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Abstract

Consider a dependent bivariate Weibull model whose survival function is F(zj,z2) =

exp{—[(z}/a/ﬂl)lﬁ + (z;/a/ﬁg)l/ﬁ)l/‘s]&} with z; > 0,6; > 0,(i=1,2),a>0and 0< 6§ < 1.
‘Based on the data of both components and serigs systems experiments under type I censoring,
estimators of the unknown parameters 81,8;, @ and é are given, their asymptotic properties are
discussed also. A simulation result is given, too.
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§1. Introduction

In reliability study and life testing, the Weibull distribution is perhaps the most widely used
lifetirne distribution model. For statistical analysis of multivariate lifelime distribution, indepen-
dence between components is assumed usually. However, in practice, there exists dependence be-
tween components very often, whic.h shows that investigating dependent multivariate lifetime distri-
bution is very meaningful. In 1979, Larry Lee [2] proposed a dependent bivariate Weibull distribu-
tion whose survival function is F(z1, z3) = exp{— [(z}/a/ﬁl)l/" +(r§/a/02)1/6]6},(zl >0,z3 > 0)
with unknown parameters §; > 0,0, > 0,9 > 0 and 0 < § < 1. We henceforth refer to it as
LBVW (6,605, ,8). Hougaard (1986) [1] showed that LBVW is indeed a meaningful physical
model. If conditionally given the random factor Z = z, the components lives X; and X, are in-
dependently Weibull distributed with failure rate 201_1/61:}/(“)_1/@6) and zﬂgllﬁx;/(c'&)_l/(atS),
and if Z has the positive stable distribution with parameter §, given by the Laplace transform
E[exp(—sZ)] = exp(—s°®), then the unconditional distribution of (X, X3) is LBVW (64,62, «, §).
It is easy to see that X; and X3 are independent if and ouly if dependence parameter 6 = 1. The
complicated form of the density of LBVW poses the major difficulty for statistical inference. In
this paper, both component and systemn (series) life test data under type I censoring are used to
do statistical inference. In section 2, some properties of LBVW are given. In section 3, estimators
of (61,02, a, 8) are proposed, and the joint asymptotic distribution of those-estimators are derived.
In section 4, a simulation result is given.

*Suppoyted by Jiangsu Provincial Natural Science Foundation.
Received 1995.Feb. 14.

+ 195 .



§2. Properties of LBVW

Suppose that (X, X2) follows LBVW (81, 8;, a,8). Then (X, X32) has the following properties:

1. The marginal survival functions of X; and X, are F;(z;) = exp(—-z;/a/ﬁ,-) (i =12),
respectively.

2. (X1,X2) can be represented in terms of independent random variables as follows: X; =
65U*0S* and X, = 05(1 — U)**S*, where U and S are independent, U ~ U/(0,1) and S has a
mixture of gamma distributions with density function h(s) = [(1 — 6) + séle=*, (s > 0) (see [2]) for
the proof). '

3. Let T = min(X1, X2) and D = Ix, <x,)(¢1,22). Then Fr(t) = exp(—t!/*/f7), where
Or = (91_1/5 + 9;1/6)‘6, and T and D are independent. In fact, by property 2, P{T > t|D =
1} = P{min(X1, X3) > t|X1 < Xa} = P{X1 > t|X1 < Xa} = P{OSU*S* > t|{U < 03°y(6)/° +
9;/6)}. Denoting g = 0;/6/(6’}/6 + 021,/6). It follows that P{T > t|D = 1} = p~P{63U**S* >
t,U < p) = p~t [ P{O5U**S™ > t]U = u}dFy(u). Computing shows that P{T > t|D = 1} =
exp{—t/*/07} = P{T > t}. It can be proved by the same method that P{T > t|D = 0} = P{T >
t}, which implies that T' and D are independent.

4. From property 2, it follows that In(X,/X3) = adln(U/(1 — U)) + aln(6,/62), which
implies that In(6,/8;) follows the logistic distribution with location parameter a In(6,/62) and
scale parameter «é, since In{U/(1 — U)) follows the standard logistic distribution.

