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Abstract
This paper studies the problem of mean change point in heavy-tailed dependent observations.

We prove the consistency of CUSUM estimator of change-point and derive the rate of convergence.

A Hájek-Rényi type inequality is also proved. Results are obtained under weak moment assump-

tions.
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§1. Introduction

Estimation of the change point in the mean is often an important step in analysis
of time series and has received considerable attention in the literature. Yao (1987)[1]

considered the change point in a sequence of independent variables. Horváth (1997)[2] and
many others estimated a shift in linear process. Some further references can be found
in Kokoszka and Leipus (1998)[3] who focus on detecting change point in nonlinear time
series. These authors investigate the processes which have finite variance.

In this paper we assume that the observations follow the model

Xt = µ(t) + Yt, (1.1)

where µ(t) is a nonstochastic function in time and Yt is a zero-mean stationary time series
with heavy-tailed unvariate marginal distributions. We assume that these distributions
regularly vary with index κ satisfying 1 < κ < 2, so that the mean exists but the variance
is infinite which is difference from the aforementioned work.
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We consider the simple case where µ(t) only takes two difference values, µ1 before
time k∗ and µ2 after time k∗. That is,

µ(t) =





µ1, if t ≤ k∗;

µ2, if t > k∗,
(1.2)

where µ1, µ2 and k∗ are unknown and k∗ is a change point.
The goal of this paper is to estimate k∗ given n observations X1, X2, · · · , Xn. The

CUSUM-type estimator k̂∗ of the change point k∗ in the mean is defined as follows:

k̂∗ = min
{

k : |Uk| = max
1≤j<n

|Uj |
}

, (1.3)

where

Uk =
(k(n− k)

n1+β

)1−γ{1
k

k∑
j=1

Xj − 1
n− k

n∑
j=k+1

Xj

}
(1.4)

with some 0 ≤ γ < 1 and β > 0.
In this paper, we extend the theory of Kokoszka and Leipus (1998)[3], which studies

the the CUSUM-type estimators of the change in the mean of dependent observations with
finite variance, to processes with infinite-variance heavy-tailed distributions.

§2. Assumptions

In this paper, we assume that the time series under consideration is strong mixing
and satisfy the following Assumptions:

Assumption 2.1 The sequence Yt is stationary with symmetric univariate marginal
distributions which satisfy

nP(Y1/an ∈ ·) v−→ µ(·) (2.1)

with the an defined by nP(|Y1| > an) −→ 1 and the measure µ given by

2µ(dx) = κ|x|−κ−11{x < 0}dx + κx−κ−11{x > 0}dx (2.2)

and v−→ denotes vague convergence on R− {0}. Moreover we assume that

n∑
t=1

δYt/an

d−→
∞∑
i=1

∞∑
i=1

δPiQij (2.3)

with the limiting point process as in Theorem 2.3 and Corollary 2.4 of Davis and Hsing
(1995)[4].

Assumption 2.2 For every 1 ≤ δ < κ, the observations {Xk, 1 ≤ k ≤ n} defined
by (2.1) satisfy

max
1≤k≤n

E(Xk − EXk)δ ≤ C. (2.4)
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Throughout the paper C stands for a positive constant whose value dose not depend
on n and may vary from formula to formula.

Condition (2.1) together with (2.2) is said to be conditions of “heavy tails” and
equivalent to the requirement that the one-dimensional marginal distributions are in the
domain of attraction of a κ-stable law. Condition (2.3) is implied by a very weak form of
mixing assumed by Davis and Hsing (1995)[4], which in turn is implied by strong mixing
conditions. If we assume, as we do in this paper, that a stochastic process has infinite
variance, we cannot apply the Hájek-Rényi inequality established in Kokoszka and Leipus
(2000)[3] where the stochastic process has finite variance. Instead we assume condition
(2.4) under which the generalized Hájek and Rényi inequality in this paper is valid.

§3. Main Results

Theorem 3.1 Consider the sample X1, X2, · · · , Xn from model (1.1) and the
change-point estimator k̂∗ given by (1.3). If Assumption 2.1 and 2.2 hold, then for
τ̂∗ = k̂∗/n(1+β) we have

P{|τ̂∗ − τ∗| > ε} ≤ C

|∆|δεδ
nδ(γβ−2β−1/2)+1, (3.1)

where ∆ = µ1 − µ2, γ, β and δ satisfy γβ − 2β < −1/2 and δ < κ.

