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Abstract

There are three approaches in the literature to remedy the multicollinearity in
design matrix in a linear regression: auginentation of data, variable selection and alter-
native procedures to the ordinary least squares. In this note our emphasis is focused on
the effect of augmentation of data on condition index. Our results show that when the
additional data are properly chosen in practical possible situation, the condition index
of design matrix can be reduced. the results obtained here are illustrated by Gaylor-
Merrill data [1] which has been extensively discussed in the literature on regression
optimal design.
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§1. Introduction

In the recent years, the study on the multicollinearity among the independent vari-
ables in a linear regression has received much attention in the literature (see, for example,
Mason, Gunst and Webster [2] , Kurmar[3], Dorsett, Gunst and Gartland[4], Belsely, Kuh
and Welsch[5], Wetherill[6]). It is well known that severe multicollinearity among the
independent variables could be very harmful to the statistical inference, in particular, to
parameter estimation. Several remedy methods for multicollinearity in a linear regression
has been proposed (see, Wetherill[6]). These include the augmentation of data , variable
selection, and alternative procedures to ordinary least square estimator (e.g. ridge regres-
sion, principal component and latent root regression). However, augmenting experimental
data within a region to maximize some criterion has been an interesting topic in the lit-
erature on regression optimal design, see, for example, Gaylor and Merrill[1], Dykstra[7],
Box and Draper[8] and Evens[9]. In this note, our primary emphasis is on the effect of the
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augmentation of data on multicollinearity.

Consider the usual multiple linear regression model
y=XB+e, (1.1)

where y is an n X 1 vector of observations on a response variable, X is an n X p matrix
of n observations on p independent variables, e is an m X 1 error vector with zero mean
and covariance matrix 021, where I stands for the identical matrix. 3 and ¢ are unknown
parameters. Throughout this paper we assume that X is centered and standardized

One of the popular measures for collinearity in X is the condition number of the
matrix X'X, which is defined as

AL(X'X)

K(X'X) = 3 (XX)’ (1.2)

where A (X'X) > -+ > Ap(X'X) denote the order eigenvalues of X'X. The large values
of K(X'X) indicate the existence of collinearity in X. The condition number is closely
related to the relative efficiency of the least square estimator(see, Yang Hu and Wang
Song-gui[10]). The condition number also plays an important role in the study of the
sensitivity of 3 (see, for example, Golub and Van Loan[11]).

Besides the condition number, another important measure for collinearity is the con-
dition index which is a set of p — 1 values

!
Ki(X'X) = —ilgéi i=2,.p (1.3)
The merit of the condition index is that the number of large values of the K indicates the
number of the collinearities in X.

The results from the point of view of the eigenvalue analysis given by Wang, Tse and
Chow[12] show that k additional data chosen appropriately can remove k collinearities
from X. However it is possible that these additional data may be high leverage points.
The diagonal element of the hat matrix H = (hi;) = X(X'X)~1X’ h;;jdenoted by h;
henceforth for the simplicity is a measure for the i-th row in X to be a high leverage
case. Hoaglin and Welsch[13] suggested that the i-th row in X is called as a high leverage
case if h; > 2p/n. The high leverage case may make extreme influence on regression
analysis, which is not expected in practice. Theorem 1 in the following section establishes
an interesting relationship between the condition index and h; when k additional rows
are augmented to the design matrix. Some mild conditions on the augmentation data for
decreasing the condition number are given in Theorems 2 and 3 of section 3. The results
obtained in this note show the potentiality of removing multicollinearities. To illustrate
our results, the numerical example given by Gaylor and Merrill [1] is discussed in section 4.
This example has been extensively studied by Dyksbra[7], Box and Draper['?i] and Evens[9]
from the point of view of augmenting experimental data.
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§2. High leverage cases and the condition index

Denote by A;(A) > --- > A,(A) the eigenvalues of A. For the simplicity, Ay > --- > A,
will be reserved for the eigenvalues of X' X. Let ¢, - - - , ¢, be the orthonormal eigenvectors
of X'X.

