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Abstract
This paper studies the problem of mean change point in heavy-tailed dependent observations.
We prove the consistency of CUSUM estimator of change-point and derive the rate of convergence.
A Hijek-Rényi type inequality is also proved. Results are obtained under weak moment assump-
tions.
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§1. Introduction

Estimation of the change point in the mean is often an important step in analysis
of time series and has received considerable attention in the literature. Yao (1987)!
considered the change point in a sequence of independent variables. Horvath (1997)[2] and
many others estimated a shift in linear process. Some further references can be found
in Kokoszka and Leipus (1998)[3} who focus on detecting change point in nonlinear time
series. These authors investigate the processes which have finite variance.

In this paper we assume that the observations follow the model
Xi = p(t) +Y3, (1.1)

where p(t) is a nonstochastic function in time and Y; is a zero-mean stationary time series
with heavy-tailed unvariate marginal distributions. We assume that these distributions
regularly vary with index & satisfying 1 < k < 2, so that the mean exists but the variance

is infinite which is difference from the aforementioned work.
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We consider the simple case where u(t) only takes two difference values, p; before

time k* and pg after time k*. That is,

1, if t <k*;
pu(t) = (1.2)
g, if £ >k

where p1, po and k* are unknown and £* is a change point.

The goal of this paper is to estimate k* given n observations X1, Xs, -, X,. The
CUSUM-type estimator k* of the change point £* in the mean is defined as follows:
T s . — ,
k —mln{k;. Uy _1%@3”;@;}, (1.3)
where i
k(n—k)\1-7 (1 1 o
Uk:(7> {fzx— > X-} (1.4)
ni+o k=1 T on—k j=k+1 !

with some 0 <y < 1and 8 > 0.
In this paper, we extend the theory of Kokoszka and Leipus (1998)[3), which studies
the the CUSUM-type estimators of the change in the mean of dependent observations with

finite variance, to processes with infinite-variance heavy-tailed distributions.

§2. Assumptions

In this paper, we assume that the time series under consideration is strong mixing
and satisfy the following Assumptions:
Assumption 2.1 The sequence Y; is stationary with symmetric univariate marginal
distributions which satisfy
nP(¥i/an € )~ p(-) (2.1)

with the a,, defined by nP(|Y1| > a,) — 1 and the measure p given by
2u(dz) = wl|z| " '1{x < 0}dz + ke " '1{z > 0}dx (2.2)

and — denotes vague convergence on R — {0}. Moreover we assume that
n d (o olNe o]
Z 6Yt/an - Z Z 6PiQij (2'3)
t=1 i=1i=1
with the limiting point process as in Theorem 2.3 and Corollary 2.4 of Davis and Hsing
(1995)141.
Assumption 2.2  For every 1 < 4 < &, the observations { X%, 1 < k < n} defined
by (2.1) satisfy

E(X, — EX.)’ < C. 2.4
max (Xk k)’ < (2.4)
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Throughout the paper C stands for a positive constant whose value dose not depend
on n and may vary from formula to formula.

Condition (2.1) together with (2.2) is said to be conditions of “heavy tails” and
equivalent to the requirement that the one-dimensional marginal distributions are in the
domain of attraction of a k-stable law. Condition (2.3) is implied by a very weak form of

mixing assumed by Davis and Hsing (1995)

, which in turn is implied by strong mixing
conditions. If we assume, as we do in this paper, that a stochastic process has infinite
variance, we cannot apply the Hajek-Rényi inequality established in Kokoszka and Leipus
(2000)1 where the stochastic process has finite variance. Instead we assume condition

(2.4) under which the generalized Héjek and Rényi inequality in this paper is valid.

§3. Main Results

Theorem 3.1 Consider the sample X, Xo, -+, X,, from model (1.1) and the
change-point estimator k* given by (1.3). If Assumption 2.1 and 2.2 hold, then for
7 =k /n0+5) we have

P{7" —7"| > e} < n®OF=2=1/2H (3.1)

’A‘(Seé
where A = pq — po, v, f and ¢ satisfy v — 28 < —1/2 and § < k.
The proof of the Theorem 3.1 is based on the Theorem 3.2 which is stated below.