5. Using property 2, we obtain that, for ky > 0 and k3 > 0
E(XF, X5?) = 6751655 D(Saky + 1) (Saky + 1)T(a(ky + ko) + 1)/T(Sa(ky + k2) + 1), (2.1)
from which it follows that E(X;) = 67T (a + 1), D(X;) = 62°[T(2a + 1) — T%(a + 1)], (i = 1,2),
Cov (X1, X3) = (6162)* [T} (b + 1)T(2a + 1)/T(2a6 + 1) — I'2(a + 1)].
6. Differentiating both sides of the formula (2.1) with respect to k;, one gets
E(XF x¥1n X))
= 0;"“ a(ln91)6’§"‘"l“(6ak1 + 1)F(50k2 + 1)F((¥(k1 + kz) + 1)/F(6(¥(k1 + kz) + 1)
+ 9{""6’;""T"(6ak1 + 1)5(!F(6(!k2 + l)I‘(a(kl + kz) + 1)/F(6(¥(k1 + kz) + 1)
+ 0551052 T (Scvky + 1)T(Scvky + 1)1 (aw(ky + ko) + 1)a/T(Sa(ky + ka) + 1)

— 07%1 0552 (Sccky + 1)D(aks + 1)T(a(k + k2) + 1) (8a(ky + ka2) + 1)6a/T(a(ky + ko) + 1).

(2.2)
Settin k1 = 0 in both sides of (2.2) and simplifying it one gets
E(X521n X)) = o(ln 61)05% D(aks + 1) + 6552 (1)6al (ks + 1)
+ 055 T (ks + 1) — 05%26a T (aky™+ 1)p(Scxka + 1), (2.3)

here 3 is digamma function whose definition is ¢(z) = I'(z)/I'(2), and whose some related values
are (1) = —y,9'(1) = #2/6,T'(1) = I(1), T”(1) = ¥'(1) + ¢*(1), where v = 0.5772... is the
Euler constant.

Setting k2 = 0 in the expression (2.3), one obtains E(In X;) = (In#; — y)«. Similarly, the
following holds: E(In X3) = (Inf2 — y)a. Repeating the above method, one obtains D(In X,) =
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272/6, Cov(In X1, X2) = o?wx%(1 — 62)/«, and Corr(lu X1,In X3) = 1 — 62

§3. Estimators of 0;,0,, a and §

Suppose that (X1, X3) follows LBVW (64, 6;, o, 8), and X; and X are lifetime of components
A and B, respectively. Under type I censoring, consider life test of /; units of component A
and Iy units of component B independently, respectively. The truncated times are X9 and Xgq
respectively. Denote [; = Iix,<x,.y Vi = Xili + Xio(! — L) = min{X;, Xi0),( = 1,2). As the
results of the above tests, we get two samples: (Vi;, [1;)(i =1,..., 1) and {Vo;, Ip;}, (i = 1,...,12).
Let K; = Zf‘zl Lij, (i = 1,2). Besides componets life test, consider life test of two-component series
system also under type I censoring. Suppose that life test with m prototypes of the series system
is conducted, and the truncated time is Ty. The test of components and the test of systemn are
independently conducted. Denote Iz = Iir<r,) and Vr = Tlr + To(1 — Ir) = min(T, Tp). So
we obtain sample of size m {Vr;,Irj},(j = 1,...,m). The another version of this sample is
Tay £ Tz) £ ... < Tivy £ To, where N = Z;"zl I, is the number of failures occuring in [0, To).
For those observable failure times T(y), ..., T(y), we define failure indicator D(;) = 1(0) if the j-th
system failure is caused by the failure of component A(B)(j = 1,2,...,N).

For the component X the likelihood function of {Vi;, I }{i =1,...,01) is

N
= (afy)~h ,H Vi e DB exp(- z: Vil *181), (3.1)

from which we can find the MLE & and ;. The relationship between & and 0,is 0, = Z Vh/a/lxl

Since & does not have closed form, in practice a numerical procedure must be used t.o determine
@, and then 9,. Also since & does not have closed form, it is impossible to discuss the property of
(6,51). By computing (see [4]) E[I;(In X10 —In X1)] = ap;h(p1), where p; = P(X) < Xy0), h(p) =
In[-1n(1 = p)] = Ny, Lip = p~* f: In[—In(1 = t)]d¢. On the basis of the above fact we propose

estimators of o and 6, as follows

‘1 -~ o D3N
a1 = > (In X10 — In X0) i /(K1 1(B1)), 2 VY%K, (3.2)
i=1
where p; = K;/li. In order that &; and 51 make sence, assume that at least one, but not

all, components fail during the time interval [0, Xm], that is, 0 < K; < {;. It is clear that
P{K1 = k|0 < K < b } = (l‘)p’f‘qi"k‘/(l — ¢y with ¢ = 1 —pr,k1 = 1,..., 1 = L.
We refer to this distribution as quasi-binomial one denoted by B(Il ,p1). Shnilarly we propose the

estimator of 8, as follows

—~ { - .
= Z Vol 2 Ko, (3.3)

i=1

where oy = Z, 1(In X320 —In X)) 12 [(K2h(P2)), P2 = K2/l2, and 0 < K3 < I. As for estimation

