0, ¢ is a positive constant. Then for any proper prior

density m,
Gs(w,) >Cs(w) 8
with equality if and only if

prl@) =p(@) = [w(®)p(y|6)d8 as.
Proof. Ifw, is improper, Gs(avr)=cfw,(a)d9=oo, (8) holds obviously. For proper
o, Gs(m,) =0, henoe if x () 1s a proper density,
Ga(m) — Ga(@) = [om (8)8—Gu()
= [Ja @30 w10y108 2HLD- 3y a9 [[mcorp(y 07108 ZUL) ay ao
~[[=@)p(v16)108 LY ayas

- 1 ,JZL’L)_d
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Lemma 1 insures the right hand side of above expression non negative and
equals zero if and only if p,(y) =p(y) a.s., Hence, it complebes the proof.

Example 1. Let p(y|0) =p(y—0), —co<y, §<oo. Then m,(f)<l, Now
2(y) =Jaﬂr(9)p(y—0)d00c1,



and (p(y—8)log py—6)dy =, hence (7) holds.
Example 2. For
_1 . (y 1
p(y|6) = —6—10(—6-), 6>0, ar,(@)oc-p-,

simple integration shows p,(y)ocl/|y|, hence

frotons 523 [5-(3os £f12 o

=fp(t)log[itlp(t)]dt=o.

Now we treat Example 2 in another way. For simplioity in argument, assume y>
0. Lot y=¢*, §=¢%, then

=p(™) ap(z—u).

—g-tp(w-uy | OY.
p(z|u) =e7p(=™") | 2
From Example 1, &,.(u)ocl. Thus

e (9) = (u(8)) S| oc 2,

whioh is the same as that we derive directly for 9 just mow. It implies some invarianoce.
1o faot, such invariance holds for MRP genirally, which is prasanted in Corollary 2.

Corollary 2. Assume that {p(y|6), € 8} is a distribubion family, =,.(f) is its
MRP. If y=y(z) and § =60(u) are two differentiable 1—1 transformations for samples
and parameters respectively, and p(z|u), u€EU={u: 6(u)E€O}, is the induced
distribution density, m,(x) is the MRP for u associated with p(z|w). Then

(1) =, (6 (w))J (u) ' )

whene J (#) is the Jacobian of the transformation 6 =6(u).

Progf. We only need to show Gl is invariant, i.e., for any density w(8)

[Jptelua iy 10g ZEL. doau= [[py10)(6) 1og BUD- ayap.  (10)

Now p(z|u) =p(y(2) |6(%))J (2), @ (w) =(8{w))J (4), and p(z) =L’P(ZIU) w (w)du =
Jp(y(z) I9(16))J(z)ﬂr(9(u))-7(u))d“=J(Z)J‘ p(y(2) |0)w(0)dd=J () p(y(z)), hence the
left hand side of (10)

=H p(y(z) |0 (u))w(O(u))log[ P %{;gﬁ?gi“) ]J(z)J (u)dz du

=HP(?] |8)a (6)1og ﬂg—%ﬁ—dy df =The right hand side of (10).

In fact, we needn’t confine specifically to the densities p(y|@) and x(8), with
respect o Lebesgue measure in the discussion for MRP aince (3 dosen’t depend on the
dominating measures. It can be shown easily that MRP is also invariant for change of
the dominating measures. Unfortunately, this property fails for MDIP and GMEP.
Moreove:z the invariance presented in Corollary 2 also fails for MDIP and GMEP in
general.
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Example 8. p(y|0) =p(y—g(#)), g is a differentiable 1—1 function, For this
distribution, it is not explicit how to derive =,(d) by (7) directly. Howerer, (9) offers
an indirect way to do it. Leb u=g(#),then p(y|u) =p(y—u), hence m,.(u)ocl, From (9),

49
dd
The siiuation is more interesting, however, if the parameters can be derived

W'(G)OC

into Ywo parts, namely the conditional density of sample is p(y|6, ®). In this ocase,

p(y) may equal to infinite when & is improper, and (7) is imposgible consequently. We
try to untilize Lindley:s (1961) ideas to treat this question. Assume x (6, @) is a

prior, then

w(8) = [(6, p)ap

W(ﬂly)=Jw(0, oly) dp= P(?/|9,p¢<)z)/;r(t9, (p)d(p

If we can say that y gives no information about ¢, it should imply = (8)=w(8|y)

Hence
N _(pyl8. @)=, @) . _{ pw|b, @)w(dm(w|d)
) = [Pt do= % () o
=fp(y|0, p)w(p|0)de. (1)
In this case, if theve exists w (8, @) =w (@)= (p|8) for which
[, oyog 222 4y (12)

where ply) is defined in (11), then Theorem 3 implies that this =(#, @)
maximizes Gs(m) over the set P= w(f, ¢): a(f)=x(0|y)}, we call it a generalized
MRP (GMRP).

