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Abstract
This paper studies the model of superimposed®exponential sigdals in noise:
¥Y,(0)= ﬁlavuk;“‘ﬁ(‘)r +=0, 1, -, n1, jm=]1, N

where A1, «-,1, are unknown complex parameters with module 1, Agy, :++, A, are unknown
complex parameters with module 1, Ag41, -++, A, are unknown complex parameters with module lesy
than 1, Ay, -+¢, A, are assumei distinct, p assumed known and g unknown. a6, ke=el, -, p, jml,
»+s, N are unknown complex parametors.e,(¢), ¢=0,1, «--, n—1, jm1, ..., N, are i..d. complex
random noise variables such that
Ee1(0), E|e1(0)|*==0? 0<o?< 0o, E|e1(0) <00
. and o? is unknown. This paper gives:
1. A strong consistent estimate of ¢;
2. Strong consistent estimates of Ay, -, A, o? and |ay|, k< q;
8. Limiting distributions for some of these estimates;
; 4. A proof of non-existence of consistent estimates for A, and a,,, k>q.
5. Adiscussion of the case that N —>oo

§ 1. Introduction

In signal processing, the following model is extensively used:

Y (5= Badi+e ), (1.1)
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§=0, 1, +-+, n—1, §=1, 2, .., N "
where A4, :-, A, aTe unknown complex parameters with module not grester than one,
and are assumed distinct from each other, ay;, k=1, 2, -, p, j=1, 2, ..., N, are
unknown complex parameters, 6;(t), t=0, 1, <+, a—1, §=1, «, N, are i.i.d. complex
random noise variables such that :
Eeé,(0)=0, E8:(0) e:(0) =02, 0<0*<oo, . (1.2)
Elex(0) *<o, @)
where ¢® is unknown. Throughout this paper, ¢=«/—1, 4, A’ and 4A* denote the
complex conjugate, the ira nspose and the complex conjugate of the transpose of a
matrix A respectively.

The model (1.1) can be viewed either as an ordinary time series (single-experim-
ent for N =1, multiple-experiment for N >1) with uniform sampling, or as a model
for a linear uniform narrow-band array with multiple plane waves present, and each
measurement vector (the “snapshot”) ¥Y;= (¥;(0), -, Y,(n—i))’ represents the output
from » individual sensors.

The primary interest in this model is t0 estimate the parameter vector A = (Ay, ++:,
A;)’ based on the data {¥X;, j=1, -«-, N }. In some investigations, for example [1], [2]
and [3], it is assumed that the vector @;= (ay, azj, ***; Gg5)’, j=1, -+, N, are i.i.d.
random vectors with a common mean vector zero and covariance matrix R= Ea,a;. In
other studies, for example [4], it is assumed that @,,, the complex amplitude of the k-
fjasi‘énal in the j-th snapshot, is simply an unknown constant, and it is desired to
estimate these constants based on the data. We shall adopt the.latter assumption in
this paper. )

Various methods for estimating the parameters A and @)’s are proposed in the
literature. If A were known, the least squares (LS) method would give the following
estimate of @,

a,= (A*(M)AQM))2A*MN) Y, j=1, 2, -, N, (1.4
where ’ o ‘
1 1 1 "
. M Ap e Ay
A=A a3 .. Az

Aozt ... A3l
From this consideration, some authors suggested that, after obtaining some estimate
A of A, one substitutes A for A in (1.4) to yield an estimate of a,~.' For estimation of A,
Bresler and Macovski®™ derived the maximum likelihood (ML) criterion under the
normality assumption on {e;(¢)}, which is just the LS ecriterion. Other methods are
proposed such 28 that of Prony, Pisarenko and modifications thereof (e.g. [5], [6],
{%], [8]). Not much is known about the statistical properties of ihese estimates. For
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gsome results in this respect, the reader is referred #0 Bal, Krishnaiah and Zhao™,
Fhey considered the case where N =1 and A,’s are all of module one, suggested an
equivariation linear predietion (EVLP) method to detect the number p of signals, and
1o estimate A and ¢®. They established the strong consistency of the detection criterion
and estimators, and obtained the limiting distributions of related estimators. Analysis
and comparison for some estimates of A are also made.

