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Abstract

In this paper we consider the maximal severity of ruin and the cost of recovery which are
proposed by Picard (1994). We will improve and extend the results in Picard (1994) from the
classical risk model to the model disturbed by diffusion.
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§1. Introduction

We consider the compound Poisson model disturbed by diffusion. Let (R;);>o denote the

surplus model of an insurance company and R; can be written as

N,
RtZRo—i—Ct—}—ZWk-l-Bt, t>0.
k=1

Thus the constant Ry is the insure’s initial capital; the premiums are received continuously at a
constant rate ¢ per unit time; (IV¢)¢>o is a Poisson process with mean per unit time A; (Wj)x>1 are
independent random variables with common distribution function P(z) which has density function
p(z), mean value p and P(0) = 0, and (By);>0 is a Wiener process which has mean value zero
and variance 2Dt, D > 0 for fixed t; (N¢)i>0, (Bt)i>0 and (Wy)r>1 are mutually independent. We
assume that

c—pi>0.

If necessary, we shall suppose that for a > 2, m,= E(W) exists. As usual we define the time of
the ruin as T' = inf{t|t > 0, R; < 0}, the first time of the surplus trajectory up crosses the level
zero as T' = inf{t|t > T, R; > 0}, the probability of ruin as ¥(u) = P(T' < oo|Ry = u) and the
survival probability as ®(u) = 1— ¥ (u). The considered problems are that when ruin has occurred,
for continuing activities the company needs a loan to pay its debt, and then will pay the loan by

its activities. Theoretically speaking, when ¢ — Au > 0, the loan can be pay by the activities of the
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company because the number of the surpluses of the company will have been more than any given
number sooner or latter (cf. Doney (1991) for example). On the other hand, practically speaking,
if the amount of the loan is too large or alloted loan time is too long, the company will be not
able to get an essential loan from a loaner. Therefore before deciding to continue activities or not,
the company should investigate that how deep and how long the company will stay in the red if
activities are continued. It means that an index T' — T and another index ,he |R:|, and even
more some quantities which stand for common effects of [T',T'] and {|R;|,T < t < T'} such as

' |Rs|ds need to be evaluated. The problems are studied by Picard (1994) with respect to the
clgssical risk model. He consider the quantities such as

T
M= max |Rl, I= /T | Ry |dt
I

and the more general index / h(R;)dt where the function h is given (for example h(z) = z?).
According to Picard (1994) MTis called the maximal severity of ruin, and I is the cost of recovery.
The approach is made in Picard (1994) by looking for a martingale, which is based on an intuitive
fact that within finite time all sample pathes of the surplus of the classical risk model are uniformly
upper-bounded. In this paper, the compound Poisson model disturbed by diffusion (R);>¢ can
be considered as a surplus process of the company with random errors (6.B;);>0 which are caused
by the activities of the company. Due to Wiener process’s strange behavior, with strictly positive
probabilities Wiener process can reach any given levels within finite time, so that the above fact
is not valid if the classical risk model is disturbed by diffusion. Motivated by the idea of Picard
(1994), we will make approach by using Itd’s formula to look for a local martingale, which is in
control of the Wiener process’s behavior. In this paper it merits our attention that there is a special
term D(f'(x))? in the expression of the function g(z), which is irregular in study of the case that
is disturbed by diffusion, so that some final calculation results in this paper are influenced by

both the regular term D f"(x) and the irregular term D(f’(x))2. Also due to the Wiener process’s
TI

behavior when give some sufficient condition for existence of / |R;|¥dt, we first have to prove
that existence of the nth order conditional moment of 7" — 1T1 and existence of the nth order
conditional moment of M are dependent on existence of the nth order moment of Wy. In order to
calculate some conditional moments, in theorem 3 we propose some formulae which are different
from those of Picard (1994). In addition, in Remark 1 and Remark 2 of the following sections we

indicate two omissions in Picard (1994), which are apt to be oversighted.

§2. The Maximal Severity

Theorem 1 For M = max{|R;|,T <t <T'}, we have
U(u) — T(u+ 2)

wi-ve) 0" .

