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Abstract

As we know that the average run length (ARL) is an extensively used measure in statis-
tical process control (SPC) for evaluating and comparing the detection performance of various
control charts. In this paper we not only present the asymptotic estimation of the ARL for the
exponentially weighted moving average (EWMA), generalized EWMA (GEWMA) and general-
ized likelihood ratio (GLR) control charts but also compare the detection performance by the
numerical simulation among the four charts: EWMA, GEWMA, GLR and CUSUM in detecting
the mean change of a stable Lévy process.
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§1. Introduction

The problem of quick detection of change point in a stochastic system has many important
applications, including industrial quality control, automated fault detection in controlled dynamical
systems, segmentation of signals, and so on. To deal with the problem, various control charts, such
as Shewhart chart, the CUSUM, EWMA, GEWMA and GLR control charts, etc., were proposed.
Many studies on these control charts have been conducted by Crowder (1989), Lucas and Saccucci
(1990), Montgomery and Mastrangelo (1991), Baxley (1995), Lai (1995), Reynolds (1996), Box
and Luceno (1997), Ramirez (1998), Hawkins and Olwell (1998), Luceno (1999), Mastrangelo and
Brown (2000), Jiang, Tsui and Woodall (2000), Jones, Champ and Rigdon (2001), Shu, Apley and
Tsung (2002), and Han and Tsung (2004).

As can be seen that all research work in the above literature is based on an assumption
that the observation stochastic system (or process) is subject to the normal distribution or the

variance of the process is finite. In fact, there are many stochastic systems such as the bankroll
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trading volume in the finance network, the return rate of stock market, temperature distributions in
unclear reactors and the volume of annual rainfall, which are neither normal or have finite variance.
These stochastic systems are usually subject to a stable distribution with infinite variance, which
is called a stable Lévy process. Thus, there are two interesting problems in the following which
have received minimal attention. How the popular control charts such as the EWMA, CUSUM and
GLR can be effectively used in the stable Lévy process? What is the performance of the control
charts for monitoring the change point in the process? One way to deal with the second problem is
to estimate the ARL of the control chart, since the estimation of the ARL can establish the clear
asymptotic relations between the ARL, control limit and statistical properties of the observation
processes.

Although an estimation of the ARL for the CUSUM chart has been given in [19], the study of
ARL for the EWMA, GEWMA and GRL control charts in detecting the mean changes of a stable
Lévy process is lack. The main purpose of this paper is to present the asymptotic estimation of
the ARL for the EWMA, GEWMA and GRL control charts and give a numerical comparison of

the three charts in detecting the mean shifts of the stable Lévy process.

§2. Estimation of the ARL — Some Inequalities

We first give the definition of a stable Lévy process (see ref. [1]).
Definition 1 We call X ~ S,(0,3,u) to be a stable random variable, if there exists param-
eter 0 < a <2, 0>0, —1<p <1, and real number u, such that the character function of the

random variable has the following form:

exp{ — aa|0|°‘(1 — if3(signh) tan %) + iuﬁ}, when a # 1;

E[exp{i0X}] = 92 _
exp { —olf| <1 + zﬂ;(mgne) In |6|) + WG}, when a = 1.

1)
Definition 2 A stable Lévy process is a Lévy process X = {X (¢),t > 0} (i.e. X is stochas-
tically continuous, has independent and stationary increments) in which each X (¢) is a stable

random variable.

Next we write the definitions of the three control charts, EWMA, GEWMA, and GRL in the

following.
EWMA:
Te(c) =inf{n > 1: W,(r) > ¢}, (2)
o7 _Wn(T) _ v2-r Sy Ry .
Walr) = ow,  +/r[l—(1—r)2"] z;) r(L =) X ®)
Wa(r)=rX, + (1 —r)W,_1(r), Wo(r) =0, (4)

where 0 < r <1, ow, is the standard variance of W,,(r).
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GLR:

Tar(c) = inf {n >1: lrgnkaécn ( g Xf:kﬂ Xi/kl/Z) > c}. (5)

Han and Tsung (2004) proposed to replace the weight parameter r by 1/(1+1) in the EWMA
so that r(1 — r)? gets maximum. Thus we have
GEWMA:

CnbVLN— S V(R R

Tge(c) = inf {n >1: e [\/(1/k) =01 -1/k)"] S k k

We list two known lemmas (see ref. [16]) in the following which will be used in proving the
main results.

