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Abstract
In the paper, we give a new generalization of fraction Brownian motion (gfBm). We study

the existence of the local nondeterminism and the joint continuity of the local time of gfBm, and

we get upper and lower bounds of Hausdorff dimensions of the level sets of a gfBm.
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§1. Introduction

Given a constant H ∈ (0, 1), a fractional Brownian motion in R+ with index H is a

real valued, centered Gaussian process WH = {WH(t), t ∈ R}, with the covariance function

E[WH(s)WH(t)] =
1
2
(|s|2H + |t|2H − |s− t|2H).

Fractional Brownian motion (fBm) was introduced by Mandelbrot and Van Ness (1968) as

a moving average Gaussian process. From the covariance function, it is easy to verify that

WH is a self similar process and it has stationary increments. Pitt (1978) discovered the

strong local nondeterminism of the fBm. Xiao (1997) proved the Hölder conditions for the

local times and the Hausdorff measure of the level sets of the fBm. Since H is independent

of the time parameter t, the regularity of the fBm is the same all along its paths. This

property is undesirable when we model some phenomena that do not admit a constant

Hölder exponent; for instance, the use of the fBm for synthesizing artificial mountains

does not allow to take into account erosion phenomena. To relax this restriction, as a
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generalization of the fBm, Peltier and Lévy (1995) and Benassi et al. (1997) independently

introduced the following definition: Let Ht = H(t) : [0,∞) → (0, 1) be a Hölder function

of exponent β > 0, i.e. for any t1, t2 ∈ [0,∞) such that |t1−t2| < 1, there exists a constant

C > 0 such that

|H(t1)−H(t2)| ≤ C|t1 − t2|β.

Then

W̃ (t) := WHt(t) =
1

Γ(Ht + 1/2)

∫ t

−∞
[(t− u)Ht−1/2

+ − (−u)Ht−1/2
+ ]dW (u) (1.1)

is called a multifractional Brownian motion (mBm), where W (u) is a Brownian motion.

Peltier and Lévy (1995) showed that a mBm has continuous sample paths with probability

one and studied its local Hölder properties. Lin (2002) studied large increment behavior

of a mBm, and had the following result:

Let 0 ≤ aT ≤ T , aT →∞ as T →∞ and D2(s, t) = E(W̃ (t)− W̃ (s))2 for 0 ≤ s < t,

under the condition:

|Ht −Hs| = o((1− s/t)Ht(log t)−1) as 0 < t− s → 0, (1.2)

with β(t, h) = {2D2(t, t + h)(log 1/h + log log 1/h)}−1/2,

lim sup
h→∞

sup
0≤t≤T−aT

sup
0≤s≤aT

β(t, T )|W̃ (t + s)− W̃ (t)| = 1 a.s..

In this paper, we consider ageneralization of fBm. Suppose that H(t) is a continuous

non-decreasing function with a < H(t) ≤ 1 − a for some 0 < a < 1/2 and any t ≥ 0.

We call W̃ with such H(t) as generalized fractional Brownian motion (gfBm) and study

some properties of a gfBm. We investigate the existence of the local non-determinism of

a gfBm in Section 2. In Section 3, we study the existence and the joint continuity of the

local time of a gfBm. In Section 4, the upper and lower bounds of Hausdorff dimensions

of level sets of a gfBm are given under the condition (1.2).

In this paper, C always stands for a positive constant, whose value is irrelevant.

dimH A is denoted the Hausdorff dimension of set A.

§2. Thelocal Nondeterminism of a gfBm

The concept of local nondeterminism was introduced by Berman (1973). A process is

locally nondeterministic if a future observation is “relatively unpredictable” on the basis

of a finite set of observations from the immediate past. For a Gaussian process, the local
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nondeterminism is closely related to the existence of a continuous local time. As a property

of Gaussian process, it is of independent interest. Pitt (1978) discovered the strong local

nondeterminism of a fractional Brownian motion: there exists a constant 0 < K1 < ∞,

depending on H only, such that for all t ∈ R and 0 ≤ r ≤ |t|,

Var (WH(t)|WH(s), |s− t| ≥ r) = K1r
2H .

In his proof, the self-similarity and the stationarity play crucial roles. It is obvious that

a gfBm has neither the self-similarity nor the stationarity. How about the local nondeter-

minism for a gfBm?