In this paper, we apply the EVLP method to the general model (1.1). This
method is a modification of a classical method dating back to Prony®%, As pointed
out by Rao™, the Prony method, which features in minimizing certain quadratic
form of the observations, ignores the correlation of related linear forms therein, and
the consistency of the related estimates is in doubt.

Roughly, the EVLP method can be described as follows: Oonmder the se$

sz{b= (bo, %y byY: 7§o 1bk[2=17 by>07 bm % bp—l complex}- (15)
Define a function Q,(b) as follows:
_ 1 N n=l—p| 9 3
Q,(b) —mjzl Z; ,;:;, bhY;(¢+k)| , bEB,. (1.6)
We can find a vector 8 € B, such that

Q,29,(5) =min{Q,(b): b€ B,} 1.
Let Ay, -+, ﬁ., be the roots of the equation
;":,0 bug* =0. | (1.8)

Then A, is taken as an estimate of A, k=1, -+, p.
For considering the asymptotic properties of the estimates, we shall distinguish
the following two cases:
Oase (i): N i8 fixed and n tends to infinity;
Case {ii): n is fixed and N tends to infinity.
. First, consider case (i). Put

A={k: | M| =1, 1<E<p}, 4°= {k: | M| <1, 1<E<p}. 1.9
‘Without loss of generality, we can assume that
A={1, 2, ..., ¢} for some ¢<p. (1.9

‘We shall show in the sequel that there will be no consistent esiimate for A,, EE A°,
when A°#@ (c.f. Theorem 4.1), and if A°%@, the above procedure fails to0 provide
consistent estimates for Ay, ++, Ag(c.f. Remark 3.1). In view of this, it is important
10 seek for a consistent estimate ¢ of ¢ A#(A4). This enables us to usé g to replace p
in procedure (1.5)—(1.8) t0 obtain estimates of A, -+, A,.

Having obtained estimate A of A, estimates of @,’s can be obtained by replacing A
by A, 28 mentioned earlier. A¥ a first look it would suggest that the estimates of @,’s
0 obtained should be consistent when A is a consistent estimate of A. In fact, this is
not true. The reason is that in order t0 get consistent esiimates of @,’s by this method,
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%7 —Ar shonld be of the order 0,(1) for r<n—1. But usually &,— 4, is only of the order
0,(1/~/n), and A~1—23~* cannot have the order o, (1) However, it is possible to
estimate !ay,| conmstently, where k=1, 2, .-, q, j=1, 2, +=-, N
In Section 2, we give a detection procedure for g, and give some estimates of A;, o*

and |ay| for k=1, «-, gand j=1, 2, .-, N. In Section 3, we establish the strong
consistency of these procedures, and find the limiting distributions for some estimates.
In Section 4, we show the non-existence of consistent estimates for A; and ay;, where
k=g+1, e+, p, j=1, e, N, Finally, Section 5 is devoted to a brief discussion of case
(ii). :

. The strong consistency of the LS estimation of A;, ¥€ 4, has been established im
{12].

§ 2. Detection and Estimation Procedures

In this section, it is desired 1o determine g=#(A4), and to estimate Ay, o® and
lox;!, k=1, 2, -+, @, j=1, 8, -+, N (refer to (1.9) and (1.9)’). Throughout this
soction, N is fixed and n tends 0 infinity, and the following conditions are assumed:

Mgkl k=1, 2, oo, g M#EM for k1, k 1=1, -, g, (2.1)
and i
N
Z}Ia.,|>0 for k=1, 2, ---, gq. (2.2)
1

For detection problem, we also assume that (1.2) and (1.8) are satisfied. For r=0,
1, 2, .-, p, define a set of complex vectors