The proof of the Theorem 3.1 is based on the Theorem 3.2 which is stated below.
Let εi’s are i.i.d. zero-mean random variables with Eε2

i = σ2 and {ck} be a decreasing
sequence of constants. Hájek and Rényi (1955)[5] proved that

P
{

max
m≤k≤n

ck

∣∣∣
k∑

i=1
εi

∣∣∣ > ε
}
≤ σ2

ε2

(
mc2

m +
n∑

i=m+1
c2
i

)
. (3.2)

This inequality was later generalized to any random variables with finite variance by
Kokoszka and Leipus (1998)[3]. We now generalize this inequality to heavy-tailed process
with infinite variance.

Theorem 3.2 Let X1, X2, cdots, Xn be defined by (2.1) and 1 < δ < κ < 2, the
generalized Hájek and Rényi inequality takes the following form:

εδP
{

max
m≤k≤n

ck

∣∣∣
k∑

i=1
Xi

∣∣∣ > ε
}

≤ cδ
mE

∣∣∣
m∑

j=1
Xj

∣∣∣
δ
+

n−1∑
k=m+1

{
|cδ

k+1 − cδ
k|E

∣∣∣
k∑

j=1
Xj

∣∣∣
δ

+2δcδ
k+1

(
E
∣∣∣

k∑
j=1

Xj

∣∣∣
δ)1/2

(E|Xk+1|δ)1/2 + cδ
k+1E|Xk+1|δ

}
. (3.3)
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Proof Using Theorem 3.1 of Kokoszka and Leipus (1998)[3], we get that for any
random variables M1, · · · ,Mn and events A =

{
max

1≤k≤n
Mk >ε

}
, Dk = {M1≤ε,· · ·,Mk≤ε},

ε1A ≤ M1 +
n−1∑
k=1

(Mk+1 −Mk)1Dk
−Mn1Dn . (3.4)

Let Mk = cδ
k

∣∣∣
k∑

j=1
Xj

∣∣∣
δ
. Utilizing (3.4), we get

εδP
{

max
m≤k≤n

cδ
k

∣∣∣
k∑

j=1
Xj

∣∣∣
δ

> εδ
}

≤ cδ
mE

∣∣∣
m∑

j=1
Xj

∣∣∣
δ
+ E

n−1∑
k=m

(
cδ
k+1

∣∣∣
k+1∑
j=1

Xj

∣∣∣
δ
− cδ

k

∣∣∣
k∑

j=1
Xj

∣∣∣
δ)

1Dk
. (3.5)

By the cr inequality and the Hölder inequality we have

E
(
cδ
k+1

∣∣∣
k+1∑
j=1

Xj

∣∣∣
δ
− cδ

k

∣∣∣
k∑

j=1
Xj

∣∣∣
δ)

1Dk

= E
{

cδ
k+1

(∣∣∣
k∑

j=1
Xj + Xj+1

∣∣∣
2)δ/2

− cδ
k

∣∣∣
k∑

j=1
Xj

∣∣∣
δ}

1Dk

≤ E
{(

c2
k+1

∣∣∣
k∑

j=1
Xj

∣∣∣
2
+ 2c2

k+1

∣∣∣
k∑

j=1
Xj

∣∣∣|Xk+1|+ c2
k+1X

2
k+1

)δ/2
− cδ

k

∣∣∣
k∑

j=1
Xj

∣∣∣
δ}

1Dk

≤ E
{
|cδ

k+1 − cδ
k|

∣∣∣
k∑

j=1
Xj

∣∣∣
δ
+ 2δcδ

k+1

(∣∣∣
k∑

j=1
Xj

∣∣∣|Xk+1|
)δ/2

+ cδ
k+1X

δ
k+1

}
1Dk

≤ |cδ
k+1 − cδ

k|E
∣∣∣

k∑
j=1

Xj

∣∣∣
δ
+ 2δcδ

k+1

(
E
∣∣∣

k∑
j=1

Xj

∣∣∣
δ)1/2

(E|Xk+1|δ)1/2 + cδ
k+1E|Xk+1|δ, (3.6)

which yields (3.3). ¤
The proof of the Theorem 3.1.
Proof Let τ = k/n(1+β), we have