Lemma 1 X;,X, are two independent variables, X; ~ S, (03, B, ps), © = 1,2, then

Xl + X2 ~ Sa(Uaﬂ,N);

where Sq (0, B, ui) denotes the stable distribution with the parameter a, o = (o + 0$)'/,
B = (Br0% + B205)/(0f +0%) and p = p1 + pa.
Lemma 2 X ~ S,(0,8,u), 0 < a < 2, then
1
lim A*P(X > \) = Caﬂaa;
A—00 ]? /B
lim A*P(X < =X) =C, o,
A—00 2
where .
—a
, when a #0,
C, = { I'(2—a)cos(ra/2) (7)
2/, when a = 1.

To compare the performance of the three charts for detecting the mean change {u;} in the
stable process, we need some of corresponding notation. Let P(-) and E(-) denote the probability
and expectation operators when there is no change. Denote P, (-) and E;,, () as the probability
and expectation when the change point is at 7 and the mean change value is {u;}. When u; = p,
1 is usually called the mean shift value. The two most commonly used operating measures in SPC
are the in-control average run length (ARLg) and the out-of-control average run length (ARL,),
defined by

ARLy(T) = E(T), ARL, (T) = E,,(T),

where T is a stopping time (or the alarming time) outside a control limit with a detecting procedure.
When p; = p and 7 = 1, we denote E,; (T') by ARL,(T).
Usually, comparisons of control chart performance are made by designing the charts to have
a common ARLj and then comparing the ARL,;’s of the control charts for a given change p; and
a change point 7. The chart with the smaller ARL,; is considered to have better performance.
Now we mention and prove our main theorems. To simplify the proof of the theorems we

assume that 7 = 1.
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Theorem 1 For i.i.d. (independent identity distribution) random variables Xi, Xs,--- , X
~ Sa(1,0,p5), let p = inf [u], & = sup [u], where 1 < a < 2, p; > 0, then for EWMA control

charts, we have

20eyr — V2 1]
ARL,, (T) > i ~1.

Furthermore, if X; is positive random variable, then we have

2[c — py/T(2 —7)]* .

ARL,, (k) <

T Ca(y/r2—1))" ’
where C, = (1 — ) /[['(2 — «) cos(ra/2)] and ¢ big enough.
Proof For
Tg(c) = inf {n >1 2" nilr(l —r)i X, > c} (8)
E 7‘[1—(1—7‘)2"] = n—i )
we have
ARL,,(Tg) = > P(Tg>m)
m=1
00 2 — n—1 .
= EP( " r(l—r)’X_i<c,1§n§m)
m=1 r[l — (1 —7)"] i=o
0 n—1 T[]. _ (1 _ T.)Zn]
= P 1-r)X,_; < ,1<n<
7nE:1 (Z;)r( T) T n_m)
x c\/T 2
> P(X,—; -1 ,0<i<n-1,1<n<m),
- mX::l ( < 2—r\/ +1—(1—r)" Osisnm " m)
for 0 <n < m, we get
2 2
1 >4 /-1
\/ +1—(1—r)”_\/ Ao
S0
& NG 2
. = - _ <n<
ARL,, (Tk) m§1P<Xn< 2_T\/ 1+1_(1_T)m,1_n_m)
c\/T 2
= P(Xn— pin < /-1 —un, 1<n <
P Y| R ey e <n<m)
> L P(Xa-pm< 2= -F 1<n<m)
m=1 2—r
e Co 2—r ajm
= 1o Vve— '
mzzl[ 2 (c\/——ﬁ 2—7‘) ]
ey/F VI _

Co(v/2—1)
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If X; is positive random variable, then

Note that X; (i =1,2,---

ARL,,(T&)

IN

Q

= EP(TE>m)
m=1
00 \/m n—1 )

= P r(l—r)X,_i<c,1<n<m
m2=:1 ( r[l — (1 —r)2"] g%)( ) Xni o )
S c/1-(1-r)

< P(X, < V""" 1<n<m).