B,= {b(')- B, -, BEYBO>0, and S [50]? -1} (2.3)
| 20)
and a quadric form of & - '

| g B e e as
Put’
Q,=min{Q,(b"), b€ B,}. , o (2.5)
Choose constant O, satisfying the following conditions:
lim 0,=0, lim«/ "2 0,/~/log Togn = oo, (2.8)

Then we find the nonnegative integer ¢<<p minimizing
I(r)=logQ,+¢0., r=0,1, -+, p, @.7)
a.nd use § as an estimate of q-
Note that if 5 = (B, «--, 57) satisfies

Q'=_].._.__§‘—§"' éz(r)y (t+k) 3
N(in—r) 8 S |5 k24 7 ’

then Q, is the smallest eigenvalue of the matrix
f(')g(‘pg;))y }, m=0, PR S
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and 8 is the corresponding eigenvector, where
N n-1-r

52:1\/_(751—77 22 LY (ttm), b m=0,1, -, . (2.8)

Put Ay=exp(éwy) for k=1, ---, g. As shown in Section 8, with probabiliiy one, we
have ¢ =g for n large. Hence, to estimate w,, -+, ag, without loss of generality, we can
assume that ¢g= 4 (4) is known. For simplicity we write I 9=1", $@=4,,, etc. Let
65— (b, -, 8)'€ B, be a eigenvector of I' associated with its smallest eigenvalue.
Under the conditions (1.2), (2.1) and (2.2), it can be shown that with probability

one for n large, the equation
B(2)2 3 bt =0 (2.9)
has g roots, namely gy exp(idy), k=1, 2, -+, g, where 5,0, &€ (0, 2a), k<q.
Further, @, furnishes an estimate of o2,
To estimate !at,[, b'=1, 5 Qs j‘=1, aoey N, write i.,-‘exp(i(ﬁ,,), k‘=1, vy, Q) and
write approximately (1.1) as

Y;(t+0) ay M 0;(¢+0)

Y,t+1 - iAg t+1

,(: ) ~ 4, a2: : |, e;(f) (2.10)
Y;(t-l'g—l) a,,;l.& Gj(t"’q—l)

£=0,1, -, n—g, j=1, ++, N,

1 1 1
2={11 I 3

where

ig—l ig—l vee ig—l
Put 1= = (fisn), 1, m=1, 2, -, g- Motivated by (2.10), we propose the following
estimate of |ay|? k<g, ]<N

ault=(mty B 3 ariari-n| - 3l ) (2.11)
n—g+1 == ! s e + ’
where for any real z, -
(@) {:c, if z>0,
@ ==
Y lo, if =z<o.

Remark2 .1, If we consider the more general model
P
Y ,(t) =ao+ anhi—i—ﬂf(t)a (2.12)

t=0, 1’ seny rn—l, j_—_-]_, seey N’
where ao; is an unknown constant, Ay#1, A% A for k+1, &, I=1, .-, ¢. We can use
n—-1
do; = ‘go Y ;(t)/n to estimate ag;. Then the above procedures of detection and esiimation
can be used with Y,(¢) replaced by Y ;(3) —doy.



§ 3. Asymptotic Behaviour of the Ddetection
and Estimation

In this section, we establish the sirong consistency of the detection and estitnatior
procedures proposed in Section 2, The asymptotic normality of some estimates is alsor
established. Throughout this section, N is fixed and n tends to infinity.

Some known results are needed in the following discussion. For convenience of
reference, we state these as lammas.

Lemma38.1 Let {X,, n=>1} be a sequence of independent real random variables

such that i E|X,|<oo. Then 2 X, converges a.s.

=1
Refer t0 Stout([18], 1974, p. 94).
Lemmg 8.2. (Petrov). Let {X,, n>>1} be a sequence of independent real random

variabl & with zero means. Write BE=§] EX%and S.=2X,. If
=1

=1
lim inf B;/n>0
and E|X;|*"M< K <0, j=>1
for some constants K and 6>>0, then
lim sup 8,/(2B%loglog B:)/2=1 a.s.

For a proof, the reader is referred %0 Peirov ({14], p. 306) and Stout ([13], pi
274).