Let ;’s are i.i.d. zero-mean random variables with Ee? = 02 and {cx} be a decreasing

sequence of constants. Hajek and Rényi (1955)[5] proved that

2

}< —(mc + Z ) (3.2)

i=m+1

k

D&l >

=1

P{ max Cg

m<k<n

This inequality was later generalized to any random variables with finite variance by
Kokoszka and Leipus (1998)[3}. We now generalize this inequality to heavy-tailed process

with infinite variance.

Theorem 3.2 Let X1, Xy, cdots, X, be defined by (2.1) and 1 < § < k < 2, the

generalized Hajek and Rényi inequality takes the following form:

1>

< céE‘ZX’ {|ck+1 ck|E‘ZX‘
k=m+1

k
zZ

5P{ max cCg
m<k<n

+2%)., (B lzx )€1 )72 + L ). (3.3)



340 N FHME 2 4801 oy IR ES

Proof Using Theorem 3.1 of Kokoszka and Leipus (1998)[3], we get that for any
random variables My, --- , M, and events A = {11}1135 M, >e}, Dy = {M; <e, -+, M <e},
SKRSNn

n—1
ely < M+ E (Mk+1 — Mk)lpk — Mnlpn. (3.4)
k=1

k 5
Let My = cg\ > Xj’ . Utilizing (3.4), we get
]:

é S k J é
P, ] 2 X[ > <}
€'P{, max J; il >e
5 m S n—1 5 k+1 ) 5 k P
< cmE‘ zxj‘ YEY (c,m‘ X —ck‘ zxj) )10,6' (3.5)
j=1 k=m j=1 j=1

By the ¢, inequality and the Hoélder inequality we have

5 k+1 4 5 k 1)
E(sz’ -21 X _Ck‘ ZlXj‘ >1Dk
J= J=

5/2

k 2 k 5
= E{Cg—l-l(‘ ZlXj+Xj+1‘ ) —Ci‘ ZlXj‘ }1Dk
J= J=

IN

E{(c? ixzmz f;X-|X |+ i1 X7 5/2—5fx-51
k+1| 4 I Cry1)| 2 N k1] T Cpp14 k41 C| . = Dy,
J= J= Jj=

5 il o P o085 u 0 5 s
< E{|Ck+1 - Ck|‘ ZIXJ} +2 Ck+1(‘ ZIXJ’|XI<:+1|> +Ck+1Xk+1}1Dk
J= J=
ko koo 1/2
< lefr —clE] X X5+ 2 (B X X)) T @Kl 4 Bl s (3.6
J= J=
which yields (3.3). O

The proof of the Theorem 3.1.
Proof Let 7= k/n11P) we have

EU, = (3.7)
An=n048) (n=F _ 7)==, it k> k*

and
EUk = An(=00D) (7)1 (=0 — 7)1, (3:8)

If & < k*, we have

n=8 —r*

— — *\1— *\1— — v
EU| — [EU| = |00 (0 — o)1= (o)1= — ! v(7?2_5_7) )

> AR (=0 o)1=y ()T — 717, (3.9)
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By the mean value theorem,
()17 =T 2 (=) () T )
Thus we get
|EU+| — [EUR| > [A[nE= DD (=8 — 2177 (1 — ) (7)Y (7% = 7). (3.10)

Similarly, if £ > k*

ol ] = A (= 00— ()
T
> ’A‘n(l—’Y)(l'f‘ﬁ) (T*>1—’Y<(n—ﬁ _ T*)l—ry _ (n_ﬁ _ 7—)1_7>
> (ARt ) (1L =)0 =) (7). (3.1)

Combining (3.10) and (3.11), we obtained
[EUk+| — |EUK| > |Ajn =D 7 — 7)) (3.12)

where 7 := (1 — 7)(r*)V(n 8 — 7%) ™ min{r*,n~8 — 7%},
Observe that

Ukl = |Ug+| < U — BEUg| + |EUg| + |Upx — EUp+| — [EUg+|
2121kagxn|Uk—EUk|—l—‘EUk|—|EU;€*|. (3.13)

IN

we get from (3.12)