- mgl ( " 7‘(2— - - )

) is i.i.d. random variables. It follows from Lemma 2 that

miP(Xm%, 1<n<m)
S < V= i 120 <)
mi;lP(Xn—umm—g, 1<n<m)

2(c— p\/r(2—1))*
Ca(\/T(2—1))

So the second inequality is proved. #

Theorem 2 For ii.d. random variables X1, Xs,---,X; ~ Sa(1,0,u;), let p =
7t = sup [p], where 1 < a < 2, p; > 0, then for GEWMA control charts, we have

where c is big enough.
Proof It follows that

Tee(c) = inf {n >1: max

Then

ARL,, (TqE)
Z P(TGE > m)

— 3

Mg ™8 i

1

<

P

k

ARL,, (Tag) > /(0 ¢=Ca2" P [(e-1) /(e D]*/*

2—1/k 11, 1y
1<k<n [\/(l/k) L= (1= 1/k)?"] Za E(l - E) X"”'] 2 C}'

(\/( 1/k) - [12_(1/k 1/k)27] jz_::%(l—%)an—i<C, 1<k<n, 1Sn§m)

n—1 i 1 1—1/k"n1 i
@%(_%)X < e LAt
<n n< )

inf 4],
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§P<X- VIi/k vi+(1—1/k) c,1gign,1gkgn,1gngm)

z m=1 ’<\/2—1/k\/1—(1—1/k)n
M Ik JirA-yRr ,
- NlllinoomZZ:IP(X,<\/2_1/k\/1_(1_1/k)nc,1§z§n,1§k§n,1§n§m)
. Ny . 1/]_/k \/1+(1—1/k)N1 .
> NlllgloomglP(Xz<\/2_1/k\/1_(1_1/k)Nlc,lgzgn,lgkgn,lgngm).
o (1—a)1+a")
—a)(l+a"
99 = Tra)@—an)
So

R = (= a
o(1-) = NG i/f/k ﬁ - 8 - 32:
When 0 < a < 1, we have ¢'(a) < 0. If k < Ny, then
VIFE_ VAR TN TN
V2-1/k/1-(1-1/k)M ~ /2—1/N; /1— (1 - 1/N))M
Let Ny = c2/(e+4) We have

VN Y1+ A-N)™ <i<m)
V2-1/NiJI-(A-1/N)™M 7 =~

N1
ARLM(TGE) > Z P(Xz <
m=1

B AV, IRV b (s V. L
- mzzlp(X' SN Sy A S (S VAL py 1< i< m)
Nl R4 VL YA el (s Vi ) L
= mZ::lP(X’ “J<\/2—1/Nl\/1—(1—1/N1)N10 “’13’5’”)'
Let
_ V1N 1+ (A -1/N)M
RNy R s u v AT T
e V1N /140 -1/N)N C
1 + - 1)1 N\ .oq1_ Ca
P(Xj_ﬂj<\/2_1/N1\/1_(1_1/N1)NIC—M)~1 2.
So
ARLM (TGE) > N (1 _ 26;_0;)1\71

Q

\/1/N1 \/1+(1—1/N1)N1 Ne M
Nl(l_ca/[2<\/2—1/N1\/1—(1—1/N1)N1c_"”) ]) ‘

Note that ¢ is big enough, so dose N;. We have

e e
- 1 - - 1)Vt
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This completes the proof of Theorem 2. #

Theorem 3 For i.i.d. random variables X1, Xo,---, X; ~ S4(1,0, ), let g = inf [u] > 0,
i =sup(pu] and 2/a < B < 2, where 1 < a <2, p; > 0, then for GLR control charts, we have
2 b

3 + E + 0(1) (11)

C2a/(67a) —Cq/4 < ARL (TGL) u_

for large c.

Proof Since

Tan(e) = inf{n >1: max

max (i:nfk:+1 X,-/kl/2) > c},

it follows that

ARL,, (Tar)
= E PTGt > m)
= ((znk+1Xz/k1/2)<c 1<k<n, 1<n<m)
= mZ:lp((Z nzn:k-u )/kl/a) < (ckl/2 _ nzk+1p)/k1/°‘ 1<k<n, 1<n<m)
> miij(( i ui)/kl/a)<dcll/;7/;ku,1§k§n, lgngm).

