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Abstract

Saddlepoint approximations for marginal tail probabilities for a real-valued function of vector means from
several populations are developed. The approximations are then shown to give great numerical accuracy. which
are demonstrated in some numerical examples. Application to the bootstrap is also considered in order to avoid
intensive Monte Carlo simulations.
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§1. Introduction

Saddlepoint approximations of the Lugannani-Rice type for marginal (and conditional) tail probabilities
for a real-valued function of a random vector have recently been considered by different authors. for examples.
Skovgaard (1987), Daniels and Young (1991), DiCiccio and Martin (1991), Wang (1993). Jing and Robinson
(1994) and others. The method used by these authors is a common one: first find a 1-1 transformation from
the random vector to a new random vector, and then integrate out the unwanted variables in the joint density
of the new random vector by Laplace approximation, finally apply Temme’s method to obtain the desired tail
area probabilities. In this paper, we shall emplov the same techniques to obtain saddlepoint approximations
to a function of vector means from several populations. The approach taken here closely follows that of Jing
and Robinson (1994) for the case of a function of vector means from one population. Several examples will be
considered to illustrate the accuracy of the saddlepoint approximations. We shall also investigate the performance

of these approximations in the bootstrap context.

§2. The saddlepoint approximations for several populations

For simplicity. we shall only consider saddlepoint approximations to a function of vector means from two
populations: the generalization to the case of more than two populations is straightforward.

Supposc we have two scts of obscrvations {Xi.---,Xn} and {Yi,---.Y,}. where X;’s and Y;'s arc d;-
dimensional and dy-dimensional random vectors R% and R%2 (both d; and dy are positive integers) from two
populations with distribution functions F and G, respectively. Without loss of gencrality, we assume that m > n.
In many case, we are interested in comparing some quantitics from the two populations. For instance, we may
be interested in the difference of the means EX7 — EY), the ratio of the means EX;/EY:, or the ratio of the
variances Var (X;)/Var (Y1), etc. Note that all these quantities can be expressed as functions of means from the
two population, and can be treated together. First let us formulate the problem.
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Let a; = g1(z,y) be a real-valued function from R? to R!, where z € R% and y € R% and d = d; +ds. Let
X =Y X;/mand Y =3 Y;/n. We wish to approximate

P(4; > a1) = P(qi(X.Y) > ay).

Clearty. the difference of two means EX; — EY;, the ratio of two means EX; /EY;, and the ratio of two variances
Var (X1)/Var (Y1) can all be put into the forms of gy (g, ;) Which can be estimated by g (X,Y). where g, = EX;
and g, = EY;. The purpose of this paper is to study the distribution function of ¢:(X.Y). Note that ¢1(X.Y
can not be put into the usual smooth function of vector means from one single population, as X;’s and ¥;’s are
from different distributions. However. as can be seen from Theorem 1 below, the saddlepoint approximations for
both cases arc strikingly similar. The development here will closely follow that of Jing and Robinson (1994), the
outline of which is sketched below.

For any two vectors a and b, we shall use {a,b) to denote their inner product. Let K, (6) = log(Ee‘?-X1))
and K, (1) = log(Ee{™Y1)), where 8 ¢ R and 7 € R%, be the cumulant generating functions of X; and Y;.
respectively. By saddlepoint approximations for the density of X and ¥ (see Danicls (1987). for instance). we

have
e—m{(8,x)—K(8)] e~ (T y)—Ky(7)] 1+ O
s o) = Ty RO @iy O
e~ NA(zY)

=Gmmerarrd o)

/

where the saddicpoints § and T are sotutions of K.(8) = r and K

+{T) =y, respectively. and

A, y) =T((6,2) — Ka(0)) + 12((7,9) = Ky(7)),

A =det [%K; (6)] de [%Kg(r)]. |

Now let us construct a 1-1 transformation

ay =91(‘T1"" sTdy» Y1, 7yd2) b
a2 = g2(T1,- " Tay Y1, Ydy)
a’d=gd("c17"' 1 Edy Y1, 7yd2)7

that is, a = g(z,y) = g(z). Write the inverse transformation as z = ¢~ !(a). Denote the absolute value of the
jacobian of the transformation as J(a) = |det(dz/8a)|. So the joint density of 4 = ¢(X,Y) = (¢1(X,Y).---.
94(X.Y)) is fala) = fxv(z(a),y(a))J(a). Hence the marginal density for A; = g1(X,Y) is

e_NH(al) j

= dao ---dag = = - 1 ~1 , :
fa,(a) /Rd_1 fa(a)das d A1/2[det(L22)]1/2( +0(nr™h) (1)
where

L(a) =A(2(a)),

Loy =3L(a’)/a(a’27 STt a'd)7
H{a1)= inf L(a)=L(ay,d2,--,aq),
Qag. -~ ag

and writc @ = (a1, @a,- - ,8q), (i.c. @ minimizes L{a) for fixed a;) and also .7, Lo and A arc cvaluated at a.