Definition 2.1 Let J be an open interval on the t-axis. we assume that there

exists d > 0 such that

E(X(t)−X(s))2 > 0, (2.1)

where s, t ∈ J and 0 < |t− s| ≤ d,

EX2(t) > 0 for all t ∈ J. (2.2)

For m ≥ 2, let t1, · · · , tm be arbitrary points in J with t1 < · · · < tm. Let

Vm =
Var {X(tm)−X(tm−1)|X(t1), · · · , X(tm−1)}

Var {X(tm)−X(tm−1)} .

The process is called locally nondeterministic on J if for every integer m ≥ 2

lim
c↓0

inf
tm−t1≤c

Vm > 0. (2.3)

For a gfBm, conditions (2.1) and (2.2) are obvious, we prove (2.3).

Let

F (t, u) =
1

Γ(Ht + 1/2)
{(t− u)Ht−1/2

+ − (−u)Ht−1/2
+ },

then

W̃ (t) =
∫ t

−∞
F (t, u)dW (u) (2.4)

and

Var {W̃ (t)} =
∫ t

−∞
F 2(t, u)du.

It is apparent from the representation (2.4) that

{W (u), u ≤ s} ⊃ {W̃ (u), u ≤ s}.
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Therefore, for any time set A,

Var {W̃ (t)− W̃ (s)|W̃ (u), u ∈ A, u ≤ s} ≥ Var {W̃ (t)− W̃ (s)|W (u), u ≤ s}. (2.5)

By the independence of increments of a Brownian motion, we have

Var {W̃ (t)− W̃ (s)|W (u), u ≤ s}

= Var
( ∫ t

s
F (t, u)dW (u)

)
=

∫ t

s
F 2(t, u)du, 0 < s < t. (2.6)

Lemma 2.1 For 0 ≤ s ≤ t < T and t− s → 0,

Var {W̃ (t)− W̃ (s)} = O((t− s)2Ht + (Ht −Hs)2t2Ht log2 t).

Proof The proof is similar to Lin (2002). ¤

Now, we show the following theorem.

Theorem 2.1 Let W̃ (t) be a gfBm, Suppose that

|Ht −Hs| = O((1− s/t)Ht(log t)−1) as 0 < t− s → 0. (2.7)

Then W̃ (t) is locally nondeterministic on open interval (0, T ).

Proof By (2.5) and (2.6), Vm is at least
∫ t

s
F 2(t, u)du

Var {W̃ (t)− W̃ (s)}
, (2.8)

where t = tm and s = tm−1. Moreover
∫ t

s
F 2(t, u)du =

1
Γ(Ht + 1/2)2Ht

(t− s)2Ht . (2.9)

By Lemma 2.1 and (2.9), (2.8) is at least

(t− s)2Ht/(Γ(Ht + 1/2)2Ht)
(t− s)2Ht + (Ht −Hs)2t2Ht log2 t

> 0

as 0 ≤ s ≤ t < T and t− s → 0. The proof is complete. ¤

§3. The Jointly Continuity of the Local Time of a gfBm

Berman (1973) gave the sufficient conditions for joint continuity of local time on a

Gaussian process (See also German (1980)).
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Lemma 3.1 Let X(t), 0 ≤ t ≤ T , be a Gaussian process with mean 0 and satisfy

the following three conditions:

(1) X(t) = 0 almost surely;

(2) X(t) is locally nondeterministic on (0, T );

(3) There exists b(t) such that b2(t) ≤ E(X(s + t)−X(s))2 for all s and
∫ ε

0

dt

{b(t)}1+δ
< ∞ (3.1)

for some ε, δ > 0. Then the local time of X(t) exists and is joint continuous in the sense

that (x, t) → L(x, t) is continuous on R× [0, T ].

We just verify (3.1). First we quote an well known inequality (cf., e.g., Lin et al.

(1999)).

Lemma 3.2 If X and Y are independent, EX = 0, E|X|p < ∞, E|Y |p < ∞,

1 ≤ p ≤ ∞, then

E|Y |p ≤ E|X + Y |p. (3.2)

Now, for 0 ≤ s < t, let

X = WHt(s)−WHs(s), Y =
1

Γ(Ht + 1/2)

∫ t

s
(t− u)Ht−1/2dW (u).

