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Abstract

This paper deals with the Edgeworth expansions and power loss of tests for the one-sample problem. The
first-order asymptotic theory, second order efficiency and power loss are given. The tests based on L—. R—,
U—statistics and combined L—statistics are studied.
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§1. First-order asymptotic theory

Let {Pg : 8 € OUR,} be a family of probability measures on a measurable space(R, i) having densitics p(r.8)
with respect to a o—finite measure v. Assuming without loss of generality that @ N R; contains an interval [0.4].
a > (. Suppose we have independent and identically distributed R—valued observations (X;.--- . X,,) distributed
according to {Ps, 8 € 8N R;}. Owr problem is to test the hypothesis

Hy: 6=0 against Hy: 0>0.

We denote P, g and P, ; the joint distributions of (X, -+ , X, ) wnder Hy and H, respectively. The respective
expectations will be denoted by E, o and E,, ;.

It is well-known that for a fixed test size o € (0,1) and a fixed alternative  the power of every reasonable
test W, will tend to 1, i.c.

lim E, ¥, =
n—0o0

For every 6 > 0. This result is not sufficiently informative for the comp'arison of tests performance becanse
such an evalnation would require knowledge of the rate of convergence of their powers to 1. However. this is a
complicated matter and we will not consider this problem here.

Usually, the following Pitman’s approach is used: the test size a € (0, 1) remains fixed but instead of a fixed
alternative § > 0 we consider so-called local or contiguous alternatives {8,} for which 8,, — 0 as n — 0 at snch
rate that the power tends to a limit which lics strictly hetween a and 1. Under natural regularity conditions. if
can he casily shown that the class of these sequences is the class of sequences 8, for which

lim né, =1
n—o0
for some constant t with 0 < < oo.
So for any 0 <t < C, C > 0 we will consider testing

Hy: 6=0 against Hyqy: 6=t (1.1)

Throughout the paper we use the abbreviation

1
-T=n 2,
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Obviously, we have densities
Pno(7) = .12[1 po(z:i)  and  puu(r) = .I:II Pre(®1). (1.2)
Denoted by o
Bn(t) = En ¥, (1.3)

_ the power of a test ¥, for Ho against the local alternative H, ¢ Considered as a function of . this sequence
converges for cvery rcasonable test to a monotone continmous function assuming its values in (0,1).
‘onsider the log-likelihood ratio

| Al =l Gy =
Then by (1.2)
A(t) = B llre(X6) = (X, o ae
where lg(r) = log p(x, ). By the Taylor series expansion,
Lep(X5) ~ lo(x;) = ru“)(i‘.-) + %(n)’t")(x,-) NI (1.5)

Here and in what follows the kth derivative of a function with respect to 8 will be denoted by the superscript k.
For a function of 8 at 8 = 0 the argument 8 will be often suppressed, e.g.,

1(z) = %la(m)lko-

Denote

[P =r30X), IO =13 0DX) - BIDX)), - (16)
i=1

i=1

The sums are centered by the corresponding Eg—expectations; the first sum contains no centering because
ElM(X,) =0.

Further, dcn?t.e by I the Fisher information ,

1= Eg({"(X1))™.
1t is well known that

Eol®(Xy) = ~1I.

With this notation, putting (1.5) into (1.4) yields
An(t) =tLP — %t’[ + %rt‘*’Lf,’) +-ee (1.7)

The first two terms in the right-hand side of (1.7) express the local asymptotic normality (LAN) of the family of
distributions.
The omitted terms in (1.7) include the nonrandom term

SR (X)

and the terms of higher order than 7.
The Neyman-Pearson test, i.e., the most powerful size-a test for Hp against H,, ; rejects Hy when

An(t) > Cﬂ,f
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with ¢, ; defined by (assuming continuity of the corresponding distribution)

Ppt(An(t) > cny) = .

Using (1.7) and the Central Limit Theorem we obtain

L(An(t){Ho) = N - %m, 1). | (1.8)
Hence
tnt — ¢ =tV Tug — %#I, (1.9)
B(ua)=1-on.
The power of this most powerful test. is
Ba(t) = Pnt{An(t) > cn s} (1.10)
It is well known from the LAN theory that
L(An(t)|Hny) — N(%tzl, t21) (1.11)
Thns (1.9)-(1.11) vield
Ba(t) = B(t) = ®(tVTua). (1.12)

Note that /3;(t), known as the envelope power function (i.e. the supremum over all size-o tests of the power
at Tt), is not the power of a single test. The envelope power function renders a standard for evaluating the power
function of any particular test. For cach ¢ > 0 it is the power of the most powerful test against H,, based on
An{t). Thus it. provides an upper bound for the power of any test for Hy against

Hy: t>0.