P(M < z|Ry =u,T < ) =
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P(M =0|Ry = u,T < o0) = ‘f’pd(t‘)); (2.2)
PM < AT <00, [Rel =) = - T2e =, 22y>0, (2.3

where ¥ 4(u) denote the probability of ruin from initial surplus » and caused by oscillation.
Proof We can prove the results (2.1) and (2.3) using the same argument as in the proof
of theorem 1 of Picard (1994). In (2.1) letting 2 — 0" and then using L’Hospital’s rule and the
formulae (1.6) and (4.7) of Dufresne et al. (1991), we directly get (2.2). #
The formula (2.2) and Corollary 1 below reflect difference between the classical risk model
and the classical risk model disturbed by diffusion.

Corollary 1
M(y) 2 PRy <y for T<t<T'|T<oo,|Re| =y) =0, y>0. (2.4)

Proof Let z =y in (2.3) and note that ¥(0) = 1. #

Corollary 2

E(M|T < oo, |Rr| = y) = y + /oo Wdz, y>0; (2.5)
E(M|T < oo, Ro = u) = \Il(lu) /000 ¥ (u +f)__\1,%’z(;)‘1’(z) dz. (2.6)
Proof Using (2.3) and (2.4), we derive (2.5) as follows
E(M|T < oo, |Rr| =y) = - /OO 2d(1- 1;#\;&)?’)) +yTI(y)
B 1—U(z—y)\|® *® 1-¥(z—y)
= (1~ 1-¥(2) )L, +/y (1- 1- () )dz
_ T U(z—y) - ¥(2)

The formula (2.6) follows from (2.1). #
Remark 1 In the case of the classical risk model obviously M > y, which implies corre-
sponding formula in Picard (1994) is not valid. The expression of that formula should be

T U(z—y) —V(2)

—eG) 9

E<M|T<oo,|RT|=y):y+/
Y

which is corresponding to (2.5) and can be derived by following the proof of formula (2.5).

§3. The Cost of Recovery

Let Y; denote E Wi, Ft = 0{Rs,0 < s < t} which is the o-field generated by Rs for 0 < s <t
and G = o{Bs, s < oo} which is the o-field generated by B, for s < oo. The lemma, stated below

is used in the following station.
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Lemma 1 Y;, N; and B; are F; measurable.

Proof Set AR; =R;— R,—. Wesee that Y; = — ) AR, and
0<s<t

Ne=inf{n;0<t; <---<t, <tand 0<Y;, <---<Y; }.

The above expressions imply the validity of the conclusions for Y; and NV, and consequently for
B;. #

We now look for a convenient local martingale (U, F¢)¢>0 by using It6’s formula. Let f and

g be two real functions (g continuous, f of class C?) that are connected by the relation
9(x) = =X —cf'(z) + D(f'(2))* = Df"(z) + AE[exp(f(2) = f(x =W))], z€R,  (31)

where R denotes the real set and the random variable W has the distributions function P(z).

Theorem 2 With the functions f and g stated above, we choose

Uy = exp ( — f(Ry) — /Ot g(RS)ds). (3.2)

If for any a € R, —f, —g, e Flef' — D(f')? + Df"| admit an upper bound on (—o00,a], then
(Ut, Ft)e>o is a local martingale.

Proof Applying It6’s formula (cf. Tkeda et al. (1981)) to the semimartingale U, with (3.1)
yields

U = exp(—f(0)) + / Uy [—cf'(@)]ds + / Us- [~ f()]dB,
t t

+ / U, [~g(2))ds + / U,- [D(f'(x))? - Df"(z))ds

+ / Uy {expl—f(@ — Wi 1) + f(@)] = 1}dN,lacr_
t t

= ep(—1O)+ [ Uel-f @B, — [ A-Efexpl=f(z — W) + f(@)] - 1}ds

0 0

+/0 Us-{exp[—f(x — Wn _41) + f(2)] = 1}dNs|o=r__ - (3.3)