Then

W̃ (t)− W̃ (s) = X + Y.

By (3.2), we have

E|W̃ (t)− W̃ (s)|2 ≥ E|Y |2

=
1

Γ2(Ht + 1/2)

∫ t

s
(t− u)2Ht−1du

=
1

Γ2(Ht + 1/2)(2Ht)
(t− s)2Ht .

Note that
1

Γ2(Ht + 1/2)(2Ht)
≥ C2 > 0

for any t ≥ 0. Let b(t) = CtHt , we have (3.1) for some δ > 0 small enough.

Now, Lemma (3.1) implies the following theorem

Theorem 3.1 Let W̃ (t) be a gfBm and satisfy the condition (2.7). Then it has a

joint continuous local time.
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§4. The Hausdorff Dimensions of the Level Sets of a gfBm

The set E(x, T ) = {t ∈ [0, T ], W̃ (t) = x} is called the level set of W̃ (t) in x, where

x is the interior of range of W̃ (t). At first, we show the upper bound of the Hausdorff

dimensions of the level sets. The following lemma is similar to Theorem 3.1 of Lin (2002).

Lemma 4.1 Suppose that the gfBm W̃ (·) satisfies condition (1.2). Let D2(s, t) =

E(W̃ (t)−W̃ (s))2 for 0≤s<t. Then, with β(t, h)={2D2(t, t+h)(log 1/h+log log 1/h)}−1/2,

lim sup
h→0

sup
0≤t≤1−h

sup
0≤s≤h

β(t, h)|W̃ (t + s)− W̃ (t)| = 1 a.s. (4.1)

Theorem 4.1 Suppose that the gfBm W̃ (·) satisfies condition of Lemma 4.1, then

for any T ∈ R+ and almost all x ∈ R, the Hausdorff dimension

dimH E(x, T ) ≤ 1−H(0). (4.2)

Proof By Lemma 2.1 and the condition of Lemma 4.1, D2(t + s, t) = O(s2Ht+s),

so the order of Hölder exponent of D(·, ·) is at least mint∈[0,T ] Ht = H(0). For any ε > 0,

it follows from (4.1) that for small s > 0,

|W̃ (t + s)− W̃ (t)| ≤ CD1+ε(t + s, t) a.s..

By an argument similar to the proof of Lemma 8.2.2 of Adler (1981), we have (4.2). ¤

Next we consider the lower bound. First, we show the following inequality.

Lemma 4.2 Let W̃ (t) be a gfBm, 0 < s < t, then
∫

R

∫

R
E exp{i[u1W̃ (t) + u2W̃ (s)]}du1du2 ≤ C[(t− s)−Hts−Hs ]. (4.3)

Proof Since W̃ (t) is a Gaussian process, the left of (4.3) equals
∫

R

∫

R
exp

{
− 1

2
E[u1W̃ (t) + u2W̃ (s)]2

}
du1du2. (4.4)

Let

v1 = [EW̃ 2(t)]1/2u1 + (EW̃ (s)W̃ (t)/[EW̃ 2(t)]1/2)u2, v2 =
{ ∆

EW̃ 2(t)

}1/2
u2,

where

∆ = EW̃ 2(t)EW̃ 2(s)− [EW̃ (t)W̃ (s)]2.

Then (4.4) equals

∆−1/2

∫

R

∫

R
exp

{1
2
(v2

1 + v2
2)

}
dv1dv2 = (2π)2∆−1/2. (4.5)
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Next, we calculate ∆. Let

WHt(s) =
∫ s

−∞
F (t, u)dW (u),

then

[EW̃ (t)W̃ (s)]2 = [EWHt(s)WHs(s)]
2 ≤ EW 2

Ht
(s)EW 2

Hs
(s). (4.6)

Let

WHt(s, t) =
1

Γ(Ht + 1/2)

∫ t

s
(t− u)Ht−1/2dW (u),

then

EW̃ 2(t)EW̃ 2(s) = EW 2
Ht

(s)EW 2
Hs

(s) + EW 2
Ht

(s, t)EW 2
Hs

(s). (4.7)

Moreover

EW 2
Hs

(s) =
1

Γ2(Hs + 1/2)

{∫ 0

−∞
[(s−u)Hs−1/2−(−u)Hs−1/2]2du+

∫ s

0
(s−u)2Hs−1du

}

≥ Cs2Hs . (4.8)

Similarly

EW 2
Ht

(s, t) ≥ C(t− s)2Ht . (4.9)

Combining (4.6)–(4.9), we have

∆ ≥ EW 2
Ht

(s, t)EW 2
Hs

(s) ≥ C(t− s)2Hts2Hs .