1 1
" | s e . 2\ ——(y—u)?
Example 4. For normal distribution p(ylu, o) = N exp{ 57 (¥ —u) }
almosb all objective Bayesian procedures approves the marginal prior for mean should
be w(u)ocl and that for variance be or(o‘)oc%. From the intuition, a single normal

variable gives no information on variance if the mean is uniformly distributed over
the whole real line. Thus we may assume (o) =w(c|y). Furthermore, it is easy to
oheck bhat o (u|o)ocl satisfies (12). It means that GMRP is aw (u, a)oc%,

More general for p(y|u, o) = p(ﬂ;—u>, similav argument leads to GMRP« %,
which seems not reasonable, but coincides vﬁth MDIP.

Example 5. For Weibull distribution p(y|a, n)=—2 45~ exp(—(—g/-)a) for y>
7 7

0, with parameters a>>0, >0, let y=¢? a=%- and 7=g%, then
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Table 1

20| MDIP a*(6) ' GMEP w,(6) MRP &,(6)
1. Normal
la. N(u, 1) ocl ocl ocl
1b. N (u, o?) <l/c =54 ocl/o
le. N(u, o?) ecl/a o (e<1/0)

2. Location parameter
2a. p(y—6) ocl ocl ocl

d
2b. p(y—g(é)) |
3. Scale parameter
3a. —;—p(y]&) «1/8 wcf wcl/6
L) -1 n n

3b. Yo Un 6

(11:11 ﬂ‘) P (91 » ' 9») l/g 9‘ OC’:LI 94 001/.1.:‘[1 (3

8. —2(31y) oo | 3|1 |3

30— p(y/9(6)) |*|
9oy q(8)

4. Location-Scale parameter

43, —P ( yau) <l/o co (ec1/0)

. —op(3H-w) e[| b

5. Uniform distribution
U0, 6) ocl/8 ocf : o<1/
6. Exponential

—;-exp(—-y/e) «l/6 ocf ocl/8
7. Log-normal
1 1 o=do 1
—_— 3/ e —— =
s exp{ — (Jogy—logH)?/ oc (oc eg)
(20%)}
8. Exponential family wcoxp(f(6)k+s+q(8)) ccexpl ~{F(MNE+5+g(8)}]

exp {f(6)k(y) +s(¥) +q(6)}

9. Weibull distribution
9a. ay®-lexp(—y*) ocl/a
9b. - yrtexpl - (y/m) 1

ocl/n
(a is a congtant)
2 ya-texp(~ (y/n)® (o L
9c - vtexp(= (u/M)) \“an)

1 (:v—u) _ o-uya
p(zlu, o) = — oxp {— oxp(—e )
which is a location-scale parameters family. It follows Corollary 2 and Example 1, 2
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that m.(a)oc-}? if 7 is given, and ar,(n)oc%- if @ is known, Furthermore, if both a and

y are unknown, the GMRP ocal?.

§ 5. The Priors For Some Distribution Families

We list some MDIP, GMEP, MRP (or GMRP) densities in Table I,

Because both of MDIP and GMEP must be proper, we have to put some
restriction in calculatign. For example, for normal distribution in line 1a of Table 1,
we should confine u€ [ —a, 4] for some 0<a, b< oo, Iﬁ practice, one can choose @ and b

sufficiently large empirically, then o*(u) =, (u) =-%I—)— Tlra<u<d)

In Table 1, the column of MRP oontains some parentheses, These parenthetical
entries are not real MRP. They are GMRP merely, whioch can be derived by argu-
ments similar to that in Example 4,

All g appeared in Table 1 are differentiable 1—1 functions. Furthermore, it is
positive in line 3d.

In the Exponential family line of Table 1,

F=[b@pyl0)dy, §=[s@plo)d.
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