Lemma88. Let A= (as) and B=(bp) be two Hermiitian pxp matrices with
gpectrum decompositions

).
A= Zomm;, 828,39,

and B= 3inoitl, MA>eh,

Further, we assume that
A,,,,,+1=-"=Z.,=X., =0y <+e- <Ny =D,
M>Ey>ee >4,
and that lan—bil<a, j, B=1, 2, -, p.
Then there is a constant U independent of &, such that
(i) |8s—2,!<0Oa, k=1, =, p,
i D wmui= 3 000+G with

k=g +1 k=ny 1+

GM=(g¥), (g¥|<Oa, 3, k=1, s, p, h=1, +o, 8.
Refer to [15].
Lemma 384, Let {X,, n>>1} be a sequence of i.i.d. real random variables such
$hat EX;~0 and EX3}<oc. Let {au} be a double sequence of real numbers such that
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(G, <Ok~%? for all k=1, nz>1,
and M ar,<On* for all nx>1,
k

where a>0 and J<oo are constanis. Thien we have
lim Ea,.;,Xk—O a.s.

n—so0

Refer to Ssout ([13], p. 231.)

Lemma3.5. Let g.(z) be a sequence of K-degree polynomials with roots o, --,
oz for each n, and let g(z) be a k-degree polynomials with roots 2y, -, 2y, k<K.If
9.(z)—>g(x) as n—>o0, then after suitable rezrraigement of z(™, ---, z{™, we have

oMz, j=1, 2, «-+, k and |z§¥|—>o0, j=F+1, .-, K.

See Bai( [16]) .

Theorem 8.1. Suppose that in the model (1.1), p is known, and the conditions
{1.2), (1.8), (2.1) and (2.2) are satisfied. Then

lim g=g a.s.

Proof. Assume that ¢=#(4), p=max [A] <1, and max {|ay|, 1<E<p, j=1,

2, «++, N} =K. Under the model (1.1),

o=y B 2 LITDY (i+m)

1 N mn-1—r 9

=2 > (2 '“akr*'ﬁf(t*”))( Eh""'a;.,+o,(t+m) ), 3.1)

Nn—r) i1 o
where I, m=0, 1, <, v, r=0, 1, ---, p. We have

1 N "-ﬁ"f é Aitig ’( i ALtmg l+ é AL+, ()
N(n—r) 15 = xagh A N B et * s
K _ < p’K? _ (1
o (p—0p t§o P <m-'_p)—0 ;), b m=0,1, -, p, (3.2)
By Lemma 3.1, i}p‘ie;(t+m)| converges a.s., and
=0 .
1 » N p=1=r ] =
Nin—r) F = k=§-1 2 axs6; 4+ m)l
Kp—g) XL &S .
<7VT%~_'72)—,§1: gp“s;\t+m)|=0<%) a.8, 3.9)

By (3.1)—(8.8), with probability one we have
N
(r) Z Am l( 321 Iakjlz)

1 N _ Tiem 1 n=—1—-r
NZauax;)nkM; 2—0 (Mehx)t

n—r

LS e (1t m) )
T =0

1-

F (= 7
q -— 1 X 1 b | —
+2Ak IN—EGJ‘,( go H' 6;(t+1)>

F=1
N n—=1-r
+—1_-2 E 6,\t+l)6,(t+'m)+0(—];)
im0 ]
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st e
Write A,=exp (éa), @€ (0, 2m), k=1, 2, =+, . Since wysw, for E%}, we have

umo(2) @5
By Lemma 3‘.2. .