of 6, we obtain estimator of dr first as follows :
m —~
> Velo, (3.4)
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where ar = Y_i_,(InTo — InT;)Ir; /(Nh(pr)), Pr = N/m, and 0 < N < m. Then solve the
equation 5;1/5 = 5{1/6 + @\2_1/6 to get estimator § of §. Here a numerical procedure must be used .
It is difficult to discuss the property of 5. Now we derive another estimator of §. Since In(X1/X2)

follows logistic distribution with location parametef aln(f1/8;) and scale parameter af,
P{X1 < X5} = P{In(X1/X2) < 0} = {1 +exp[n(61/6:)/6]} " = 67 /°(67"/° +67'/%)* £

and P{X; > X2} = 1 — u, from which it follows that § = [2Infp — In6; — In6,]/ In[u(l — w)].
Defining D = Ef;l D¢;)/N and noting P{D(jy = 1} = P{Xy;
estimator of i, and therefore propose moment type estimator of & as follows:

< X3} = p, we take D as an

§=(2In6p —Inf; —Inby)/ In[D(1 - D)}

= [2 1n(j§1 vile /N) - 111(’_'%‘;1 yi/E /1{1) ~—In (é’:l yu/Es /1<2)] / u[D(1 - D).

(3.5)

Any linear combinations of &;, @& and @r, c;&1 + co@s + csar, with ¢; > 0,i = 1,2,3 and
3 . . ~

Yoizi¢ = 1 can be emploied as an estimator of «. Now we choose, for example, ar as an

estimator of @, and discuss the asymptotic property of (51,52,aT,3). We present some lemmas
before deriving the joint asymptotic distribution of (51 , 52, ar, 3)

Lemma 3.1 D254, (m — o).

From lemma 3.1 it follows that as m — oo, D(1 — D) =2 u(1 — p), which guarantees that 5
makes sense if m is large enough. N

Lemma 3.2 Suppose that the sequence of random variables Y, — Y(m — o0), and for
every positive integer m, Ny ~ B(m,p)(0 < p < 1). Then Ynm LR Y(m — 00).

The proofs of Lemma 3.1 and Lemma 3.2 are sitnilar to that of Lemma 3.1 and Lemma 3.2 in
[5). We omit it here. .

- Lemma 3.3 Put Wip = vm(D—p), Wam = vm(¥ =, V}J./aT/N—HT), Wam = vVm(dr—a)

for every positive integer m. Then Cov (Wi, Way) = 0 and Cov (Wi, Wan) = 0.

Proof To prove this lemma, we need the standard decomposition of covariance: Cov (Wi,
Wam) = E{Cov[(Wim, Wam)|N1} + Cov [E(Wim|N), E(Ws,,|N)]. Given N(0 < N < m), property
3 of LBVW shows that Djy and Ir; are independent (j = 1,...,N) and therefore D and ar
are independent, which implies that Cov[(Wim, Wam)|N] = 0. On the other hand, E(Wi,|N) =
E[\/TTL(Zjvzl D;y/N —p)|N] = 0, since E[D;y] = p for every fixed j. Thus we arrive at the following
expression: Cov (Wi, Wam) = 0. Similarly, we can prove the expression Cov (Wy,, W) = 0.
This completes the proof of this lemma.

Suppose that s = I} + 1, + m, and l1/s — v,la/s — vy and m/s — vy as s — oo, where

0 < vg,v1,v2 < 1and vy + v; + v3 = 1. Denote
o(a) = a®{Iopi — pil%,; + pP(1 = pi)[R' (922} Ipih(pi))?,
of(8:) = 0} /pi + 07 (1 + Inps + In ;)07 () /o
o (a) = &*{Iypr — pr1f,, + pr(1 — pr)[M (pr)*}/ [Prh(pr)),
o3(0r) = 63 /pr + 0% (1 + I, + In07) %0} (a)/o?,
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o35 = =00(1+ Iipy +1n6r)0B(0) et
an = [0 ln(u(1 = W)™, asz = ~[faIn(u(l — p))]™",  aaq = 2[00 In(u(l - p))] 7",
ags = —(2In0p — Inf; —In62)(1 — 2u)[In(u(l — )]~ 2[u(1 — p)) L.

The following theorem shows that (’0\1 , 52, ar, 3)' has asymptotic normal distribution.

Theorem 3.2 (51,52, &T,g)’ is asymptotically normally di’stribut_ed:
V5(By — 01,0, — 65,67 — a, b7 — ) = N(0,E), (s — o).
where

r= (U'z'j)4><4, o= 0';‘2(01)/”1!

033 = 03(62)/v2, s = oF(a)f o,

7as = 07(01)a}; /1 + 05(82)ads/vs + 0F(07)ads/vo + p(1 — p)als/(prvo),
012 = 031 = 013 = 031 = 023 = 033 = 0, 014 = 041 = 02 (01)aar/v1,
024 = 042 = 05(02)asz /v, 034 = 043 = 033044/ v0.

