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Abstract

In this paper, an effectively adaptive algorithm for solving log-optimal portfolio problem is proposed.
It is a variant type of stochastic approximation algorithm. Since the problem considered here is a constrained
optimization problem, the gradient ascent direction used conventionally is replaced by the steepest ascent tangent
vector on the corresponding constraint manifold.  Under some reasonable conditions, the convergence property
of this algorithm is also demonstrated. Finally, this algorithm is applied to search optimal portfolio with real
data of the Exchange Institute of Shanghai Security, the obtained numerical results are satisfactory.
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§1. Introduction

The purpose of this paper is to provide an effectively adaptive numerical algorithm for solving the log-optimal
portfolio problem arising from the field of financial investment and thén to consider the theoretical analysis of
this algorithm. ,

Suppose an investor wishes to invest in the stock market which.consists of m stocks. We denote the market
by vector X = (X1,Xa2, -, Xm)T, X; > 0, F= 1,2,-.-,m, where X is the price relative of stock i which
represents the ratio of the price at the end of the day to-the price at the-beginning of the day. We denote by
F(x) the joint distribution of the vector of price relatives X.

The mvestor distributes his money among these m stocks according to the portfolio b = (by,bs,- - ,by,)7,

where b; > 0, Z b; = 1. Here, b; denotes the fraction of one’s wealth invested”in stock 7. Thus, the relative
i=1

wealth of the investor after one day is given by S = b7 X.

Furthermore, assume that this investor is interested in the long-térm investment on these stocks. Without loss
of generality, suppose that he has initial wealth of investment 1 and chooses the portfolid b(t) as the investment
strategy at the tth day. Thus, after n consecutive days, his wealth becomes S,, = H bT(t) X (t), where X (t)
stands for the stock gain vector at the tth day. The aim of the optimal investment 1@ then to find the optimal
portfolio sequence {b(t)} in order to maximize the wealth gain S,,. ‘

Suppose that the sequence {X(t)} of stock gain vectors are statistically independent and identically dis-
tributed (as usual, called i.i.d. for simplicity in what follows), according to the distribution F(x). 1t was shown
in [6] that, in the sense of asymptotic optimality, the {b(t)} can be chosen a constant vector b* independent of
time ¢, which maximizes the doubling rate,

W (b, F) = Eflog(b!X)] = / log(b'z)dF (x), | (1)
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b = argmax W(b, ), (2)

where B = {b : :Zlbi =1, b; > 0}.

In other words, let X (1), X(2), -+, X (n) be a sequence of i.i.d. stock gain vectors drawn according to F(z),
and Sp = ﬁ b*T X (t), where b* is the log-optimal portfolio in the sense of (2). Let S, = ﬁ bT ()X (t) be the
wealth reSItJTtling’from any other sequence of causal portfolio {b(t)}. Then it was shown in [%Tlthat

lim sup 1 log % <0 with probability 1.

n—oo T n
Furthermore, for a practical investment problem, given the corresponding sequence {z(t)} of stock gain
vectors (sample vectors), we are interested in the dervation of the log-optimal ‘portfolio b*. In general, no closed
form for b* exists, thus we have to obtain it numerically. One way consisting in first approximating the doubling

n
rate (1) with the sample average, i.e., 1 Y log(bTx(t)), and then solving this problem by conventional or genetic
N t=1

type optimization algorithms, people are referred to [14], [15] for more detail.