EUk =





∆n(1−γ)(1+β)τ1−γ(n−β − τ∗)(n−β − τ)−γ , if k ≤ k∗

∆n(1−γ)(1+β)(n−β − τ)1−γτ∗τ−γ , if k > k∗
(3.7)

and
EUk∗ = ∆n(1−γ)(1+β)(τ∗)1−γ(n−β − τ∗)1−γ . (3.8)

If k ≤ k∗, we have

|EUk∗ | − |EUk| = |∆|n(1−γ)(1+β)(n−β − τ∗)1−γ
(
(τ∗)1−γ − τ1−γ

(n−β − τ∗

n−β − τ

)γ)

≥ |∆|n(1−γ)(1+β)(n−β − τ∗)1−γ((τ∗)1−γ − τ1−γ). (3.9)
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By the mean value theorem,

(τ∗)1−γ − τ1−γ ≥ (1− γ)(τ∗)−γ(τ∗ − τ).

Thus we get

|EUk∗ | − |EUk| ≥ |∆|n(1−γ)(1+β)(n−β − τ∗)1−γ(1− γ)(τ∗)−γ(τ∗ − τ). (3.10)

Similarly, if k ≥ k∗

|EUk∗ | − |EUk| = |∆|n(1−γ)(1+β)(τ∗)1−γ
(
(n−β − τ∗)1−γ − (n−β − τ)1−γ

(τ∗

τ

)γ)

≥ |∆|n(1−γ)(1+β)(τ∗)1−γ((n−β − τ∗)1−γ − (n−β − τ)1−γ)

≥ |∆|n(1−γ)(1+β)(τ∗)1−γ(1− γ)(n−β − τ∗)−γ(τ − τ∗). (3.11)

Combining (3.10) and (3.11), we obtained

|EUk∗ | − |EUk| ≥ |∆|n(1−γ)(1+β)τ |τ∗ − τ |, (3.12)

where τ := (1− γ)(τ∗)−γ(n−β − τ∗)−γ min{τ∗, n−β − τ∗}.
Observe that

|Uk| − |Uk∗ | ≤ |Uk − EUk|+ |EUk|+ |Uk∗ − EUk∗ | − |EUk∗ |
≤ 2 max

1≤k≤n
|Uk − EUk|+ |EUk| − |EUk∗ |. (3.13)

we get from (3.12)

|∆|n(1−γ)(1+β)τ |τ∗ − τ | ≤ |EUk∗ | − |EUk| ≤ 2 max
1≤k≤n

|Uk − EUk|+ |Uk∗ | − |Uk|. (3.14)

Replacing τ by τ̂∗ and noting that |Uk∗ | ≤ |U
k̂∗ |, we get

|∆|τ |τ∗ − τ | ≤ 2n(γ−1)(1+β) max
1≤k≤n

|Uk − EUk|

≤ 2n(γ−1)(1+β)−β
{

max
1≤k≤n

1
kγ

∣∣∣
k∑

j=1
Yj

∣∣∣ + max
1≤k≤n

1
(n− k)γ

∣∣∣
n∑

j=k+1

Yj

∣∣∣
}

. (3.15)

Applying Theorem 3.2 with ck = n(γ−1)(1+β)−βk−γ , we have that

εδP
{

n(γ−1)(1+β)−β max
1≤k≤n

1
kγ

∣∣∣
k∑

j=1
Yj

∣∣∣ > ε
}

≤ nδ{(γ−1)(1+β)−β}
[ n−1∑

k=1

( 1
kδγ

− 1
(k + 1)δγ

)
E
∣∣∣

k∑
j=1

Yj

∣∣∣
δ

+2δ
n−1∑
k=1

1
(k + 1)δγ

(
E
∣∣∣

k∑
j=1

Yj

∣∣∣
δ)1/2

(E|Yk+1|δ)1/2 +
n−1∑
k=1

1
(k + 1)δγ

E|Yk+1|δ
]
. (3.16)
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By Assumption 2.1 and Minkowski inequality, we get that

E
∣∣∣

k∑
j=1

Yj

∣∣∣
δ
≤

( k∑
j=1

(E|Yj |δ)1/δ
)δ
≤ Ckδ

and using the inequality
1

kδγ
− 1

(k + 1)δγ
≤ δγ

kδγ+1
,

we obtain from (3.16)