Let

Tn, = inf{t : |B¢| > n}, n=12,---

From the conclusion of Lemma 1 we know that 7, is (F;)s>0—stopping time and it is well known
that 7,, < oo (for example see Revuz & Yor (1991)). For any positive number r which is less than
t and a positive integer m, let rp, = r + k(t —r)/m, k = 1,2,--- ;m. For any positive integer n

noting that 7,, is also measurable on the o-field G and using the conditions stated in Theorem 2,
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we have

E[( /rt/\rn U, {expl—f(z — W _11) + f(2)] l}st|z:Rs_) ]:r]

NATn

= lim 5 E{[Upan-{opl-fla - W+ 1)+ f@)] -1}

m——+0o0 k=1
(rk/\‘rn)_:“fr}

. (NT
=l 3 Ell s Uy Eexpl=f (@ = Wiy _11) + f(@)] - 1}

m——+00 k=1

k+1ATn Nrk/\rn)lq::R

: (Nrk+1/\rn - Nrk/\rn)l]-' _\/G)|:c=R _ |fr]
"k "k
m

= hm > Bl sn)U, - (B{exp[—f(z = W) + f(@)] = 1}lo=r )

m——+0o0 k=1

) E(NTk+1/\Z - NTk/\Z)lzzTn |‘7:7']

= dim 8 Elli o Uy Eexpl=f (@ = W) + @) = Dlomr,_
“ATkg1 AT — TE A Tn)|fr]

tATh
e( [ 7 UEfespl— S~ W) + £)] — )\dslomn, | 7,). (3.4

NTrn

The equality (3.4) means the terms
¢
([ U texpl=s (@ = Wy _42) + £(&)] - 1}aN,
0

t
A [ U Elexpl=fa ~ W) + £(@)] - 1)dsloon, |
0

>0
is a local martingale, and so does (Uy, F¢)s>0 from (3.3). #

Corollary 3 In addition to the foregoing hypotheses on f and g, we suppose that f(0) =0
and f >0, g >0on R_, then

E[exp ( - /TT’ g(Rs)ds) ‘T < oo,RT] — exp(—f(Rr)). (3.5)

Proof Using the optional sampling theorem to the local martingale (V;, F)i>T, where V; =

T
Ui exp (/ g(Rs)ds), we have
0

E(Vr Arant| Fr) (my ntsT) = VT I(7) At T) -

ButforT < s <T', R, <0, which with the hypotheses on f and g means that V., a¢ is uniformly
bounded for 7,, At > T, thus by letting 7, At — oo and using the dominated convergence theorem,
we get

E(Vr | Fr, T < 00) = Vr.

Consequently by the strong Markov property of (R;)s>0, we have

E(Vir |T < oo, Ry) = Vir
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which is (3.5) due to Ry = 0, and f(0) = 0. #

In order to use (3.5) at best we usually choose f to be a polynomial form as in the following
lemmas.

Lemma 2 Supposing that m; = E(W*) exits for k = 1,2,--- ,n,, we choose ¢, 0 < € <
min{1, (¢ — Ap)/(AKn!n)}, where K = max{A|b1|/(c — A\u),ma,--- ,my}, then when f(z) =
f: bjz?, where by # 0, b;j(—1)7 > 0 for any j, |b;j] < e*'|by| for j = 2,3,---,n, and g is
Jgi_\ien by (3.1), the corollary of Theorem 2 is valid.

Proof It is enough to verify the conditions in the corollary of Theorem 2. Following the proof

of the lemma in Picard (1994), one can verifies the conditions of the corollary if below inequality

(f'(2))* > f'(z) on R-

is valid. In fact, under the conditions of the Lemma 2 the inequality (3.4) in Picard (1994) is still
valid when we replace M by K, which leads to

c— Ap

(f'(@)* = [l f'(2)] > =7

@)= 1" @)] > @) #

Let E.(---) denote E.(---|T < 0o, Rr) in the following parts.
Lemma 3 Forany k=1,2,---,n
(i) Ec(T'" — T)* exists when my, exists,
(ii) E.M* exists when my, exists,
where M = max{|R|,T <t <T'} and m; = p.
Proof (i) o%et f(z) = —ax, a > 0. From (3.1) we have g(z) = ca + Da? + A(p(a) — 1),

where p(a) =/ e~ *dP(y). Let
0

n = ¢(a) = ca + Da® + A\(p(a) — 1). (3.6)