- log log n _ J loglogn ‘
Jg. J——’n———) a.8., J;,. O( —-—';-)I——-—) a.8. (3.6)
By the law of the iterated logarithm of M —depéndencg sequence,

o(Jﬁi%ﬁ), for 1% m, , ,
o= 1. a.8. 3.7
[b'—’+0<\/—12g—%g—3), for I=m,

Put

4

. Do W=

3. 1 X a .. 13 2
A—dmg[FEMu\ » ° 7"“%‘“‘" ]’ (3.8)
r(r)=021r+1+gr)A_Qr)..

e
Q("’=‘ Al o2 e A2
-

© R OAp e AT -

q
Then, by (8.4)—(8.8) we have
‘loglogn
W) JY(n
fo_T +o(\/ Joelogn ) a8, (3.9)
Lot 8=+ >0, and 6°>+-- >0, be the eigenvalues of P apd I'® respectively.
By Lemma 3.8, . | "
, 9(kr>=0<tr>+o(~/.12%_”1) a.8., k=1, see, r+1, (3.10)

Since rank (QMAQ"") =min(r+1, ¢), we have
0h>o* for r<lgq.

#u=0* for r>gq. (8.11)
Since =07, we get .
lim Q, =0, >0 a.8,, for r<g, (3.12)
.and
1@ ~o*| =o(‘/l°£.lq;£ﬁ> a.s. for r>gq. (3.18)

From (2.6), (2.7), (8.12) and (8.13), it is easily shown thas, with probability one
for n large,

I(g)<I(r) forr+gq, 0<r<p,
.and, by the definition of ¢,

J=q.
"Theorem 3.1 is proved.
In the sequel we assume that ¢ is known. For simplicity, we write o p y P

Dy 69=0, Q0 =0, otc.
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Theorem 832. Suppose ihat in the model (1.1), the conditions (1.2), (2.1)
and (2.2) are satisfied. Then, for appropriate ordering, we have
lim &y=wy 8.8, k=1,2,:,4q,

and lim Q=0 a. 5.

Proof. Under the conditions of the theorem, (3.2)—(8.5) still hold. By Lemma
8.4,

0, forl#m,
lim J .-={ 8.
e O a? forl=m, a.8
I4 follows that
lim £= (=061 +QAQ") a.s. (3.14)
Define
B(®) 8b, [T (6= ) Qo+ bug-++--+ beet (3.15)

such that 5,>>0 and iﬂ (82]2=1. Then b= (b, -+, b)’ € B, and
k=

QAQ*b=0, I'b=0ob. (8.16)
Let §,>+-->0,41 and 6,>+-->0,,, be the eigenvalues of I’ and I' respectively. Since
rank (QAQ")=g, we have '
01=---220,>044:(=0%). (8.17)
By (38.16) and (3.17), b is the unit eigenvector of I' associated with the unique
gmallest eigenvalue of I'. Now b= (B, -+, B,)'EB, is the unit eigenvector of r
associated with its smallest eigenvalue Q. Using Lemma 3.3 and (3.14), we get
lim b=b a.s., and Hm Q,~0* a.s. (3.18)

By Lemma 3.5, for appropriate ordering, we have
lim py exp(idh) ~exp(dn) a.8., k=1, 2,0, ¢,

which implies that
lim gy=1 a.s. and limdy=w, a.s., k=1, 2, -, q.

n—oo

Theorem 3.2 is proved.
Theorem 3.3. If (1.2), (2.1) and (2.2) hold, then
lim |as|?= |aug|? a.5. for k=1, «, g, j=1, ++, N.
Proof. By the Theorem 3.2,
Iim A=M a.8., k=1, ey g

Define
i 1 1 -1
Ay A A
o A

APt AgT A2

s 188,



"Then we have

ﬁ’b"”‘b a8, l, m=1, -, 9
which implies that

q 1, k=m
. foalel _{ y ’ )
‘%E Mt Ot 0, kskm, a.n.

