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Abstract

In the paper, we give a new generalization of fraction Brownian motion (gfBm). We study
the existence of the local nondeterminism and the joint continuity of the local time of gfBm, and
we get upper and lower bounds of Hausdorff dimensions of the level sets of a gfBm.
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§1. Introduction

Given a constant H € (0,1), a fractional Brownian motion in R with index H is a

real valued, centered Gaussian process Wy = {Wg(t),t € R}, with the covariance function
1
EWr (s)Wa (8)] = 5 (15 + [H* — |5 — ¢]*").

Fractional Brownian motion (fBm) was introduced by Mandelbrot and Van Ness (1968) as
a moving average Gaussian process. From the covariance function, it is easy to verify that
Wi is a self similar process and it has stationary increments. Pitt (1978) discovered the
strong local nondeterminism of the fBm. Xiao (1997) proved the Hélder conditions for the
local times and the Hausdorff measure of the level sets of the fBm. Since H is independent
of the time parameter ¢, the regularity of the fBm is the same all along its paths. This
property is undesirable when we model some phenomena that do not admit a constant
Holder exponent; for instance, the use of the fBm for synthesizing artificial mountains

does not allow to take into account erosion phenomena. To relax this restriction, as a
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generalization of the fBm, Peltier and Lévy (1995) and Benassi et al. (1997) independently
introduced the following definition: Let H; = H(t) : [0,00) — (0,1) be a Hélder function
of exponent # > 0, i.e. for any t1,ts € [0, 00) such that |t; —t2| < 1, there exists a constant
C > 0 such that

[H (tr) = H(t2)| < Cltr — ta]”.

Then

WO = Wi ) = g |- 0f = ol awew )

is called a multifractional Brownian motion (mBm), where W (u) is a Brownian motion.
Peltier and Lévy (1995) showed that a mBm has continuous sample paths with probability
one and studied its local Holder properties. Lin (2002) studied large increment behavior
of a mBm, and had the following result:

Let 0 <ar <T, ar — 0o as T — oo and D?(s,t) = E(W(t) — W/(s))2 for 0 < s <t,

under the condition:
|H, — Hy| = o((1 — s/t)t(logt)™)  as 0<t—s— 0, (1.2)
with B(t,h) = {2D?(t,t + h)(log 1/h + loglog 1/h)}~1/2,

limsup  sup sup ﬁ(t,T)|W(t +s) — W(t)| =1 a.s..
h—oo 0<t<T—ar 0<s<ar

In this paper, we consider ageneralization of fBm. Suppose that H(t) is a continuous
non-decreasing function with a < H(t) < 1 — a for some 0 < a < 1/2 and any ¢t > 0.
We call W with such H (t) as generalized fractional Brownian motion (gfBm) and study
some properties of a gfBm. We investigate the existence of the local non-determinism of
a gfBm in Section 2. In Section 3, we study the existence and the joint continuity of the
local time of a gfBm. In Section 4, the upper and lower bounds of Hausdorff dimensions
of level sets of a gfBm are given under the condition (1.2).

In this paper, C always stands for a positive constant, whose value is irrelevant.

dimpyg A is denoted the Hausdorff dimension of set A.

82. Thelocal Nondeterminism of a gfBm

The concept of local nondeterminism was introduced by Berman (1973). A process is
locally nondeterministic if a future observation is “relatively unpredictable” on the basis

of a finite set of observations from the immediate past. For a Gaussian process, the local
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nondeterminism is closely related to the existence of a continuous local time. As a property
of Gaussian process, it is of independent interest. Pitt (1978) discovered the strong local
nondeterminism of a fractional Brownian motion: there exists a constant 0 < K; < oo,

depending on H only, such that for all £ € R and 0 < r < |¢],
Var (Wg (t)|[Wg(s),|s —t| > r) = K72,

In his proof, the self-similarity and the stationarity play crucial roles. It is obvious that
a gfBm has neither the self-similarity nor the stationarity. How about the local nondeter-

minism for a gfBm?

Definition 2.1 Let J be an open interval on the t-axis. we assume that there

exists d > 0 such that

E(X(t) — X(s))? >0, (2.1)
where s,t € J and 0 < |t — s| < d,
EX%(t)>0  forall teJ (2.2)
For m > 2, let t1,--- ,t,, be arbitrary points in J with t; < --- < t,,. Let

Var {X (tm) = X (tm-1)[ X (t1), -+ X (bm1)}

Vin = Var (X (t) — X (tm 1)}

The process is called locally nondeterministic on J if for every integer m > 2

li inf . 2.
clfgtml—r%ﬁcvm >0 23)

For a gfBm, conditions (2.1) and (2.2) are obvious, we prove (2.3).
Let

Plw) = gy o o
then t
W(t) = /_ F(t,u)dW (u) (2.4)
and

Var {W(t) :/OO

It is apparent from the representation (2.4) that

(W (u),u< st D {W(u),u<s}.
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Therefore, for any time set A,

Var {W(t) — W(s)|W(u),u € A,u < s} > Var {W(t) — W(s)|W(u),u < s}.

By the independence of increments of a Brownian motion, we have
Var {W () — W (s)|W (u),u < s}
t t
= Var (/ F(t,u)dW(u)) :/ F2(t,u)du, 0<s<t.

Lemma 2.1 For0<s<t<Tandt—s—0,
Var {W(t) — W(s)} = O((t — s)*t + (H; — H,)*t*Mt log?t).