It is well known that there are many (first order) asymptotically efficient tests, i.c., tests whose power function
Bn(t) converges to the same limit as 33 (t). So are, for example, tests based on LY on An(to) with an arbitrary
to > 0, on the maximum likelihood estimator 0‘7,,, on a certain linear combination of order statistics; on a cortain
U —statistics: for # location parameter there arc asymptotically cfficient rank tests. Hence there is an abundance
of tests fulfilling

Ba(t) — B(1), t>0 (1.13)

Le., of tests which arc most powerful for Ho against H,, up to an error o(1) for every ¢t > 0. They can he
compared with each other by higher order terms of their power.

§2.  Second order efficiency

Typically, an asymptotically efficiont test statistic (suitably normalized) has the score function LY as its
leading term, so that it has the form

Tn=L£,1)+TQn+"'1 (21)
with @, bounded in probability. For example An(to) is equivalent to
1
To =LY + ErtoLQ).

For rank statistics (R—statistics) and linear combinations of order statistics (L—statistics) @ can be written as
a quadratic functional of the empirical process (centered and normalized empirical distribution function).
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In 70-ies for the power functions 8,(t) of various asymptotically efficient tests an expansion in 7 to terms
of order 72 was obtained. The purpose was to study the deficiencies of the corresponding tests, which we will
bricfly discuss later on. Writing down such expa.nsioﬁs in an explicit form required very involved calculations.
For “parametric” test statistics first a “stochastic expansion” of the form (2.1), but containing also the r2term
was derived. It was used to obtain Edgeworth cxpansions for the distributions of T, under Ho and Hy, ;. For
rank statistics a different technique based on a certain conditioning was used by Albers, Bickel and Van Zwet
(1976) and Bickel and Van Zwet (1978). The Edgeworth expansion under Hp was used to obtain an expansion
in 7 for the critical value a,, defined by

P’I'I..O{T'n- > an} = .
Then the Edgeworth expansion for
Bn(t) = Pns {Tn > an}

was derived by the substitution of the expansion for a,, into the Edgeworth expansion wnder Hy, ¢. The Edgeworth
expansions for 32(t) with crror terms o(7) and o(72) have been obtairied independently by Chibisov (1973) and
Pfanzagl (1973).

Though the Edgeworth expansions for the distributions of various asymptotically cfficient test statistics and
of A,(t) differ by terms of order 7. it was observed that their powers d,(t) differ from ecach other and from
3(t) by o(7) (and typically by O(7%)). so that “first-order cfficiency implies second-order efficiency™ . the later
meaning that the power agrees with 3%(#) up to terms of order 7. The approach of comparing the expansions for
/325(t) and f3n(t) described above gave no insight into the nature of this phenomenon. A simple and intuitively
clear proof of this general property was given by Bickel, Chibisov and Van Zwet (1981).

The idca was, first, to treat directly the difference

Bp(t) = Ba(t)

and sccondly. to adjust the test statistic to the log-likelihood ratio (rather than to adjust test statistics and the
log-likelihood ratio to L&), so that the difference

An.t = Sﬂ.t - An(t) ' (22)
is small. For example. (2.1) as a test statistic is equivalent to
1
Snt=1Tn — =t*1.
2
Note that this transformation does not influence the test function, and hence, the power and then

At = —'r(%rtQLﬁ?) + tQu) e (2.3)

- §3.  Power loss
The difference
Ba(t) = Ba(t)

is closely related to the deficiency of the corresponding test, which is the number of additional observations
needed for this test to achieve the same power as the most powerful test. This notion was introduced by Hodges
and Lehmann (1970). Deficiencics of various tests were extensively studied in 70-ies by Albers, Bickel and Van
Zwet (1976) for rank tests, by Chibisov (1983), Pfanzagl (1980) for “parametric” tosts.