Proof According to the central limit theorem,

ji::l(D(j) —wy/Vmpu(l — p) L, N(0,1), (m— o).

Therefore, by Lemma 3.2,
S 06~/ VNRT=3) 2 NO.D, - (= o),
which means that
VD = i) = (S/N) & (D) = ) 2 N1 = wfor), (m= o). 36)
Noting the independence of Xy;, X2; and T, by Lemma 3.3 and [4], we have
V3(0, — 61,8 — 02,87 — a,8r ~ 67, D — p) =5 N(0,5*), (s > o0),

where five-dimesional vector 0 = (0,0,0,0,0), E* = (0};)sxs, 0f; = o2(6:)/vi, (i = 1,2), 033 =

02(0)/vo, 044 = 02(07)/vo, 0%y = 043 = 0%3/vo, 085 = p(1 — p)/(prvo), and all of other o};’s
being equal to zero. Using Delta method and noting that

1 0 0 0 0
0(01,62,28 _ |0 1 0 0 0 |a,
6(01,02,6!,9'1‘,#) - 0 0 1 0 0 -

aq1 842 0 agqa ags

it follows that
V(81 — 61,0, — 03,87 — 2,8 — ) -5 N(0,Z), (5 — o),
where ¥ = MX* M’ stated as this theorem.
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§4. Simulation Result

According to property 2 of LBVW, our simulation scheme is the following:
1. Generate four independent groups of quasi-random numbers of U(0, 1) from computer as

follows: (1) u11,u12, ..., %1h, (2) u21, 22, .., 8215, (3) a1, 32, ..., Usm, (4) ua1, a2, ..., Usm.

2. Using the expression X; = (—6;InU)* to generate two groups of quasi-random num-
bers of X; with survival function exp(—X,-I/"/ﬂ,-) from u;;(i = 1,2;5 = 1,...,1;) as follows: (1)
£11,%12,- - > Ty, (2) 221,22, .-+, T2,

3. By Von Neumann’s method [3], generating quasi-random numbers of S w1th density function
[(1 —6) + sé)e~* from ug;j(j = 1,2,...,m) as follows: sa1, $32,...,583m.

4. According to the expressions X; = 6U*%S and X, = 65(1 — U)**S®, generating quasi-
random pairs of (X7, X2), with LBVW distribution from s3; and ug;(j = 1,...,m) as follows:
(Z11,%Z1), (F12,Z22), - - +» (Z1m, Tam ), futhermore, by T = min(X, X2), generating quasi-numbers
of T: ty,...,tm.

5. According to expressions (3.2), (3.3), (3,4) and (3.5), from z11,..., 21,3221, .., %2, and
t1,...,tm, obtain the estimators 51,52, ap and 3, respectively.

6. Repeat the above process n times.

For [} = Iy = m = 100, X;p = 1.5, Xy = 1.35, T0=1491—1‘292=14a=1156=
0.1,n = 100, the results are 8; = E“’“ 81,/100 = 1.2029, B = 3°2%° 85,/100 = 1.3995, a1 =

190 Gra/100 = 1.1474, § = 109 6 /100 = 0.1010. It is easy to see that these results are

satisfactory.

References

{1] Hougaard, P., A class of Multivariate Failure Time Distribution. Biometrika, 73(1986), 671-678.

[2] Lee, L., Multivariate Distribution Having Weibull Properties, J. Multivariate, Anal. 9(1979), 267~277.

[3] Von Neumann, J., Various techniques used in connection with random digits, NBS Appl. Math. Series, 12,
36, (1951).

[4] Sirvanci, M., and Yang, G., Estimation of the Weibull Parameters Uuder Type I Censoring, J. Am. Statist.
Assoc. T9(1984), 183-187.

[5] Ye, C., Estimators of Parameters of GBVE Distribution, J. Sys. Sci. & Math. Scis. 15(1995), 39-49.

— STk Weibull > 7 B S E & 1T
-]

(RIFE LK%, B, 210014)

EREFRRE R F (21, 02) = exp{—[(=1/*/0:)"¢ + (z;/a/62)1/6]6}, z, > 0,6, > 0,i =
1,2, > 0,0 < 6§ < LI IOAHK Weibull 4345 . BT ERBBEEE TRATH S BKRAGZNF
ﬁ:’iﬁﬁﬁiﬁ B/ T RABSE 01,92,a$ﬂ6B‘J/ﬁ51’r FHE T X EAGTHEEER . AR5
H T BVUSEII SR .
KA, 0 Weibull 245, [BIBE, M43, #EHESR.
2R 2121, 213.2. '

+ 200 -