If we take k additional data as

Zo41
Xp = , (21)
$;+k
where Zny1 = C1@p—k+1,- s Xnpk = Ckdp, then the unordered eigenvectors of X X,
where X, = (X":X}) are A,--+ , Ap—py Ap—kt1 + €5, 7+, Ap + b (Wang et al.[12]). It is
easy to see that for appropriately chosen c;,--- ,¢;, we have
’\i(X:;Xa): Ah ’..<_P—k’

2.2
)‘i(XLXa)-: )\i+c?_(p_k), 1> p— k. (2.2)

Furthermore, we can prove the following theorem,which establishes a relationship between
the condition index of XX, and X'X.
Denote
1’ " E (a‘? b]’
I (1) =
(eatld) { 0, i¢(a,d].

Theorem 1 For the X, and ¢,,7 = 1,---, k defined by (2.1) and (2.2) -
K; (X Xa ) = K; (X’X)[l |+n+k—~p[(P k,P](z)] 1=2,:--,p,

where hsa) is the diagonal element of the hat matrix H, = X,(X.X.) 1 X!.
Proof It is easy to see that we need to prove the theorem for i > p— k only. In this
case, it follows from (2.2) that
M(XIX )
X N(XiX,) -

K(X'X) = = KXo Xa)[1 - AT (XoXo)el_(paiy] 7

—(p—k)

; ! KiAX'X C?—(p-—k)
IX"(X“XQ) = (()k ) 1- m .
Thus it is sufficient to show

a 1-—( ~k .
Mpntkop = 1 (X’j i) i>p-k. (2.3)

To do so, let

X = pAV2gQ’ (2.4)
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be the singular value decomposition of X, where P is an n X n orthognal matrix, Q is a
p X p orthogonal matrix, A = diag(A(, -+, A,). Denote C' = diag(cy, - - ,¢x) and partition
P and A as

P=(PiP), Pinx(p—k) A=(A0‘ A“)) A (p—k) % (p— k).

Thus the argumented design matrix admits the representation

- _(AAr paAY?
Xo=( 040 Rl ) g,
("5 )

Consequently
i, = (P1 P+ Py (e +CY) T )P . ) L @8
* C(A, + CH™IC
It can be verified that the south-east corner of (2.5) gives (2.3). The proof is completed.
An important special case ¢+ = p in Theorem 1 gives a following relationship of the

condition number
v N v v (a)
KX Xo) = K(X'X)(1-h"0),
from which we know that the condition number K(X]X,) decrease as h(:_:k increase.

Generally, however, we do not expect that any of the & additional datais a high leverage
case. The expression of the new hat matrix H,(2.5) may be rewritten as

a - PP+ P[a* (4 CP) 4 - P " (2.6)
« * C(A; + CH)IC '
_( H+ B+ 472247 — 1py . ) (2.7)
. ClAy + CH7IC

In the last equality we use H = PP’ which follows from (2.4). Since the matrix
Py{(I + A7) —

is a negative definite, thus the first n diagonal elements of f, are all not greater than
those of H. This results shows that the case which is not high leverage in the original
regression model will not be high leverage in the augmented model. However, in order to
avoid that the k& additional data are high leverage cases, according to the following high
leverage criterion suggested by Haglin and Welsch [13] the i-th case in X is said to be 'high
leverage’ one if the corresponding diagonal element h; of IT is greater then 2p/n (also see
Cook and Weisberg, [14]). We require .
ClAz+CHIC < nszl, (2.8)
where A < B stands for the Lowner ordering, i.e., A and B are symmetrics.t. B~ Ais

nonnegative definite. (2.8) is equivalent to

. 1/2
2p .
;< ———— iy , =1,--- k.
¢ _(n+k—2p +r k) !
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Thus we have the following corollary.