By (1.1), (8.19) and (3.20), for k=1, ---, ¢ we have
n— 2
P z"mur,<t+z—1>|

n—q+1 %
1 N lt+l—l ,
gE=rEs-ip il B ettt 1)
- e S oL PR P e
oo q_l_lt:oEb-ﬂ-;x- Gug| *0

+ 3 e H=D+ 33 | G+i=1) (-0 |
3.9, 1

(3.19)

3.20)

2L S amito® + 3 mea+i-D+ 3 lo6+1-1)1-0() |

n—gq+1 =
221

mZ{Iaw] + 2 Walbrm®; (41 —1)e;(¢+m—1) +o(1)

+ g(lw(tﬂ-—l) [+ e;(4+1—1) l)- o(1) +aul f_s_‘,ly,,,a,(g_;.;_l)

+ayhl lﬁ; ,‘,,,,,e,(t+i—1)};

By the SLLN,
n-—-g q _— a————————
lim — q+1-§=] § Hoipum8; (§+1—1) 8,6+ m—1)
( 121 K limOimo? = Z |um|%0*® a.B.

hm———
ntes N— q+1 1=0

By Lemma 3.4,

e To— q'—+1 g‘hﬂ-kzﬂue,(t+l -1)

2 Ao;(3+1—1)=0 a.s,

1
o Eakiﬁbﬂ{]ﬂ n—g+1 i=o

By (3.21)—(8. 24),
x—g ‘
|

b Y (341 —=1) 2= [y |2+ g || 20, a.s.

=1

s n—g+1 =0
From (2.11), (3.18), (3.19) and (8.25), Theorem 3.3 follows.

S ey t+1-1) [+ [o,(6+1-1) |) =o' +Ela@)], s
~ (3.23)

3.21)

(3.22)

(3.29)

(3.25)

Remark 8.1. If g<pand we estimate Ay, +--, A, using (1.56)—(1.8) directly, then

‘we have
hm -f‘(’)—_‘r(’) a.&

f ]

and 0Pz 200 >08), = -+ =01 (=0*) are the eigenvalues of I"®, All eigenvectors of
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I'® aggociated with o® consist of a (p—¢) dimension subspace. Assume tha$ 5"’€B,

such that ] .
Qy(6) = min{Q,(b®):b» € B,},

then & is the eigenvector of I agsociated with the smallest eigenia.lue of ['» We
do not know whether 8 converges. In general, we do not know whether there are g

roots among all roots of ﬁ bPe* which tend to {A, k=1, 2, --, ¢}.
k=0
Remark 8.2, Suppose that in the model (2.12), the condition (1.2) hold. Then
=1
Go; = NY,(#)/n is a strongly consistent estimate of ao;. For those procedures of detec-
t=0

tion and estimation discussed in Remark 2.1, Theorem 3.1--3.3 are also true.
Finally, we establish the asymptotic normality of Q; and (&, k=1, 2, -+, ¢). To thig
end, we assume that under the model (1.1), the conditions (2.1), (2.2) are satistied,
and ¢(¢), j=1, 2, -+, N, =0, 1, «=-, n—1, are i.i.d. complex variables, e,(t) =g, (t)+
$9;2(3), 6;i(%) and ng(t) satisfy the following conditions.
Ee;(t) =0 Heii(t) = Ee§a(t) =0/

Ee;(t)6;5(t) =0 and Var(|e;(t) |?) =ao* with a>0. " (8.26)
o Tlgerereenes iiq
Uq Wo § ‘t
Put U~ i (3.27)
Ut
i

where 1, %y, **, 4, are independent, and
(1) uONNr(O) ao‘)r
(ii) we~N(0, o*), k=1, 2, -, q. (3.28)
Here N, N, denote complex and real normal distribution respectively.
Deﬁne b= (bo, b1, soe, bq)' by (3.15). Pu‘h
i 1 %‘ ‘2 1s ‘2
A—"d]ag[z‘v‘ﬁ\a‘lil y Ty NE [ Bqj :l:

I=

;.x

1 1 1
o -
Q_‘ hl 12 "'}—\q
{ M A% Ry
cn= /N(’n_g)(Qq—'oz)r Tnk=\/m(ﬁk—1)’ (3‘29)

Ank‘——-‘\/m(\ak—'wk)v k=1, 2, ¢
Tn=(Tn17 b an), a’nd An= (A,.]_, "ty A"e)'.