To get a saddlepoint approximation for the tail probability P(A; > a1), we can integrate fa,(a) in (1). By
applying the Temme’s method as in Jing and Robinson (1994), we get the following theorem.
Theorem 1 Under some regularity conditions, we have

P(A; > a1) = 1 — B(@HVN) — M(% - % o=, @)
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where
@ =+v/2H(a1)sign(a; — a1),
u =\/ 5 det(zgg) El/j,

where L, = 8L(@)/0a; and a1 = {ay : infa, H(a1)}.
To applv Theorem 1, one can take the following easy steps.
Step 1: For fixed a3, one can solve (5, 7, @2, - ,aq) from
KL(8) = z(a)
Ky(1) = y(a)

m 8z(a) T n dy(a) T
=) 0 = =—— =0.
Lg(a) N(a(a2,~-~ ,ad)) + N(a(ag,'” ,ad)) T
Note here we have (2d — 1) unknowns and (2d — 1) equations.
Step 2: Write @ = {a1-4d2,- -+ ,84), then calculate

H(a1) =L@ = L@ 2(@) - K=(0)] + 1 [(7.9(@) - Ky(P).
o <} (22|
~ 2(a)\ T~ Oy(a)\ T
b= ()5 R ()

~ m ~ n ~
Lo =NL122 + NLyzz,

where
T _ dr(a) T -1 6’1‘(&) ~ 7
Lo =(5 - ag) O (5, o) + Mo
8z 9%z
 Basta’ " Bagvas’
Mz(a,0)= ,
: &%r e x
' BagBas Pdagbag’ ) (a—1)x(d—1)

and L,z and AL, (a.7) arc similarly defined.

Step 3: Calculate @ and 4, and apply (2) in Theorem 1.

An alternative saddlepoint approximation can also be obtained, which does not depend on the transformation
a = g(z). see Jing and Robinson (1994), DiCiccio and Martin (1991) for more details in related cases. We shall
not pursue this here. But it should be pointed out that it is often easier to construct simple 1-1 transformation

a = g(z) (which is often easy to find) and then apply Theorem 1 than using the alternative formula.

§3. Some numerical examples

3.1 An exact case
Let F = N(0.1) and G = N(0,1). To find out the distribution for P(X +Y > a;), we choose d = 2.

a; =1+ yand as = y. Applying Theorem 1, we get
PX+Y >a;)=1-®(a;//1/m+ 1/n).

In this casc, the saddlepoint approximation is exact.

3.2 Two-sample studentized-t statistic
Lot X1, , X ~ N(0,1) and Y3,---,Y,, ~ N(0,1). Definc the two-sample studentized t statistic as
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X-Y

T ———
V/S=2/m + 8,2 n

where $2 = (X - X)¥/(m-1), 2= (Y; -Y)*/(n-1). It is known that when m = n. T follows Student-¢
" distribution with (2n — 2) degrees of freedom. So in the following, we shall apply the saddlepoint approximation

(2) for P(T > a;) and compare the results with the exact probabilities.

To apply Theorem 1, we need to find out a 1-1 transformation and also the cumulant generating functions.
For the first part. we choose d = 4 and the transformation to be
a = (21 = 91)/ V(22 —2)/(m = 1) + (32 ~ 91)/(n — 1)

as = T9 — IIZ%
a3 =y

a4=y2—y%.

Its inverse transformation is

T; = a3 +aj\/as/(m — 1)+ as/(n — 1)
Ia = Q9 +T¥

y1=asg

Y2 = as + aj.

It is casy to sec that the Jacobian of this transformation is \/aa/(m — 1) + a4/(n — 1). The cumulant generating

functions of both distributions are

_ 67 1-— 26,
Kz(01702) _‘2(1 _ 292) - IOg ( 2 >>
72 1—979
Ky(11,1m2) = =2 —log( 2 )

Some numerical results are presented in Table 1 to illustrate the performance of the saddlepoint approxi-
mations. For the case m = n, we know that T follows Student-¢ distribution with (2 — 2) degrees of frecdom,
so the cxact percentiles can be found from the t table. To calculate approximate percentiles by saddlepoint
approximations, we can invert P(A; > a;1) = a for various values of ¢, using saddlepoint approximations (2) in
Theorem 1. For comparison purposes, we also include percentiles obtained from the Edgeworth expansions for
T, which have been derived in Hall and Martin (1988). It takes the following form,

P(T < 2) = 8(z) + pr(2)(x) + pa(z)d(z) + O(n™/%), 3)
where
p(r) —7(21 +1),
o) =x[%§n(.@ _3)— -1—72(;»* + 922 —3) - 1(ax2 +3)],

where 02, 7, K, are the variance, skewness and kurtosis for X with similar quantities defined for ¥, and

B e (53R
(e E i =22(ZE)

As can be seen from Table 1, the percentiles corresponding to saddlepoint approximations arc cxtremely

02po1 = 0z/m+02/n and

close to the “cxact” ones, for both m = n = 5 and m = n = 20 cases. On the other hand, the percentiles
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obtained from the Edgeworth expansions perform verv poorly bv comparison. particularly for the case small

sample size m = n = 5.