Corollary 1 If we take

% 1/2
C; = (m/\,‘.*.p_k) y 1= I,' . ,k (2.9)
in (2.4), then (1) The diagonal elements of H,
(a) S h‘ia : S n,
hit .
X _ 2p isn, (2.10)
n+k '
k
) Xyl otk NI
(2) Ai(X1X,) [1 + e QPI(P—k’p](l)] As, (2.11)
. . . s 2p )
(3) 1\,‘(X(’1Xa) = I\,‘(X X) [1 - m[(p_k’p](l)] . (2.12)

The above discussion indicates that if the k additional data are chosen by (2.1) and
(2.2), then to avoid any of the k data to be high leverage case, the best choice of the
¢i,t = 1,---,k in (2.1) for decreasing the condition index is (2.9). In this case, the
condition index follows relation (2.11) and some severe multicollinearities in X may not
be removed.

Walker[15] also studied relationship between the condition index and the diagonal
clement of the hat matrix. However he consider a rare situation where a deleted case

z; = C¢;, given X.
§3. Influence of augmented data on the conditional number

In the previous section we assume that the k additional data satis{y the strong con-
dition (2.1). In this section, however, we consider a general case in which the additional
data may be either arbitrary or restricted by using some mild conditions. Thus in the
following discussion, we will adopt the notation X to denote the k additional data and

Xq = (X:X).
Theorem 2 (1)
MXIX) = A+ 0 (X' X)), i=1,---,p, (3.1)
where 0 <t; < 1,i=1,---,p, 3%, t; = Tr(X'X)/M(X'X).
(2)1f
M(X'X) < PG(XLX,) = AK(X'X), (3.2)

then K(X!X,) < K{X'X).
Proof (1) Using Weyl theorem (cf. Horn and Johnson, [16], p.184) in the following
equality

X! X, =X'X+X'X
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yields
MAXLX) SN+ MX'X), i=1,---,p. (3.3)
It is obvious that
MXLXD) 2 Ny i=1,ep. (34)
From (3.3) and (3.4) it follows that
M(XEXo) = M + A (X'X), for some 0 < t; < 1. (3.5)

Since tr(X%X,) = tr(X'X) + tr(X'X), where trA stands for the trace of A, (3.1) is
straightforward from (3.5).
(2) From (3.5) with ¢ = 1 we have

A(X1X)
’\P

. M (X1 X,) A
K(X\X,)= 1ot = 2 (X'
(XeXo) = XX, = Wiz, | KX X +0

, (3.6)

by using t < 1 and (3.2). The proof is completed.
As mentioned above, the additional data in many practical situations may not exactly
satisfy the condition (2.1). They may be represented as

X=Xo+E, (3.7)

where X is the same as that in section 2. F is a k X p deviation matrix of X from Xo.
Our next theorem shows that if E is not very large in some sense, then the additional data
will lead up to decrease the condition number. Denote

Xo= (;) d = (%“)2 (HW;—'X—))—I’

where ¢ = max{|c;|} = || Xo||, the spectral norm of Xo.

Theorem 3 Assume
IEN < e(V1+d-1). (3.8)
Then
K(X'X,) € K(X'X).
Proof Since
X' X,=X'X4+(Xo+ EY(Xo+E)Y=X'X+X3Xo+ E'E+ E'Xy + Xy3E,
it follows from Weyl Theorem ([12]) that

(XD X)) = A XX + X{Xo)|
< max{M(E'E + E'Xo + X\ E), |\(E'E + E'X¢ + XLE|}
=|IE'E+ E'Xo + X E|| < [|EN(HEN + 2} Xoll)-
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Hence ,
Ai(XoXa) = M(X'X + XoXo) + wil [ EN(EN + 211 Xoll), wil 1,i=1,---,p,
_ { Ai + will EIl(J|EY + 21} Xol]), i<p-—k,
Mit el i+ wil EN(IE + 2| Xoll), i>p—k,
from which we obtain
A+ IEWALEN + 21 Xoll)
Ao + ¢ ~ |ENIEN + 21| Xoll)
_ M LHATHENUEN + 2] Xoll)
Ap 1+ A5 (et ~ | EIICIEN + 21| Xoll)
— (Y S
= KO (44 St = e T
where § = X,(1E|? + 2/ Xoll - 1EI) - Mle2 = (JEI® + 2 Xoll - |EW)). Obviously, it is
sufficient to show S < 0. In fact, S can be decomposed as § = [A; + A,].51.52, where