This is a batch way but not adaptive (on line) method. That means, if we are known more data {2(t)};2, 1,
we have to solve the problem again in the same way and can not borrow the known result concerning the data
{z(t)}i, sufficiently. '

In this paper, we first propose an effectively adaptive algorithm for solving the problem (1) and (2). This
algorithm is a stochastic approximatién algorithm [11] - a stochastic gradient ascent method. Since the prob-
lem considered here is a constrained optimization problem, the gradient ascent direction used conventionally is
replaced by the steepest ascent tangent vector on the corresponding constraint manifold. Moreover, in order
to obtain the corresponding tangent vector more easily, we suggest a quadratic parameter transformation, to
change the original constraint manifold, a (m — 1)-dimensional simplex, B = {b : f:lb,- =1, b > O}, into a

=

(m — 1)-dimensional smooth unit surface, S™~1 = {'w = (wy,wa,++ ,wm)T : i w} = 1}. The derivation of
this algorithm is inspired heavily by the related ideas in [3], [4]. Secondly, unctl:nl‘ some reasonable conditions,
we demonstrate the convergence of this algorithm. The crucial step is to show that the Cbrresponding stochastic
sequence is upper bounded and has a positive lower bound. Finally, we apply this algorithm to solve a practical
stock investment problem. We choose 20 stocks operated in the Exchange Institute of Shanghai Security, with
their whole stock gain vectors in 1997 given. We obtain the related log-optimal portfolio by this algorithm. Those
numerical results are satisfactory.

The rest of this paper is organized as follows. We describe the algorithm in section 2 and give the proof of

convergence for this algorithm in section 3. Finally we provide the numerical simulation results in section 4.

§2. Algorithm descriptions

Since the objective function of problem (1) and (2) is described in regression form, it is natural to construct
the stochastic approximation algorithm, an iterative method of stochastic gradient type, to solve it [11]. On the
other hand, it is a constrained optimization problem, we should choose the desired ascent direction which is not
only the fastestbut also in the related tangent space of the constraint manifold so as to keep the constrained
condition invariant in infinitesimal displacement sense. This idea was used by Brockett ([3], [4]) to deal with
least square matching problems and dynamical systems that sort lists, diagonalize matrices and solve linear
programming problems, though the corresponding objective functions considered there are deterministic, not in

regression form.
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In fact, this direction is just the intrinsic gradient associated with the related constraint manifold. Thus, to
obtain the desired adaptive algorithm for solving (1) and (2), we should derive the intrinsic gradient concerning
this problem. For this purpose, we first give some definitions and a useful result which provides us a standard
way to compute the gradient corresponding to a manifold M from the bases of M’s ambient manifold N (ie.,
M is the submanifold of N). We will use the standard conventions concerning Riemannian geometry in what

follows, people are referred to [13] for more complete detail.

n . - y .
Let (M, g) denote a n-dimensional Riemannian manifold with the metric g= Y gi;dz’ ® dz7, where {dz*}
i,j=1

denote the natural bases of the 1-form (cotangent space) T*M. That means that if we denote by {8;} the related
natural bases of the tangent space T'M, which are dual with the bases of {dz*}, then for any two tangent vector

n
fields X = ¥ a;8;, Y = Zn: b0,

i=1 i=1

9(X,Y)= 21 aib;gij.

iJj=

Moreover, as usual [13], for a function f € C1(M), the related (intrinsic) gradient corrcsponding to manifold
M is defined by

gaduf= > (69618, e

fj=1"

where g* is the (i, j)-entry of the matrix [97*];<r s<n Which is the inverse matrix of the metric matrix [9rsl1<ro<n.

Or alternatively,

gradpy f € TM,
X(f)=g(graduf,X), VXeTM. (4)

Lemma 1l Let (N,g) denote a n-dimensional Riemannian manifold with the metric g, M is a m-dimensional
induced Riemannian submanifold of N. Moreover, Let {r;}%.; be the moving frame of N, i.e., the local orthonor-
mal vector fields, on N. Suppose that {7;}7, also forms the moving frame on M, i.e., {7;}T, are the orthonormal

vector ficlds on M. Then we have

gradyf = gradnf — 5 m(f)mi. 5)

i=m+1

Proof From the definition (4) we have
g(grady f, X) = g(gradnf, X), VX €TM.

This means that there exist some constants am41,my1,- - , 0tn, such that,

gradyf —grady f = ) diTi-

i=m<+1

Hence, from the orthonormal property of {7;}2,, we know
;i = g(gradn f — grady f, ) = 7i(f) — g(gradm f, ) = 7:(f).