(4.3) follows from (4.4) and (4.5). ¤

Lemma 4.3 Let W̃ (t) be a gfBm and satisfy condition (2.7), L(x, T ), T ∈R, be the

local time of W̃ (t), then the zero set of L(x, T ) {x : L(x, T ) = 0} is non-dense everywhere.

Proof By Theorem 3.1, W̃ (t) has jointly continuous local time, hence from Adler

(1981), our conclusion is obvious. ¤

Now, we can show the lower bound of the Hausdorff dimension.

Theorem 4.2 Let W̃ (t) be a gfBm and satisfy condition (2.7), then for any T ∈ R

and almost every x,

dimH E(x, T ) ≥ 1−HT .

Proof By Lemma 4.3, for any T ∈ R, we have L(x, T ) > 0 for almost every x. So

we can define random measure u:

u(B) =
L(x, [0, T ] ∩B)

L(x, T )
.
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Then u is a probability measure on E(x, T ). By the energy integration formulation, we

will just show for β < 1−HT , the energy integration

Iβ(u) =
∫

E2(x,T )
|s− t|−βdu(s)du(t) < ∞. (4.10)

By an argument similar to the proof of Proposition 3.1 of Pitt (1978) (see also Theorem

8.7.4 of Adler (1981)), we have

EIβ(u) =
1

L2(x, T )(2π)2

∫ T

0

∫ T

0

∫

R

∫

R
exp{−i(xu1 + xu2)}

·E exp{iu1W̃ (s) + iu2W̃ (t)}|t− s|−βdu1du2dsdt. (4.11)

Therefore in order to prove (4.10), it suffices to show that the right side of (4.11) is finite.

By Lemma 4.2, the right side of (4.11) is no more than

1
L2(x, T )(2π)2

∫ T

0

∫ T

0

∫

R

∫

R
|E exp{iu1W̃ (s) + iu2W̃ (t)}||t− s|−βdu1du2dsdt

≤ C

L2(x, T )(2π)2

∫ T

0

{∫ t

0
|t− s|−Hts−Hsds +

∫ T

t
|t− s|−Hst−Htds

}
|t− s|−βdt

≤ C

L2(x, T )(2π)2

∫ T

0

{∫ T

0
|t− s|−Hts−Hsds +

∫ T

0
|t− s|−Hst−Htds

}
|t− s|−βdt

=
2C

L2(x, T )(2π)2

∫ T

0

∫ T

0
|t− s|−Hts−Hs |t− s|−βdsdt

≤ C ′

L2(x, T )(2π)2

∫ T

0
|u|−Ht−βdu < ∞

for almost every x. Hence

dimH E(x, T ) ≥ 1−HT a.s..

This completes the proof of Theorem 4.2. ¤

The lower bound of the Hausdorff dimension is not sharp, but for a fBm, we have the

following corellary by combining Theorem 4.1 and Theorem 4.2.

Corollary 4.1 Let WH(t) be a fractional Browian motion, then for almost every

x in the range of WH(t),

dimH E(x, T ) = 1−H.
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[10] Peltier, R.F. and Lévy, V.J., Multifractional Bromnian motion: definition and preliminary results,

Rapport de Recherche de l’INRIA, No. 2645, 1995.

[11] Pitt, L.D., Local times for Gaussian vector fields, Indiana Univ. Math. J., 27(1978), 309–330.

[12] Talagrand, M., Hausdorff measure of the trajectories of multiparameter fractional Brownian motion,

Ann. Probab., 23(1995), 767–775.

[13] Taylor, S.J. and Wendel, J.G., The exact Hausdorff measure of the level set of a stable process, Z.

Wahrsch. Verw. Gebiete, 6(1966), 170–180.
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本文, 我们定义了一类新的分数布朗运动, 研究了它的局部非决定性和局部时的联合连续性, 最后给出了

它的水平集的Hausdorff维数的上、下界.
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