When the limit

r(t) = lim n(33(t) — An(t) (3.1)
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exists, the asymptotic deficiency is finite and can be directly expressed through this limit. We will not state this
relationship here. Rather, we will directly deal with the Quantity (3.1), which we will refer to as the power loss.
This quantity was actually the object of the studies on deficiency. As we pointed out. its derivation was very

involved. .
An elaboration of the argument given in previous Section leads to the following formula for the power loss.
/

Suppose that
A‘n,t‘ = Sn.t - An,t

as in (2.3) is of order T in a somewhat stronger sense then it was meat before. Namely, assume that

(\/ﬁAn,ta An(f)) .
converges in distribution under P, ¢ to a certain bivariate random variable. Denoting
Hn,t = \/ﬁAn,t-
We write it as
Pﬂ.O .
(TLnt, An(t)) — (IL, A). (3.2)

In all regular cases A is a normal random variable. Denote its distribution function and density by ®,(r) and
po.+(7). Let ¢¢ be the limiting critical value defined by

®1(c;) = 0.
Then

: - 1 C, DG
r(t) = Jim nAs() — Aal) = 3¢ Bo.(cr)Var [TTA = cf]. (3.3)
Note that
e“po,t(ct) = pre(ce)-

Where p1 () is the limiting density of A, +(t) under P, and

B 1, 1 2+t _
ce = tvTu, — st Pos(T) = ﬁ¢<2—t\/—1——)’ (3.4)
1 /27 —#2] 21 + 121 .
m(z) = f—ﬁ(b(gt—\/i)’ ®1(2) = Q(WI—') (3.5)
These relations imply
1 .
)= ——= ﬁqs(ua ~tVI)Var [TIA = ¢;). (3.6)

This formula was proved by Chibisov (1985) for statistics admitting a stochastic expansion in terms of i.i.d. sums
(which is typical for “parametric” problems). Bening (1995), (1997) and Zhao and Bening (1997) proved the
formula (3.6) for rank statistics, Linear combinations of order statistics and U—statistics.

§4. Tests based on L—, R—, and U —statistics

Let Xi,---,X, be independent identically distributed random observations with distribution function
F(x,6) and density p(z,#), 8 ranging over an open set © C R! containing 0. Let the hypothesis

Hy: 6=0 (4.1)
be tested against a sequence of local alternatives ‘

H, : 6=rt, 0<t<C,C>N0. (4.2)



Where 7 = n~4. We will write F(z) for the hypothesized distribution function F(z,0).

§4.1 L—test
Consider an asymptotically efficient L—test based on

n
Taa=T E binXiwn,

=1

where (X1.1.- -+ . Xpn) are the order statistics of (Xq,---, X,)

s .
bin=n /_-1 Ji(s)ds, Je(s) = (l(")(m))'|,,,=p-1(,), k€N.

F~Y(s) =inf{z: F(z) > s}

and a prime denoting differentiation with respect to =.
Given o € (0.1), we necd to find

r2(t) = lim n(pL(t) — Ana(t),

where ,2(t) and £3;(t) are the powers of the size ar € (0,1) test based on T,z and on

p(Xi, 1)

Aﬂ(f) - Z 10” (X.,O)

respectively. We have
. " 1

r2(t) = Hm n(f5(t) — Baa(t)) = -e"Vaf [I2}A = b]p(b)
— (1o — tVT)Var [Ky — tLa|Ly = ua V7).
sf

The latter conditional variance has form:
Var [K2 — tLo)Ly = uaVI) = vo + 0t + 1ot2,

where

w = 2 — 2N 1z + Ig) + 41~ w2)(I} - In),
uy = dug(Ioly ~ Io11),

g = Ioor — I3,

L= / T (8)dF~Ns),  i=0,1,

1
I = -/o J{(s)s(l — 3)dF~Y(s),

i
Ly = / J0. I§~’_’,(f)u"'+1(s),ﬂ—“l(t)K’(e,t)dF-l(s)dF-l(t), i,7=01; 1=1,2
JO .

K(s.t) = min(s t) — st,

(%) = % . /(; IO F-Y(t))dt.

§4.2 R—test

(4.3)

(4.4)

(4.5)

(4.6)

Assumc now that 4 is a location parameter, p(x, 8) = p(x —8), and density p(x) is symmetric. p(—2) = p(2).
Consider an asymptotically cfficient rank test (R—test) for testing Ho against Hpy (cf. (4.1) and (4.2)) based on

Tas =73, (R} )sgn(Xy),
i=1

(4.7)



where (R7 .-+, Ry) is the vector of ({X4),- -+ .| Xal) and

a(i)=1(%) with I(s)=z<1)(p—1(1—;f)). (4.8)

n
Denote the powers of the size a € (0,1) tests based on Tps and An(t) by Bna(t) and 82 (t) respectively. So

we have
ra(t) ="l_i_.n;c> n{Fn(t) — Bas(t)) = %e"Var M3 = b]p(b)

=8—f—ﬁ¢(ua — +v/T)Var[Ks — tLg|Ly = ug V). (4.9)