Write B(z)= kﬁ; b,
c N s @ pe
D(exp(iw)) U B(e")
and



G=di=8[D(°!P(lwx)), s, D(exp(day))). (3.30)
‘We have the following. ¢
Theorem 3.4. Suppose that in the model (1. 1), the conditions (2.1), (2.2)
and (3. 26) are satlsﬁed . Then we have -
Li—>=b'Tb, (3.1)
T, +id.-2>G-14-1(Q"0)-*0"Ub, (8.82)
a8 n—>oo, C
Here we quote the following
Lemma 8.6. Suppose that the condition (8.26) hold. Then

- D
o T B M~ o

b=1, 2, oo, q, ‘7=1’ 2, oony N’ lgo’ 1, ceny

1 n-1g - D o | ' 3 -
T 2 (eHDP =0 — wp j=1, -, N, 1=0, 1, g
1 Alog ’ " .p i o _ o
/n —g ?‘_(:) e;(t+l)e;(t+m)—>U_p,y J=1, < N, 0<m<I<g.

~n— =

ﬁere' 1’8 and v,;’ are independent of each otﬂer, and

(i) %y~N,(0, ac*), j=1, -+, N.

. (1) uy~Ny(0, o), jw=1, s, N, k=1, ¢+, gq. . (3.33)

(iii) 'v;,,~N.,(0, o), ]=1 < N, k=1, -, q.

Refer 1o Lem.ma 4.1in [9] -

The proof of Theorem 3.4 Tuns a.long the line a8 m the proof of Theorem 4. 1 in
[9], s0 the details are omitted.

Remark 8.8, For the model (2.12), Theorem 3.4 applies those estimates discussed
in Remark 2.1, ' ' o
§ 4. Non-Existence of Consistent Estimates

of Ar,kC 4¢ and ai,--,an when A°+¢

Throughout this section, N is fixed and n—>co. For non-existence of consistent
estimate of A,, k€ 4°, we have the following

Theorem 4.1. Suppose thai in the model (1.1), e;(¢), j=1, «+s, N, t=0, 1,
=+, n—1, are i.i.d., ¢;(}) ~N (0, ¢%) with 0<g®><oo, and $he parameter space of A=
(M1, +++5 Ap)’ cOntains at least +wo points A® = (AP, .-, AP)’, (=1, 2) such that for some-

I<I<p), M”qﬁ}u{”, (AP <1, k=1, 2, andJEI’.a{,I >0. Then no consistent estimate of

A, exigts ag N is fiaed and n~>co.

Proof. Assume l=p. It suffices to show that a consistent estimate of A, cannos
exist even when {ay} and o® are known. Hence, without loss of generality, we assume
o*=2,
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Insroduce the prior distribution H:
HAWD)=H(A®) =1/2
and the square loss |d—A,|2. Write

fr=m) oxp{— 2 3 5 ¥, " diay— 4an| '} k=12,

Under the above prior distribution and loss funetion, the Bayesian estimate of A, is

Ao=(fMP+fAP )/ (f1tfa).
Denote by R(A,) the Bayesian risk of i,, we have

R() > B(1%,—AP|? | k=1)

L [ w

—1
Noticing that Y ,(t) — ::21 May— (ASY)'ayy=6;(t) when k=1, we have

tog L2~ 5 51 B lay 171 (A0~ 1)1
1 =1 t=0

- ,l?;‘ 2;; (AP — (A;")‘(a,,-e,(t)}. (4.2)
8ince |AV| <1, |AP| <1, we have
tim 315 (a2 (40)1 = (7)1 <00 SENCE

Also, by Lemma 3.1, the second term of the right hand side of (4.2) converges with
probability one t0 a finite random variable. From this, (4.2) and (4.3), it follows that
{here exists a positive constant K such that

P(fo/f1>K |k=1)>1/2
for n sufficiently large. Hence, form (4.1) we obtain

K 2
) AP [P0 (4.4)

1
R(A)>

for n large.