εδP
{

n(γ−1)(1+β)−β max
1≤k≤n

1
kγ

∣∣∣
k∑

j=1
Yj

∣∣∣ > ε
}

≤ Cnδ{(γ−1)(1+β)−β}
[ n−1∑

k=1

kδ−δγ−1

+2δ max
k

(E|Yk|δ)1/2
n−1∑
k=1

kδ/2−δγ + max
k

(E|Yk|δ)
n−1∑
k=1

(k + 1)−δγ
]

≤ Cnδ{(γ−1)(1+β)−β} n∑
k=1

kδ/2−δγ ≤ Cnδ(γβ−2β−1/2)+1. (3.17)

Similarly argument to (3.17), we can obtain

εδP
{

n(γ−1)(1+β)−β max
1≤k≤n

1
(n− k)γ

∣∣∣
n∑

j=k+1

Yj

∣∣∣ > ε
}
≤ Cnδ(γβ−2β−1/2)+1. (3.18)

Combining (3.17) and (3.18) with (3.15) yields (3.1). ¤

§4. Simulation Study

In this section, we briefly discuss the sample distribution of the change-point estimator
k̂∗.

We consider two Data Generating Processes (DGP) as in Kokoszka and Wolf (2004)[6],
who established the validity of subsampling confidence intervals for mean of a dependent
series with heavy-tailed marginal distributions. The first DGP is an AR(1) model with
stable innovations. That is, Xt = µ(t) + Yt, where Yt = φYt−1 + Zt and Zt’s are stable
innovations with index κ. The second DGP is a GARCH(1,1) model: Xt = µ(t) + Yt,
where Yt = σtεt, σ2

t = ω + α1Y
2
t−j + β1σ

2
t−j and εt’s are standard normal innovations. By

choosing positive values for ω, α1 and β1, such that the equation E(α1ε
2
1 +β1)κ/2 = 1 has a

solution 1 < κ < 2, we can generate GARCH(1,1) time series with finite mean but infinite
variance.
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(a) (b)
Figure 1 Sampling distribution of k̂∗, κ = 1.19,

(a) ω = 1, α1 = 1.3, β1 = 0.05. (b) φ = 0.5.
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(a) (b)
Figure 2 Sampling distribution of k̂∗, κ = 1.43,

(a) ω = 1, α1 = 1.1, β1 = 0.1. (b) φ = 0.5.

0 50 100 150 200
0

5

10

15

20

25

30

35

40

45

50

Estimated Change Date

P
e

rc
e

n
ta

g
e

40 60 80 100 120 140 160
0

5

10

15

20

25

30

35

Estimated Change Date

P
e

rc
e

n
ta

g
e

(a) (b)
Figure 3 Sampling distribution of k̂∗, κ = 1.83,

(a) ω = 1, α1 = 0.9, β1 = 0.15. (b) φ = 0.5.
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Experiments are carried out for n=200, k∗=100, µ1 =1, µ2 =2 and φ = 0.5. Figures
1-3 plot the histograms of 100 replications of k̂∗ for various combination of parameters,
where Figure 1(a), 2(a) and 3(a) describe the sample distribution of k̂∗ for GARCH(1,1)
models while Figure 1(b), 2(b) and 3(b) for AR(1) models. Obviously, the accuracy in-
creases as κ gets closer to 2. For fixed κ, the range of k̂∗ for GARCH(1,1) models is smaller
than that for AR(1) models, which shows that the estimated results of change point for
GARCH(1,1) models is better than that for AR(1) models. Interestingly, similar findings
had been obtained by Kokoszka and Wolf (2004)[6] who interpreted these phenomena as
that there exist many “outliers” in observations when κ approaches 1 and realizations of
GARCH(1,1) models do not exhibit isolated spikes but rather “clusters of high volatility”.

Acknowledgements We would like to thank professor John Nolan who provide
the software for generating the stable innovations used in Section 4.
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厚尾相依序列的均值变点估计
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本文研究了厚尾相依序列的均值变点估计. 证明了变点的CUSUM估计的一致性并得到了收敛速度. 在方

差无穷的情况下推广了Hájek–Rényi不等式.

关键词: 变点估计, 厚尾, Hájek-Rényi不等式.
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