St = 1 Xoll + B + /1Kol + c2Aa(h + A)1 2 0,

Sz = || Xoll + 1 E|l - \/HXoH"’ + M+ X)) e+ lEf - eV1+d <0,

which follows from (3.8). The proof is completed.
Condition (3.8) shows that when the deviation E of additional data from X is not
very large, the augmentation of data will lead to reduction of condition number of the

K(X:X,) <

design matrix. The upper bound of the deviation, measured by ||E}|, depends on ¢; and
the condition number K (X'X) of original design matrix. The larger the K(X'X) is , the
larger the upper bound of the deviation is.

In our discussion, the assumption Cov(e) = o1, i.e., the random errors are uncor-
related and have the same variance is adapted, the results obtained here, however, can
be easily extended to the general case Cov(e) = ¢2%, where ¥ is known positive definite
matrix.

§4. An example

To demonstrate the feasibility of the conditions of Theorem 2 and 3, we shall discuss
the data set with 20 cases and 3 independent variables presented by Gaylor and Merrill[1]
and later considered by many authors (see, for example, [7], [8], and [9]). The data follows
the linear regression model (1.1). The original data of independent variables is reprinted
in Table 1.

The experimental region of interest is —~7 < z; < 6,-7 < 23 <7, =5 < z3 £
12. Gaylor and Merrill [1] pointed out that the candidates of points for augmenting
experimental data to maximize | X! X,| (i.e. D-optimal) are the corners of the experimental
region. In the following we shall only consider the two kind of corner points. The first is
the corners of the experimental region. The second. is called corners of data set, such as
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Table 1 Original data: n = 20,p=3

Run Iy zq z3 | Run z z9 z3
1 —-6.389 —~5.330 6.0437 11 -1.593 —3.957 0.1896
2 —-6.179 —5.549 9.0819 12 1.338 —-2.613 —0.3136
3 —4.533 —5.717 7.6283 13 —0.787 —2.487 —2.7032
4 —5.293 —6.492 7.8131 14 —1.649 —1.077 —2.1917
5 —4.004 —6.464 3.0976 15 2.075 1.719 —2.2917
6 —~2.631 —5.320 5.4978 16 2.224 0.946 —2.8516
7 -3.012 —4.080 1.0688 17 2382  3.879 —4.2335
8 -2.864 —4.583 4.5822 18  3.350 3.510 —4.8033
9 —0.979 —2.887 1.0250 19 3.384 6.383 —2.5554

10 —0.420 —4.094 2.2669 20 5.984 6.499 —2.1206

(—6.389,6.499,9.0819), which are constructed by maximums and minimums, of z; in the
data set.

For the simplicity, we will denote by 1 and -1 the maximum and the minimum of the
value of each independent variable in the data set respectively. Thus the corners of the

data set are the following:

1 2 3 4
(-1, -1,-1) (1,-1,~-1) (-1,1,-1) (1,1,-1)
5 6 7 8

(~-1,-1,1) (1,-1,1) (-1,1,1) (L, 1,1)
The eigenvalues of X'X are 2.716011, 0.204268 and 0.079721, and the condition number
of X'X is 34.068913.

1. The Condition (3.2) Some results about Theorem 2 are listed in Table 2. For
k = 1, there are 5 corner points satisfy the condition (3.2) and so the condition number
decreased, among which the point 6 is also D-optimal [7]. For k = 2, 36 combinations
among 28 cowmbinations satisfy the condition (3.2) and the minimum of the condition
number K(X!X,) is 4.247848 which is corresponding to (6, 7), the D-optimal [7].