The desired result then follows. O

Suppose that we want to solve the following constrained optimization problem

w* = argingﬁ Elf(w, X)), (6)



where f(w, ) is a given scalar-valued function, E[-] denotes the mathematical expectation associated with some
unknown distribution density function p(z), M C R" is a submanifold of the Euclidean space R". Then the

variant type of stochastic approximation method for solving (6) can be written as
Aw(t) = n(t)gra'de(w(t)? m(t))! t= 0’ 1, B (7)

where gradys denotes the intrinsic gradient related to the manifold M, n(#) is the step size {also called learning
rate in general) at the tth iteration step, x® is the tth sample drawn from the distribution p(zx).

Compared to the ordinary stochastic approximation method used 'in unconstrained optimization problems
[11], the unique variant is that here, the chosen ascent direction is changed from ordinary gradient direction
corresponding to R™ into the intrinsic gradient direction corresponding to the constraint manifold M.

Now we procecd to derive the gradient corresponding to the problem (1) and (2). At this time, the related

m

constraint manifold B = {b Y =1, b > 0} is a irregular manifold with boundary. In order to avoid
i=1

unnecessary complexity, we first make a quadratic transformation b; = w?, i = 1,2,---,m, and then the

constraint manifold becomes
1 T .5, 2
V=38 ={w=(w1,w2,<--,7um) :Zw,;:l}, (8)
=1

which is a smooth compact manifold without boundary. And the problem (1) and (2) read as follows.

w* = arg max E[l(w, X)), . (9)

where I(w, ) = log ( 2 w? 'r,)

We can view the ma.mfold V as an induced submanifold of the Euclidean space Rm a flat manifold. And
the unique normal vector field for V in R™ is just »(w) = w, w € V. (Here and hereafter, we only list the
corresponding coordinate vector to denote a vector field)

Furthermore, it is easy to know

2riwy  2wows 22 mwm \ T
gradle(w,:z:) = T T ) ,
Y wir, Y wim > wiz,
i=1 i=1 i=1

rw)({w,z)) = (r(w), gradgm(w, x)) = 2w, weV,

where r(w)({(w, z)) denotes the direction derivative of I{(w, 2) according to the direction r(w).

Then, from Lemma 1 we have
gradyl(w, z) = gradgml{w, ) —

Now, according to the general algorithm (7), we finally obtain an adaptive algorithin for searching w*.

Algorithm P:

Let {2(t)} denote the i.i.d. sequence of stock gain vectors. Then the optimal solution w* related to (9) is
obtained itcratively in the following way.

Step 0 Give any initial guess w® €V, t =0;

Step 1 compute the modified results w(tt?) = (wgtﬂ),wgﬂ), “en ,w'p(1?1,+1))T,

(t) ’
z;(t)w;
wz(t+1) (t) +7I(t) [__1(—2— _fwz('t)]’ 1= 1a2,"' s m, (10)
P (w)2z;(t)

where 7(t) is some chosen positive step size, called learning rate in general, it should satisfies some conditions
given below;

.01 .



Step 2 halt if the iteration number of times ¢ reaches some given positive integer or if the norm of the

difference w(**+1) — w(*) is small than some given control precision; otherwise, t « (¢ + 1), go to Step 1.

Similar to the general stochastic approximation algorithms, in order to make the algorithm convergent, we
assume the learning rate sequence {n(t)} satisfies that

n(t) >0, X n(t)=+oo, n(t) >0 as t— +oo. (11)

In practice, if we only know the stock gain vectors, say (1), 2(2), - ,2(n), in some time period, we can

choose the z(t) used in (10) from z(1),2(2), - ,2(n) with equal probability.

§3. Convergence analysis of Algorithm P

In order to analyze the convergence property of the Algorithm P, we first give a reasonable assumption
concerning the sequence {x(t)} of stock gain vectors. That is,
Al: The sequence {x(t)} of stock gain vectors used in Algorithm P have an upper bound B and have a

positive lower bound A; in other words,
0 < A<zi(t) < B < +o0, 1=1,2,---,m, t=1,2,---, as..