Let Yo = > (X;—p;)/kY %, 1 < k < n, According to Lemma 1 and 2, we get Yo.x ~ Sa(1,0,0).
i=n—k+1
By Theorem 5.1 in Esary (1967), we have

= 1/a Ckl/Q_kﬁ
P((i:n;kH(Xi—m)/k/ )< et 1<k<n, 1<n<m)
1/2 _ =
> P(Yn,k<0kk1#,1§k§n,1§n§m).
Now let
Ckl/Q_kﬂ’i —1/a —1/a
f(k):le:Ckl/2 Ve -kt
Then

F(k) = (% _ _) ck—(1/2+1/a) _ ( _ é)kl—l/a7

a

when 1 < a < 2, we have

So f'(k) < 0 when 1 < a < 2. Thus f(k) can arrive its minimum at the point N;. Let Ny =
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¢2/(6=2) then

ck'’? — ki

ARL,, (ToL) > Ve

P(Yn,k< ,1§k§n,1§n§m)
1

1 [P(Yn,k < _CNIIZ 117aN1ﬁ)]m<m+1>/2

\Y

z Mz T8

v

m

[1 CaNl ]N1(N1+1)/2
2(eN}? — Nym)e '

Q
E

Because

CaNy ]Nl(N1+1)/2

~ cQa/(G—a)e—CQ/zl
2N} = Nym)e

Ni[1-

we get the left inequality.
We next prove the upper inequality. Let m(c) = ¢?/p* + ¢ /p and m; = m(c)j, j > 0. Since
{ >oo(Xi— ui)}, 1 < j < k, are mutually independent and have a identity distribution, it

i=mj_1+1

follows that

P(( % (Xi—m)/ke) < c’“l:li/zkﬁ 1<k<n, 1<n<m)
i=n—k+1
m; 1/2 _ —
< P(( ':mz +1(Xi —/Ji)/(m(c)l/a)) < Cm(czn(c)l/zn(c)ﬂ, 1<j< [m/m(c)])
“ 1/a em(e)'? — m(e)m\1Im/m(e)]
- (Bt < L ey
Note that
U em(e)Y? —m(o)f
P((;(Xi _’”)/(m(c)l/a)) < 3n(c)1/a ( )u) = 05}2/a +o(1)
for large c¢. Thus
ARLy, (TaL)
= io P(TGL > m)

-1+ S P(Te >m)

j=1m=mj;-1+1

< 1m@ 5 [P(( B X - m/m@/) < Cm(ci/;;/?(cm)]j_l
~ <1+4+m(ec) Jg:l (cﬂ%/a)j_l ~ 1+ m(c)

for large c. #
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iment. The following Tables compare the simulation results for various values of the mean change

with change point 7 = 1. 7 is the reference pattern, § is the reference value, and ¢ denotes various

§ 3.

In this section, we show some simulation results of ARL’s of CUSUM, EWMA, GLR and
CUSUM charts. The numerical results of ARL’s were obtained based on a 10,000-repetition exper-

LPE YA

Numerical Illustration

values of the control limit. The mean change p is listed respectively in the first columns.

Table 1 X; ~ S1.5(1,0,u)