But if £, is a consistent estimate of A,. then define

AP, I (£ < &= AP
" { AP, otheiwise,

‘We shall have Z. 255 A% for a=a®, k=1, 2.
Since £, is bounded, by the dominated convergence theorem, we have
R(E) =1/2E(1&.— AP 2| A=2AD) +1/2E (£, — AP [*[A=2®)—0 (4.5)

as n—>oo, where R({,) is the Bayesian risk of £,. But this contradicts (4.4) in view of
the fact that A, is the Bayesian estimate of A,, and the theorem is proved.
For the similar problem of &;= (ay, ***, @p;)’ when A°%®, we have the following
Theorem 4.2, Suppose that in the model (1.1), e;(t), j=1, <=+, N, t=0, 1, ---,
n—1, are i.i.d., 6;() ~N,(0, 0?) with 0<g?<<co. Also, some component of A, say A,, has
a module less than one, and Ay% A, if #%1. Then no consistent estimates can be found
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fOl‘ 0,1, e, d,y.
Proof. As in the proof of Theorem 4.1, we may assume that Ay, ++-, A, and a,,
k=1, --., p—1, j=1, .-+, N, are known. Also without loss of generality we may assume

1
N=1. Write ¥,(t)— S auMi=X (1), and for simplicity, write A,=A, g¢,=8. Then the
P ? ]

model (1.1) is reduced as the following linear model:

X (@#)=BAt+e(t), t=0,1, -, n—1, (4.6)
where 2 is known and |A|< 1. It is derired to show that there is no consistent estimate
for 8. '

Let B denote the LS estimate of B. By a theorem of Drygast®™, the consistency
of B is equivalent to Var(8)—0. But from

-1

é=(2 TEAN gwx@),

and Var®) =a* () in1) ot 119 %0,

we know that £ is not consistent.

Since {6(i)} is a sequence of i.i.d. variables with a common normal distribution,
it follows by =a theotem 'of Ker-Ohan Li®® that there cannot exist any consistenk
estimate for 8. The Theorem 4.2 is proved.

- §5. The Case When n is Fixed ond Noo

In this section, we assume that n>>p-+1 is fixed and N tends to infinity. Oonsider
the model (1.1). Assum etha$ Ay%A; if k#1 (note that the condition |[Ax|=1 can be
dropped), and that (1.2) is true. We can use the EVLP method described in section 1
t0 obtain estimates 3,’s of A’s (refer t0 (1.5)—(1.8) and 50 on). We have the follow—
ing '

Theorem §.1. Suppose that under the model (J..i), MM if k%1, and (1.2)
holds. Also, n=>p+1 is fixed and

N-voo N Ea,a’=w

exists, where @y= (ay, asj, ***, ag;), = (Pyn)? is a p X p positive definite matrix. Then,
A1, ---, &, and Q, are strongly consistent estimates of Ay, *++, Ay and o°.
Proof. By (1.5)—(1.7), Q, is the smallest eigenvalue of the matrix I*= (§;,), ¥
m=0,1, -, p, and b is the corresponding eigenvector, where
'?""N—wlfﬁ é ST GTD Y (6+m), L me0, 1, p. (5.1)
By, 1),
1 "I t4m 1 1
‘91-"!’;:1—%—_; 1_20 AMAE 2 G0y
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1 n~1i—-p N z
+——N(n—p) = Ele,u+ ) 6;(¢+m)
AL+ Ly +Isy+ Lix. (5.2)
‘We have
. p Y m
gghwk'h}:}]h‘ 'n——p 2_% Mirdy, ¥, m=0, 1, -, p, (6.8)
By Lemms 3.4,
hml'w—-hm Isx=0 a.s. (6.4)
By the SLLN,
];m .I4N 026“," a. 8., l, m=0, 1, vee, p. (5.5)
Write
1 1 e 1
VR VR W
0=} 3} A} A | Qi=diagA, -, A,]. (6.6)
(P+1xp . . .
A M e A

By (6.2)—(5.5), we have

where

}’imf=1" 8.8. (6.7)
I'=0’I,4+~— ; aa;qrala' (5.8)

Noticing that rank (.2 DD}'IFQ‘D‘>= p, we can finish the proof by repeaiing the

argument used in the proof of Theorem 8.2.
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