For their probability distribution F(z), this means

/ dF(zr) = 1.
(4,B]™

Under this assumption, we then have an important result concerning the iteration sequence {'w(t)} given in
(10).
1
Lemma 2 For any z € [0, 5]’

1—2>e%,
Proof As a matter of fact, let f(z) = (1 — z)e32. Then f'(z) = 3*(2 - 3z) > 0, and the minimal value is

attained at x = 0 with value 1. The desired inequality then follows easily. O

1
Theorem 1 For the Algorithm P, assume that the learning rate sequence {7(t)} take values in (0, 5)
and satisfy the condition (11), and the sequence {x(t)} of stock gain vectors satisfies assumption A1l. Then, for
any given nonzero initial vector w(®, there exist two positive constants A; and Bj, such that, for the iteration-

sequence {w(*)} given in (10), we have
A< lwD)<B, t=1,2,---, as, (12)

where ||w(®|| denotes the standard Euclidean norm of the vector w(®.
Proof We first verify the left hand side inequality of (12). For each i, we multiply both sides of (10) by
, and take the summation over i to obtain

5SS wPul™*D = (1= (1)) § (w®)2 4 n(2).

i=]

(t)

Therefore, by the Cauchy inequality

wf%u{*D < 2[(1 = n@) @) + - @0y,

(t)

we then have

<1—n(t>)i§(w§t’)2+n(t)s%(1—n(t)) §(1uf))2+——-( S witDY2,
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(1 = n())26D + 2(1)(1 — n(t)) < 69D, (13)

where, 6() = Z (w( )) for simplicity of presentation.

Thus, by mductmn from the recursive inequality (13), we also have

5+ > 11 = ()26 +n(e-1) + X o= D 110 = n(3))?

=i
> En(1 -1) H(l— (@) = 1), | (14)
With the help of Lemma 2, from (14) we know that for ¢ > 2,
I() > 3 ni — 1)e8 Timi 1) > ¢=6 Tima™0) 3 (s - 1)¢8 4230 (15)
i=1 i=2
On the other hand,
n(i — 1)) > /Z;';é " ea g
52870

Hence,
, TiZo 1)
S (i — 1)S I > / =0T bw g %(eez;;énm R ON
i=2 /n(0)
which together with (15) yields

I(t) 2 S[eSMO=0) _ g=6 Zims ),

S =

It follows from the condition (11) that

lim (eSM©@=7(M) _ g6} M)y = ¢6n(0),
t—+o0

Conscquently, there exists some positive integer tg > 2 such that
L
It) > Eeﬁn(o) >0  VYit>to. (16)
Combining (14) and (16) we have that for any nonnegative integer ',

5 2 min {0(0),1(1), -+ n(to), 75O} > 0.

The left hand side of the inequality (12) is then proved. ,
Now, let us proceed to demonstrate the right hand side inequality of (12). For each i, we take the squares
at both sides of (10), and sum them together, we have '

n e E ]  Emmrwy
> (@i )? = (= n(0)” 3 (w7 + (1)1 = () +n(t) 2
= (X =mow2)

i=1

Then, from assuraption A1 and the left hand side of the inequality (12) just proved, we know
84 < (1= ()5 + 20(1)(1 = (1) + 50’

< (1-n()%0 + (2+ A%I)”(t)’- as.,

.03 .



which leads to

5D < ino (1 - n(@)2%6® + (2+ Ai;h)n(t 1+ é: (2+ —)n(z “DA-nG)?  as. ()

j=t

t
It follows from the fact . liToo I1(1 —n(t))? = 0 that there exists some positive constant C; such that
- =0
t
Ha- n(i))*6® < C1. (18)

In addition, defining I(t) = E n(i—1) H (1 =n(5))?, with the help of the conventional inequality 1 -z < e(=?)
=1 j=%
for z € (0,1), we see 1mmcdla,te]y that, for t > 1,