When my, exists, it is easy to see that the kth order derivative function ¢® (a), 0 < a < 1 exists,
continues, is bounded and has ¢'(a) Z 0, 0 < a < 1. We can conclude that n = ¢(a), 0 < a <1

has a unique inverse a = ¢ 1(n), and by mathematical induction for k > 1 we get

(™ m)™®) =

where G(z;,1 <14 < k) is a polynomial of the variables z;, 1 < i < k. By using Lemma 2 and the

corollary of Theorem 2 to f(z) = —axz we obtain

Ec[exp(—n(T' = T))] = exp(—=p"V(n)|Rr]),  n>0. 3.7)

Taking the kth order derivatives with respect to n on the two side in (3.7), and using Fatou’s
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lemma and the formulae as above, for k¥ > 1 we have

E.(T' —T)*

lim_ E[(T — ') exp(—n(T" — T))]
n—0+
= lim [exp(—¢~' ()| Rr|)]¥ - (-1)*
n—0+
= exp(—¢ ' ()|Rr))® - (=1)*|;=0 < oo
Thus E.(T" — T)* exists if my, exists.
(ii) Using the formula (2.3) and integrating by parts, for y = |Rr|, we have

_ /y = zkd(l 3 ¢(;(;)y))

E.M*

_Zk(l N d)(;(;)y)) ‘°° + k/°° b1 (1 N ¢(;(;)y))dz
v Yy
< 21— ¢(;(;)y)) ‘j + ¢Z,) : /yoo (2 — y) — (2))dz. (3.8)

o0
Since E.M* > 0, it is enough to prove / 2P (2 —y) — (2))dz < 0o. We see that
y

[ # 7 we -0 - v
_ [ k-1 I A Y k1
= /0 (z +y)" " Y(z)dz /0 z v,[}(z)dz+/0 2" p(z)dz

k-1

_ . . e . Y
121 C}c_lyl/o zkilﬂw(z)dz+/0 2K (2)dz. (3.9)

(3.9) has indicated the conclusion is valid for & = 1. When k& > 2 from Corollary 1 in Doney
(1991), we know that

/000 e—szw(z) 1 _ C_/l’)‘ _ D +/\3_2(ﬁ(s) -1 +NS)

de=3 o(s) ¢+ Ds+ A s—(p(s) — 1)’

which yields

D+ Xs72(p(s) — 1+ us)] (k=2)

| e = i [Zo

0 s—0t

(3.10)
(3.10) indicates / 2724 (2)dz exists if lir(r)1+[(1/32) - ((s) = 1 + us)]*—2) exists. It is easy to
0 §—

oo

see that (1/s?) - (p(s) — 1 + us) is the laplace transform of the function / (1 — P(t))dt, with
integrating by parts we have ¢

lim
s—0t LS

[%(ﬁ(s)—lws) “ i me—sm-(—x)k—Z /Oo(l—P(t)dtda:

s—0+ 0

R /Ooowk—2./:o(1—P(t))dtdm

= WESD™ (3.11)
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From (3.9)—(3.11) we conclude (ii) is valid. #
From the conclusion of Lemma 3, we obtain he following result:
Corollary 4 When m;, exists, E. / R,’f_ldt exists.
T

Proof Using Lemma 3 and Holder inequality, we have

TI TI
E. / Rf_ldt‘ E. / |Rr|F~tdt < E.MF1(T —T)
T T

IA

< (EMMEDRME(T —T)F)h < 0. #

ni o
Theorem 3 Let fi(z) = > b;’)aﬂ, i = 1,2 are chosen as in Lemma 2, and for a;, as > 0,

j=1
let
saar,) = A= 3 ailefi(a) + Df!)
HE{exp [ £ ailfita) - filo W]} + £ Dlas (@)

=1

If my,, 4n, exists, then

Ec[ili (/TT g, (R1,0,0) dt—)\/ E H (fil@) = filz = W) L
=g (RO F(R] = ulR) o) (312