Table 1 Comparisons of the percentiles of T under normal distributions

m=n=a m=n =2l
Probability | “Exact” | Saddlepoint | Edgeworth | “Exact” | Saddlepoint | Edgeworth
0.60 0.262 0.262 0.403 0.255 0.255 0.291
0.70 0.546 0.541 0.678 0.528 0.529 0.563
0.80 0.889 0.881 1.004 0.851 0.852 0.883
0.90 1.397 1.377 1.460 1.304 1.303 1.329
0.95 1.860 1.843 1.841 1.686 1.685 1.698
0.99 2.897 2.869 2.558 2.429 2.428 2.394
0.995 3.355 3.323 2.821 2.712 2.711 2.650
0.999 4.501 4.457 3.360 3.319 3.319 3.178
0.9995 5.041 4.993 3.569 3.566 3.565 3.383
0.9999 6.442 6.379 4.013 4.116 4.114 4.385

§4. Application to the bootstrap

Supposc we have two independent data sets X = {X1,--- ,Xm} and ¥ = {¥1,---,Y,} from two unknown
distributions F and G. respectively. Define T as in Example 2 except that (m — 1) and (n — 1) in the definitions
of 52 and S? will now be replaced by m and n. Then the bootstrap estimate of P(T > ay) is P*(T* > a;). where
X -Y)-(X-7)

\/S;Q/m + 83 /n

and X* = {X3,--- . X} and Y* = {Y7",--- .Y’} are drawn with replacement from X and Y. respectively. and
XY arc the bootstrap means, Sx2 and S;,‘2 arc the bootstrap variances of X* and Y*. respectively. Also P*

T =

indicates the probability conditional on X' and Y.

Generally. P*(T* > a;) can be estimated by Monte Carlo simulation. But now we apply the saddlepoint
approximation (2) to avoid the intensive simulation, in a similar way to Davison and Hinkley (1988) and Daniels
and Young (1991). Other related work includes DiCiccio and Martin (1991), Wang (1993). Jing and Robinson
(1994) and so on. To apply the saddlepoint approximation (2), we choose the same transformation as in Examplc
2. except that we now replace m— 1 and n—1 there to m and n, respectively. The empirical cumulant gencrating

functions for X and Y arc

Ro(6,.85) = ( exp(6:(z: — F) + Oa(z; — T)? ))

3
2 el =) + 7y 7).

1
u(Tl T)) —lOg (;

For comparison purposcs, we generated two random samples of sizes m = n = 10 from two independent

normal distributions. The data are

X; +—1.35,-0.81,-0.24.0.28, —1.55. -0.59, 0.50,0.82. 0.96. —1.82:

Y; : — 0.61. -0.82,1.32. —0.27,0.93. —0.99, —0.11, 1.27, 0.87. 0.04.
We calculate the tail probability P*(T* > a4) for various values of a; by the following threc methods: “exact”
probability obtained by 100,000 simulations; saddlepoint approximations; and Edgeworth expaunsions. which is

the bootstrap version of (3) obtained by replacing all the population quantitics by their sample counterparts.

Tle results are presented in Table 2.
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As can be scen from the table. the saddlepoint approximations give very accurate results, in particular, at
the rails of the distributions. as one might have cxpected. On the other hand, Edgeworth expansions perform
rather poorly at the tails. It is interesting to note. though. that Edgeworth expansions give better approximations

at the center of the distribution here.

Table 2 Comparisons of the bootstrap probabilities P*{(T* > a;)

{(m=n=10)
P (T* > a,)
ai “Exact” Saddlepoint Edgeworth

3.267 0.01 0.012 0.006
2.713 0.025 0.020 0.016
2.294 0.05 0.051 0.044
1.835 0.10 0.114 0.112
1.313 0.20 0.185 0.188
0.964 0.30 0.265 0.274
0.670 0.40 0.353 0.368
0.400 0.50 0.451 0.471
0.132 0.60 0.559 0.584
-0.1529 0.70 0.679 0.707
-0.4842 0.80 0.819 0.853
-0.9655 0.90 0.901 0.933
-1.3813 0.95 0.946 0.972
-1.7493 0.975 0.976 0.993
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