- ¢ ¢ .
I(t) < ;1 'r’(z — 1)3-2 h D) 'I(J). (19)

To forward our estimation, we now introduce an index sequence {n;}}29 defined by

no = min {'n, : i})"?(i) > 1},
i= (20)

(i) 2 1}

N4y = min {n ‘N> ng, Z_:H
ng

We also denote by m(t) the minimal positive integes such that nm,yy > t. Thus, it follow from (19) and the
definitions of {nx}}23 that

- m(t) " .
I(t) < 3 (i~ 1)e~? Zim @

i=1
m(t) Ney1
= 2 n(E—1)e” 2 5=en0) 4 Y% piE-1)e 2% 5= n(d)
k=0 i=n;+1

) m(t)— .
< E 17(1 - 1)6 22i="o+=l () + mz ﬂ§1 ,,7(,,’ _ 1)6 Zj:nk+11+1 n(5)

k=0 i=np+1
no—
<emm® " i) 4 3 edm-tn B gy
i=0 k=0 i=ng+1

3 m(t)
se—2m(t)+_ Z e—2(m(t)—k—2)
2 k=0

<e=2m) | _«;3 o=2m()=2) [ez'm(t) + /
0

&2 d:z:]
Thus, there exists some positive constant Cy such that
) <Cs, t=0,1,2-.
Now, substituting this and (18) into (17), we have
6D < 6y + (2+ )(1 —C)  t=0,1,---, as.

We then obtain the desired result. O

Next we consider the property of the objective function W (b, F) given in (1) (which is denoted by W (b)
in the following for simplicity) and the solution set of problem (1) and (2). It was shown in .[5] that W(b) is
concave on B; and the set of log-optimal portfolios forms a convex set. Under some reasonable assumptions, we
will claim some further results in the succedent steps. We first give an assumption.

.04 .



A2: There are not two different portfolios b and b stich that their gains 67 X and b X arc identical almost
surely, where X is the stochastic vector obeying the probability distribution F(z), the same as the i.i.d. sequence
{x(t)} of stock gain vectors.

Lemma 3 Under the assumptions Al and A2, the objective function W (b) is strictly concave on the
simplex B, and so the log-optimal portfolio of problem (1) and (2) is unique.

Proof In suffices to verify the strict concavity of W(b) on B. For any two vectors b,be B, b+ band
X € (0,1), due to the strict concavity of log(z), we have

log((1 — b7z + Ab ) > (1 — A) log(bTx) + Alog(h )

and with the strict inequality if b7z # b .
Set K={z:bTx = BTm}. Then from assumption A2 we know

/ dF(z) =6 < 1.
K

Thus, there exists an open set H, K C H, such that

/ dF(x) =6 < 1.
. :
Therefore, on the compact set [4, B™ \ H,
log((1 — A)bTz + Ab” 2) — (1 — M) log(bTz) — Mlog(h" ) > 0.
Moreover, from the property of continuous function on compact set, we further know, there exists some
positive constant €, such that, V z € [A, B]™ \ H,
log((1 = \bTz + Ab” ) — (1 — X) log(bTx) — Mog(® ) > € > 0.

Hence, from assumption Al and above analysis,

W((1-X)b+ b)) = /[A - log((1 — b7z + Ab” 2)dF ()

>(1—A) /H log(bTz)dF(z) + A /H log(®” z)dF(x)

+ / [(1 = ) log(67z) + Mog(b" @) + JdF(z)
* [A,B]'"\H
>(1 = )W (b) + AW (B) + €(1 — 8)
>(1 - NW(b) + AW (b).
The desired result then follows. O

Now we can obtain our main result of this paper.