Proof Let f = a;ifi +asfa, then g(z) = g(x, a1, az). Obviously g(x,0,0) = 0 and for z < 0

|g:1,- (.’E, aig, a2)|
< dfi@)|+ DIf'(@)| + AE[fi(x = W) = fi(2)] + 2D (fi(2))?,  i=1,2.  (3.13)
Using Holder inequality and Lemma, 2, we see that

1/2

T B
Ec[/T (ARt~ < EJ(@ =)/ M nfbf”]

< (B MmN (E(T — T2 e b))
< oo. (3.14)
It is well known that
2aze—"" < ( )1/2 (3.15)
axe . , .

for a > 0 and z > 0, espcially, letting r = a;, a = D/ (f/(R,))*ds and using (3.14), we have
T

E exp 2D/ ]

2 1 i\ (i — n; ng ng
< D(;) n2[b{0) (B, M) /s (B (T — Ty /2y, (3.16)
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Note that the first three terms on the right side of (3.13) is a polynomial of degree n; — 1 with
respect to = and independent of a;. With the dominated convergence theorem and (3.13)—(3.16),

we are allowed to write
Tl

0
%Ec[e){p(_/q« g(Rt,al,aQ)dt)]
T T
= Ec[—eXp (— / g(Rt,Oél,Oéz)dt) / g;i (Rt,al,ag)dt]. (317)
T T
By a similar analysis we can further use differentiation with respect to a; (j # 9) and then we get
8? r
@EC{GXP(—L’ g(Rt,Oél,Otz)dt)}

= Ec{ exp ( _ /TT' g(Rt;a1=a2)dt) [,ljl TT' gh, (R, a1, a0)dt

at]

[ =1 r=R;

_)\/TTI E{ exp [:laz'(fi(w) = filz - W))] ]2[ (fi(z) — fi(z — W))}

_9p /TT’ fl(Rt)fg(Rt)dt}. (3.18)

Using Lemma 2 and letting ; = 0, i = 1,2, we get (3.12). #

Remark 2 In Picard (1994) since g’ (z,r) includes the term (f(z) — f(z — W))? which is
a polynomial of degree 2n — 2 with repeat to x, we see that the condition that m,, exists is not
enough to the validity of the formula (3.9) in Picard (1994). In fact an enough condition is that
Moy, exists.

Corollary 5 If m,, exists, then
(c— M)E(T'—T) = —Rr (3.19)

and

(c— )\,u)EC[/TT, R{_ldt+)\k2i:2 ('Z:)mkEc(/TTI R{—kdt)]

TI
+D(j —1)j - E(/ Rg""dt) =—Rl, j=2--.,n. (3.20)
T
Proof Letting ¢ =1 and then ay = a2 = 0 in (3.17) we have
TI
E.| / 9h, (R1,0,0)dt]| = fi(Ry). (3.21)
T
Note that
' _ ] " & r My o(r)
9o:(7,0,0) = —cfi(z) - Df'(z) — A ;(—1) S fi (@)

= —c-Mfi(e) — DSI@)
DS (—1)’“% S G =1---(—r+1)- bz~ i=1,2. (3.22)
r=2 s j=r
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With ¢ = 1 we substitute (3.22) in (3.21) and then the identification of terms in bg-l) leads to (3.19)

and (3.20). #
Corollary 6

T’ 2
R. ok
Ec(/T |Rt|dt) =5 taplfirl,

h
Var . (T'—T) = l—3|RT|,

T 2
h K2 dms\ |Br|
r _ " o n 3 T
Cov(T T,/T |Reldt) = o= R + (o + 52 S
T’ 3 2 2 3
_ h|RT| h )\mg RT 5h 4)\m3h )\’ITL4 |RT|
VarC(/T Rldt) = =g+ (T+ )T+ (s )
T 3 2 2
2 _ |RT| hRT h_ )\mg |RT|
E(/T Rpdt) = S+ b+ (et o)

where [ denotes ¢ — Ap and h denotes 2D + Ams,.

Proof Use (3.20) for j =2 and j = 3. In (3.12) put fi(z) = fa(z) = biz + boz and
identify. #

Remark 3 Replacing 2D + Ama by Ams with all of the formulae in this corollary we obtain

correspondent formulae in Picard (1994).
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