If we add 3 runs to experimental data , we have 97 candidates in all 120 satisfying
the condition (3.2), the minimum of condition number K(X)X,) is 3.785424, which is
corresponding to (6, 6, 7). Although the (6, 6, 7) is not D-optimal, its condition number
3.785424 is very close to the condition number 3.932281 of the D-optimal augmentation
(6, 6, 8). o

Furthermore, our computing experience shows that the closer A(X’'X) is to the
bound, the less the condition number decrease, and in a large neighbourhood of a D-
optimal point, the bound is about twenty times of M(X'X)if k=2or k = 3, so the
condition (3.2) is very easy to satisfy , and does not has any essential limitation to useful
candidates.

All above conclusions also hold for the corners of experimental region.

2. The Condition (3.8) At first we consider the corners of the data set . Because we
assume that Xp in (3.7) satisfies (2.2),s0if k = 1,¢ < A2 ~ A3, and if K = 2,¢; and ¢;
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Table 2 Some results for Theoremn 2

k]l X IA(X'X)| bound* [K(X!X,)| A** D-optimality
(2)[0.396814 | 2.295782)19.139748 [ 14.929165
1 (3)10.498297 | 4.19166513.711267 | 20.357646
(6){0.616223 | 2.938895}16.711920|17.356993 v
(1,3) 0.573915 | 8.985856 | 8.211359|25.857554
(2,6) [ 0.654269 | 11.347485 | 6.936407 | 27.132506
2 (3,7) 0.836458 1 11.201538 { 7.012513 [ 27.056400
(3,8) {0.829669 | 12.442835 | 6.379636 | 27.689277
(6,7) 0.719179 ] 20.324554 | 4.247848 { 29.821065 \/
(1,3,7) | 0.849803 | 20.359003 | 4.274277 |29.794636
(1,6,7) 0.877293 | 22.780813 | 3.870490|30.198423
(2, 3,8) | 0.831496 | 22.700220 | 3.902745 | 30.166168
(2,6,7) ]1.091953 | 20.667645 | 4.373322 | 29.695591
31(3,3,8)1.110215| 19.373817 | 4.498054 |29.570859
(3,6,7) |1.107467 | 22.697376 | 3.946184 | 30.122729
(3,7,8) | 1.126405 | 23.271837 | 3.799649 | 30.269264
(6,6,7)]1.233046 | 23.946129 | 3.785424 | 30.283489
(6,7,8) | 1.282491 { 22.364878 | 3.932281 {30.136632 Vv

* The bound means the right hand side of (3.2}, i.e., [Ap(X} Xa) — Ap] K (X' X).

vx A=K(X'X)— K(X.X,).

satisfy ¢2 < Ay — Az, and ¢ < r? + Xy — A3. These relationships put some limitations on X

indeed, but the limitations are not severe for the D-optimal augmentations. In fact, after
data are centered and standardized by data mean and data deviation, the projections of

corner points on ¢; are not large. In our example, many good augmentations including

D-optimal points satisfy (2.2) and (3.8). Some details are given in Table 3.

Table 3 Some results for Theorem 3

corner X NEY bound® | K(X!X4) A** D-optimality

(3) 0.053236 {0.241754 ) 13.774960 | 20.293953

data (6) 10.089454 |0.241685 | 15.529750 | 18.539153 v
corner (3,8) ]0.156968 { 0.223110 | 8.055696 |26.013217

(6,7) |0.229746 | 0.241685 | 5.462787 |28.606126 Vv
(6,8) {0.140117 | 0.222998 | 10.364929 | 23.703984
(3) ]0.057354|0.268334 | 13.711267 | 20.357646

region {6) 10.193932]0.262597( 16.711920 | 17.356993 v
corner (3,8)]0.131533 | 0.228608 | 6.379636 |27.689377
(6,8) [ 0.213418 | 0.219958 | 9.605017 |24.463896

+ The bound stands for the right hand side of (3.8), i.e., ¢(v1 +d—1).
++A=K(X'X) - K(X'Xa).

In the case of the corner of the experimental region, the D-optimal augmentation
(6.7) in case k = 2 does not follow (3.8). This is the only exception, but the value of right
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hand side of (3.8) almost equal to the left at this point.

In summary, this example demonstrates the potentiality of the data augmentation to
remedy the multicollinearity.

Acknowledgement. The authors are indebted to a referee for valuable comments
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