Theorem 2 For the Algorithm P, if the learning rate sequence {n(t)} are chosen to satisfy (11) and,
.theré exists some ¢ > 2 such that

+o0 142
L () < oo (21)

moreover, the sequence {z(t)} of stock gain vectors satisfy the assumptions A1 and A2. Then for any initial
guess vector w(® \ {0}, the iteration sequence {w®} is convergent a.s.. '

Proof In order to apply the techniques given in [1], [2], [11], we introduce the following strict Lyapunov
function

M3

V(w) = 1 w? — E[log (1:1 wa,;)] (22)

i

Il
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with the related equilibria set

J= {w;éO E[ZX;;Uz]—w,-, i=1,2,---,m}. (23)

j=1

The induced gradient flow system is

dw';(t) = E[ X‘Uh(t) ] ’w,-(t), i= 1,2,.__ ,m. (24)
> X jwi(t)
j=1
We first show. that the nonlinear system (23) has only finite number of solutions. Obviously, it suffices to
prove that for the system (23), there are only finite number of solutions w satisfying that w; # 0, i =1,2,---,m,
which implies the desired result.
Let b= (b1,ba,- - ,bm)T = (w},wd,-- ,w?)T. Since w; #0, i =1,2,--- ,m, from (23) we have
E[ _Xi - ] —1=0, i=1,2---,m,
2. Xjb;
Jj=1
m _
dY b=
i=1

Thus, b is an interior point of the simplex B, and 6?) W(®)|p=z =0, ¢ = 1,2, ,m. Due to the strict

concavity of W(b), b is the local maximum point of W(b) on B. If b # b*, the unique log-optimal portfolio.
Then, from the strict concavity of W(b) on B, we easily know that for any A € (0,1),

W((1 = A)b+ \b*) > W(b).

We can choose ) sufficiently small such that (1 — A)b+ Ab* belongs to any neighborhood domain of b in B.
This leads to a contradiction.

Hence, if b* belongs to the interior of B, b = b*, i.e., w; = :I:\/lf, i=1,2,---,m; if b* belongs to the
boundary of B, there are no solutions. We then have the above conclusion.

Furthermore, since we are only interested in the convergence of the Algorithm P and lim#(t) = 0, without
loss of generality, we assume the learning rate sequence {7(t)} take values in (0, l) . Then, under the assumption
A1 Theorem 1 holds. Hence, the conditions of Proposition 2.1 in [1] are satisfied, and then we have from Theorem
1.2 and Corollary 3.3 in 1] that {w(?} converges toward an equilibrium in the equilibria set J a.s.. O

In the final part qof this section, we pfoceed to consider the stability analysis of the dynamical system (24)
corresponding to the iteration sequence (10).

Theorem 3 The dynamical system (24) with the initial value vector w(0) € S™~! is a smooth dynamical
system on the compact manifold S™~1. A equilibrium w € J is asymptotically stable if and only bw? =
(w2, w},--- ,w2)T = b*, the unique log-optimal portfolio. And for almost all initial value vector w(0) € S™~*
(with conventional surface measure), {w(t)} converges toward one of such asymptotically stable equilibrium.

Proof We consider the following auxiliary dynamical system

w(t) k=0 = w(0) € S™71,

dw,(t) - E[ Xiw;(t) ] _ m’lUi(t) . (25)
2 X wi(t) El wi(?)

Obviously,
Xiw;(t) ] _ 'w,(t) } 0.
Z Xwi(t) Z wi(t)

J=1

Zhw@I =2 F ) - (€[



Therefore, |w(t)]|? = [|lw(0)||2 = 1, i.e., (25) is a smooth dynamical system on the compact manifold $S™~1, and
thus this scquence {w(t)} also satisfies the dynamical system (24). In other words, the dynamical system (24)
with the initial value vector w(0) € S™~1 is also a smooth dynamical system on S™~1,

Due to the strict concavity of W(b), it is eaSy to see that the equilibrium v in J is asymptotically stable if
and only if w? = b}, 4= 1,2,--- ,m. Hence, from the basic theories for dynamical system on compact manifold
([8] and [9]) that, for almost all w(0) € S™~! (with the measure on S™~1), {w(t)} converges toward one of such

asymptotically stable cquilibria. The desired result then follows in th last. O

Remark 1 According to the deduction employed in the derivation of Theorem 2.3.1 in [11] and the theory
in [1]. The limit of the iteration sequence {w("} is determined by the asymptotic behavior of the dynamical
system (24) with some specified initial vector w(0) € S™~! which is induced by some function subsequence.
Thus, intuitively, for almost all initial guess vector w(® € R™ \ {0}, {w®} should converges asymptotically to
one stable equilibrium w with w? = b*. Numerical tests in our experiments illustrate this. But we can not give

a rigorous proof on this conclusion up to now.