ATt — 7| < |EUy:| - [EU| < 2 max Uy — EUR| + |Uke| = [Ukl. (3.14)

Replacing 7 by 7* and noting that |Uy-| < |Uz, |, we get

AT =7 < 2n0 D00 max |U, — EUR|
1<k<n
< 9p0-D+A-B 7’ 7‘ 3 ‘ _
< {5 S0+ ms | 38 wil) a9

Applying Theorem 3.2 with ¢, = n(O~" D0+ =BL=7 e have that

g (v—=1)(1+p)-8 -
P {n %?fnm‘zy‘”}

< w2 (g~ t)el £ o

n—1 1 1
+25k§:jlm( ‘ .Z Y) ) (E[Yies1 )2 + z WE\Ykﬂrs . (3.16)
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By Assumption 2.1 and Minkowski inequality, we get that
E’ z Y‘ ( (ElY;| )1/5) < CK°

and using the inequality
1 1 < oy
kY (k+1)0 = R0

we obtain from (3.16)

opfp(r-1(1+8)-5 7‘ ’ }
et el ]

< Cna{(w—n(wm}[”i 5671
k=1
n=1 n—1
+ 2 max(E[Vil")? X K720+ max(EIVil?) ¥ (k + 1)~
k=1 k=1
< CnflO-DH0-B) 5~ 16/2-87 < Cpd(8-26-1/2)+1 (3.17)

k=1

Similarly argument to (3.17), we can obtain

1 n
s (=D (1+8)-8 : < COpd(v8—26-1/2)+1
€ P{n pax e k)v)j:§k+1Y] > e} <Cn . (3.18)
Combining (3.17) and (3.18) with (3.15) yields (3.1). O

84. Simulation Study

In this section, we briefly discuss the sample distribution of the change-point estimator
E*.

We consider two Data Generating Processes (DGP) as in Kokoszka and Wolf (2004)[6],
who established the validity of subsampling confidence intervals for mean of a dependent
series with heavy-tailed marginal distributions. The first DGP is an AR(1) model with
stable innovations. That is, X; = u(t) + Yi, where Y; = ¢Y;_1 + Z; and Z,’s are stable
innovations with index x. The second DGP is a GARCH(1,1) model: X; = u(t) + Y,
where Y; = oyéy, Uf =w+ alY it Blaf_ j and &;’s are standard normal innovations. By
choosing positive values for w, a; and 31, such that the equation E(ae? —l—ﬂl)“/z =1lhasa
solution 1 < k < 2, we can generate GARCH(1,1) time series with finite mean but infinite

variance.
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Figure 1 Sampling distribution of £*, x = 1.19,
(a) w=1, a1 =13, 81 =0.05. (b) ¢ =0.5.

40

351

Percentage
N N
o ol

=
a

50

30

25¢

n
=]

Percentage
N
o

101

50 100 150
Estimated Change Date

50 100 150 200
Estimated Change Date

(2 G
Figure 2 Sampling distribution of k*, x = 1.43,
(a)w=1, a1 =11, 8 =0.1. (b) ¢ =0.5.
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Figure 3 Sampling distribution of k*, x = 1.83,
(a)w=1,a1=0.9, 8 =0.15. (b) ¢ =0.5.
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Experiments are carried out for n=200, k* =100, 1 =1, po=2 and ¢ = 0.5. Figures
1-3 plot the histograms of 100 replications of k* for various combination of parameters,
where Figure 1(a), 2(a) and 3(a) describe the sample distribution of k* for GARCH(1,1)
models while Figure 1(b), 2(b) and 3(b) for AR(1) models. Obviously, the accuracy in-
creases as k gets closer to 2. For fixed x, the range of k* for GARCH(1,1) models is smaller
than that for AR(1) models, which shows that the estimated results of change point for
GARCH(1,1) models is better than that for AR(1) models. Interestingly, similar findings
had been obtained by Kokoszka and Wolf (2004)[6] who interpreted these phenomena as
that there exist many “outliers” in observations when k approaches 1 and realizations of
GARCH(1,1) models do not exhibit isolated spikes but rather “clusters of high volatility”.

Acknowledgements  We would like to thank professor John Nolan who provide
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