CUSUM EWMA GLR | GEWMA

p [6=05[6=1|0=15|r=0.01|r=0.05{r=0.1|r=02|r=05

0 500 | 500 | 500 499 501 | 500.6 | 501.7 | 500.9 | 499 499
0.125| 261 | 348 | 403 | 300.8 | 444.9 | 481.2 | 499.7 | 501.5 | 481 478
0.25| 145 | 220 | 298 | 139.7 | 299.3 | 431.2 | 487.5 | 500.8 | 420 428
0.5 | 59.7 | 80.2 | 132 49 108.1 | 264.6 | 446.5 | 495.3 | 214 233
1 245 | 244 | 308 15.1 272 | 57.6 | 295.3 | 472.6 | 67.5| 72.0
1.5 | 153 | 13.5 | 14.1 7.6 128 | 203 | 116 | 431.7 | 31.6 | 32.5
2 11.2 | 9.34 | 9.05 4.7 7.7 11.02 | 36.6 | 381.7 | 186 | 185
3 | 727 | 582 534 | 247 3.8 516 | 9.35 | 254.8 | 8.74 | 8.18
4 | 546 | 430 | 3.81 1.66 2.4 3.16 | 492 | 1124 | 526 | 4.83
¢ | 9.070 |12.82| 15.50 | 3.985 | 5.35 | 6.36 | 8.05 | 11.09 |8.604| 8.836

Table 2 X; ~ S1.5(1,0, 1)
CUSUM EWMA GLR | GEWMA

p [6=05[6=1|0=15|r=0.01|r=0.05r=0.1|r=02{r=05

0 499 | 501 | 499 499 500.5 | 500 | 500 | 500.8 | 500 499
0.125| 342 | 418 | 457 | 442.7 | 498.7 | 499.4 | 500.4 | 501.3 | 495 496
0.25| 233 | 312 | 413 | 325.7 | 484.2 | 498 | 497.7 | 501.9 | 492 494
05 | 115 | 165 | 259 | 1474 | 434.6 | 484.1 | 496.3 | 501.7 | 477 482
1 | 489 |532| 753 | 475 | 256.8 | 434.1 | 484.8 | 496.6 | 311 330
1.5 | 30.1 |[29.0| 334 | 233 99.1 | 352.9 | 462.7 | 493.8 | 173 185
2 | 219 |19.8 | 20.9 13.8 42.9 250 | 433.7 | 488.9 | 105 113
3 | 142 | 123 121 6.7 169 | 67.7 | 350.3 | 479.2 | 49.5 | 52.2
4 | 105 | 884 | 845 | 4.05 9.7 20.7 | 246.1 | 458.2 | 284 | 29.3
c | 18.40 |28.62| 37.92 | 7.38 | 11.99 | 15.85 | 21.2 | 30.15 |21.19| 21.45

From the tables above, we find that the result of the EWMA makes great differences if we
choose different weight parameter r. In the first table (a = 1.8), comparing the performance
of the CUSUM with that of the EWMA, we find that the EWMA is better than the CUSUM
when p is large and the CUSUM is better than the EWMA when g is small.

For the GLR,
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the simulation results in Table 1 are quite different from what we know in the case of normal
distribution (the special case of stable distribution when o = 2). In normal distribution, GLR
performs very well, and is better than the CUSUM chart except the size of the mean shift y is
nearly §. However, the result does not hold for the case in which the observation process is subject
to the stable distribution (@ = 1.8). Moreover the GEWMA has a similar performance as that
of EWMA though the GEWMA does not depend the weight parameter r. From Table 2 we see
that the EWMA has the better performance than CUSUM does when r equals 0.01, the CUSUM
and EWMA charts perform better than the GLR and EWMA if the suitable reference value ¢
and weight parameter r can been chosen respectively for the CUSUM and EWMA. Moreover, the
performance of the GEWMA in the case of a = 1.8 is better than that in the case of a = 1.5.

§4.  Conclusion

In this paper, we focus on the estimation of the ARL for the EWMA, GEWMA and GLR
control charts when the control limit ¢ is big enough. From Theorem 1 we find that the ARL
of EWMA approaches to Ac®, where A is constant, when X is positive random variable. From
theorem 2 it follows that ARL,,, (Tgg) > Bc?®/(@+%) where B is constant. Theorem 3 tell us that
Cc?*/(6=2) < ARL,,(Tgr) < Dc* + Ec?, where C, D and E are constants. The comparison of
numerical simulation results show that the EWMA chart can perform better than the other charts
if a suitable weight parameter is chosen for the EWMA. And the CUSUM has the better performs
than that of the GEWMA and GLR charts in detecting any size of mean shifts for the case of
a=1.5.

As we know that when 0 < a < 1, the stable random variable has infinite mean and variance.
So it is an interesting problem how to monitor the change of the stable Lévy process when both

the mean and variance are infinite.
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