§4. Applications

We apply the Algorithm P to search log-optimal portfolio with real data from the Exchange Institute
of Shanghai Security. In the year of 1997, there are totally 235 working exchange days. We choose 20 stocks
operated on this exchange institute to invest. The stock gain vector at instant ¢ is the ratios of closing prices at
this day over those of the previous day. We denote by {x(¢)}235;=; the sequence of stock gain vectors in this
year.

Since we have only finite data, at each iteration step of implementing the Algorithm P the related gain
vector in use is chosen randomly from the sequence {x(t)}223 with equal probability. To make the iteration
sufficiently stationary, the iteration number of times in the halt rule of Algorithm P is chosen to be 108, while

the related control precision is taken 10~7. And the learning rate sequence {7(t)} is chosen to be 5(t) = 005
The concrete algorithm reads as follows.
Step 0 Randomly generate a nonzero vector u = (uy,ug, - - - ,u20)T and set the initial guess vector to be
w® = u, t=0; |
20
Y uf
i=1

Step 1 generate a positive integer n € 1, 235] randomly with equal probability, then compute the modified
results w(t*+l) = (wgt"'l),:wg“), e ,w%ﬂ)):r by

()

(t+1) _  (t) 1000 xi(n)w. (t)
Wi =W 1000+t[2° ® t — ]’ 1=12---,20;
> (w;”)2x;(n)
Jj=1
Step 2 halt if the iteration number of times t reaches 106 or if
max{fui™ —wf?],--, it - widl} < 1077,

set the portfolio b* = (w12 ie., bf = (w2, i =1,2,... ,20; otherwise t ~— (t+1), go to Step 1.
We use the Matlab 5.0 to write a program of this algorithm. Numerical experiments show that for any
randomly chosen initial vector w(®) as above, this algorithm is convergent and the computed portfolio b* satisfies

20
the restriction condition 3} b = 1 with desired accuracy.

=1
As usual, for any computed portfolio b*, the total gain of that year according to this portfolio is given by

235 20 ' 235 20 e
[T (3 bizi(t)), while the total average gain of that year is given by (TI (X bizs(t))) ™. We find that for
t=1 4=1 . t=1 i=1
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any computed portfolio b* by this algorithm, the total gain is almost near the value 1.7000. For example, we
implement this algorithm 10 times, and obtain 10 portfolios with the corresponding total gains 1.6944, 1.6902,
1.6992, 1.7012, 1.7021, 1.7004, 1.7021, 1.6820, 1.7034, 1.6969, respectively. Since there are only finite stock gain
vectors for this problem, we can also use the constr function given in Matlab 5.0 to compute the optimal total
gain of this problem. The related result is 1.7036. This shows that the results obtained from Algorithm P are
satisfactory and acceptable.

For our algorithm, the computed portfolio corresponding to the total gain 1.7034 given above is 0.5425, 0,
0.002, 0(8 times), 0.3623, 0(6 times), 0.0950, 0, i.e., the 1th and 12th stocks are invested mainly. The related total
average gain for this investment is 1.0023, while the total average gains for each stock are 1.0021, 0.9993, 1.0015,
0.9996, 0.9984, 0.9993, 0.9991, 1.0000, 1.0000, 0.9984, 1.0003, 1.0019, 0.9985, 1.0012, 1.0001, 0.9998, 1.0001,
0.9994, 1.0019, 0.9989, respectively. Thus, this portfolio investment is superior to the single stock investment.
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