The latter conditional variance can be ealeulated
Var [K3 — tLo|Ly = u,a\/f] = wo + unt + wat?, (4.10)
where
1 4 1 g1
wy = 4 / (I'(8))2s(1 — s)ds + 7(11.2 -1) / / I(s)I'()I(8)I(t)K (s, t)dsdt,
Jo Jo J0

2u4

Y
1 gt

1[72:—/ / g{s)g(t)K (s, t)dsdt,
4 ./o Jo

o) = LOETHA+ 9)/2)
= P F A+ 9/2)

11
/ /I'(s)I(s)g(t)K(s,t)dsdt,
o Jo

§4.3 U—test,
Finally. let us now consider an asymptotically officient U—test for testing Ho versus Hyy (¢f. (4.1) and (4.2))
based on
Tn4 = Z . h(X,',XJ') (4.11)
1<i<j<n

where ¥(x,y) is measurable and symmetric in its two arguments i.c. ¥(z,y) = ¥(y, z), real function.

Eo[¥(X1. X2)|Xh] =0  a.s (4.12)
and
h(z,y) = 1D (2) + 1D (y) + V(). (4.13)
Denote the powers of the size a € (0,1) tests based on Ty and Ap(t) by Bnqa(t) and /35 (t) respectively. Then
we have

ra(t) = Jim n(A3(1) — aa(t) = 5e*Var [TLJA = tip(s)

=§\t7-j¢(ua ~ tv/T)Var (K4 — tLoy|Ly = ug V). (4.14)

The latter conditional variance can be calculated
Var (K4 — tLo|Ly = ugVI} = 4(1 - w2) I3y + taue Iy L2y — VI) + t3(I(5) — %), (4.15)
whore
Iny = I Eo®( Xy, X)IV X))V (X,),
Iy = I Bl (X )V ( X)),
Isy = Eo(IP(X,))?2 - I2.
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§5. Combined L—tests

Consider a testing problem in which the total sample has been dividéd m > 2 sub-samples. Suppose that
for cach of these sub-samples a separate asymptotically efficient L—statistics can -be obtained and the best
combination of these statistics is then compared to the ordinary undivided asymptotically efﬁcient L—statistic.
One casily sees that, under natural Conditions, splitting causes no first order efficiency loss. Hence it becomes
interesting to derive second order results and it would be nice to obtain more precise results on effect of splitting.
This subject and related ones have received considerable attention in the literature. For earlier works we refer
to Van Zwet, and Qosterhoff (1967), Albers and Akritas (1987). One- and two-sample combined rank tests have
becn considered in Albers (1988), (1997). Note again that the used method was essentially based on asymptotic
cxpansions. Although the basic ideas underlying these papers are simple, the proofs are highly technical matter.
The method we used for proving the main theorem carries over Le Cam’s approach to higher order asymptotic
and based on the likelihood ratio properties.

Let X, = (X1, -+, Xn) be independent identically distributed random observations with distribution func-
tion F(x,8) and density p(x,#8), 6 ranging over an open set © C R! containing 0. Let the hypothesis

Ho: 6=0
be tested against a sequence of local alternatives
Hp,,: 8=rt, 0<t<C, C>0

where 7 = n~%. We will write F(x) for the hypothesized distribution function F(z, ).
Consider an asymptotically efficient L—test based on

where (X1:n, -+ Xn:n) are the order statistics of (X1, ,X,)
l , O] J . .
(x,8) = log p(z,8), "z = YT log p(x,6)|6=0, 1i=1,2,---,
-i/n .
bin =1 / Js)ds,  Ji(s) = ((®@) loep-se)y k€N, (5.2)
(i—1)/n '

F~(s) = inf{z : F(z) > s},

and a prime denoting differentiation with respect to .
Given o € (0,1}, denote (Ip9(t) and /35 (2) the powers of the size o tests based on Tpho and on

An(t) = él log "’p(———(};i’ 7;))

respectively. Now suppose that our sample has been split into m > 2 sub-samples of my, I =1,--. ,m,
(Xla o 7Xn1)7' . 7(Xﬂ.—'n.m+l)" * 7Xn)v n + nQ'-+ et N, = n,
and

n '
771-——»'n>0, l=1,---,my Sm=1 asn—co.
For each of these samples we obtain the L—statistics
T,Slz), Il=1,---,m

as in (5.1) and (5.2).
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Consider the combined L—statistic

and the level o € (0,1) test based on Tpa. Let 3,5(t) be the power of this combined L—test.
Using above argnments we ean find the following limits

() = lim n(Bas(t) = Bus(t)), (53)
ry(t) = lim n(35(t) = Ay (t)). (5.4)
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