Proof The proof is similar to Lin (2002). O
Now, we show the following theorem.

Theorem 2.1 Let W(t) be a gfBm, Suppose that
|Hy — Hy| = O((1 — s/t)*(logt)™!)  as 0 <t—s—0.
Then W (t) is locally nondeterministic on open interval (0, T).
Proof By (2.5) and (2.6), V;, is at least

/ " P20 u)du

S

Var {W(t) — W(s)}

where t = t,,, and s = t,,,_1. Moreover

/ F2(7f7 u)du = T(H, +1/2)°H, (t — 8)2Ht‘

S

By Lemma 2.1 and (2.9), (2.8) is at least

(t—5)*"/(C(H, + 1/2)° Hy)

>0
(t — s)2Ht 4 (Hy — H,)2t2He log? ¢

as 0 < s<t<T andt—s— 0. The proof is complete. (]

(2.5)

(2.6)

(2.7)

(2.9)

83. The Jointly Continuity of the Local Time of a gfBm

Berman (1973) gave the sufficient conditions for joint continuity of local time on a

Gaussian process (See also German (1980)).
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Lemma 3.1 Let X(¢), 0 <t <T, be a Gaussian process with mean 0 and satisfy
the following three conditions:

(1) X(t) = 0 almost surely;

(2) X (t) is locally nondeterministic on (0,7);

(3) There exists b(t) such that b%(t) < E(X (s +t) — X(s))? for all s and

€ dt
/o Py = o1

for some €, > 0. Then the local time of X (¢) exists and is joint continuous in the sense
that (z,t) — L(z,t) is continuous on R x [0,T].

We just verify (3.1). First we quote an well known inequality (cf., e.g., Lin et al.
(1999)).

Lemma 3.2 If X and Y are independent, EX = 0, E|X|P < oo, E|Y|P < o0,
1 <p < oo, then

E[Y]P < E|X + YP. (3.2)
Now, for 0 < s < t, let
1 ! Hi—1/2
X = - Y=o (t—w)He .
Wi, () — Wi, (), T ) )

Then

W(t)—W(s) =X +Y.

By (3.2), we have

EW(t) — W(s))? > E|Y)?

1 ¢ 2H:—1
= H, £ 1/2) / (f = u)™ du
1 2H,
E t—s)2He,
2, 1)) Y
Note that
! >C?>0

I'2(Hy +1/2)(2Hy)
for any ¢t > 0. Let b(t) = CtHt, we have (3.1) for some § > 0 small enough.

Now, Lemma (3.1) implies the following theorem

Theorem 3.1 Let W (t) be a gfBm and satisfy the condition (2.7). Then it has a

joint continuous local time.
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84. The Hausdorff Dimensions of the Level Sets of a gfBm

The set E(z,T) = {t € [0,T],W(t) = x} is called the level set of W (t) in z, where
x is the interior of range of W(t) At first, we show the upper bound of the Hausdorff

dimensions of the level sets. The following lemma is similar to Theorem 3.1 of Lin (2002).

Lemma 4.1 Suppose that the gfBm W() satisfies condition (1.2). Let D?(s,t) =
E(W (t)—W (s))? for 0< s<t. Then, with 3(t, h) ={2D2(t, t+h)(log 1/h+loglog 1/h)} /2,

limsup sup sup B(¢, h)\W(t +s)— V[N/(t)] =1 a.s. (4.1)
h—0 0<t<1—h0<s<h

Theorem 4.1 Suppose that the gfBm W() satisfies condition of Lemma 4.1, then
for any T € R' and almost all z € R, the Hausdorff dimension

dimg B(z,T) < 1 — H(0). (4.2)

Proof By Lemma 2.1 and the condition of Lemma 4.1, D?(t + s,t) = O(s*Ht+s),
so the order of Holder exponent of D(-,-) is at least minycpo 7] Hy = H(0). For any € > 0,
it follows from (4.1) that for small s > 0,

W(t+s)—W(t) <CD"™ e (t+s,t) as.

By an argument similar to the proof of Lemma 8.2.2 of Adler (1981), we have (4.2). O
Next we consider the lower bound. First, we show the following inequality.

Lemma 4.2 Let W(t) be a gfBm, 0 < s < t, then
/ / E exp{i[un W (£) + usTW (s)]}durdup < C[(t — 5)~Hes—He]. (4.3)

Proof Since W ) is a Gaussian process, the left of (4.3) equals

//exp - fE ulW( )+ usW (s )] }duldug. (4.4)

Let

or = [EW2(0)]2ur + (EW ()W (1)/[EW? ()] *)uz, 02 = {Ewﬁ n L,

where

A = EW2(H)EW?(s) — [EW ()W (s)]?.

Then (4.4) equals

1
A_1/2/ / exp {,(v% i Ug)}dvldvg — (27)2A712, (4.5)
rRJR 2
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Next, we calculate A. Let

Wy, (s) = /_S F(t,u)dW (u),

then
[EW ()W (5)]* = [EW, ()W, ()] < EWg, (s)EW, (). (4.6)
Let . .
Wi, (s, t) = T(Ht+1/2)/s (t — w1 2aw (u),
then
EW2(t)EW?(s) = EWZ, (s)EW? (s) + EWZ, (s,t)EWZ (s). (4.7)
Moreover

0 s
EVEG) = fa iyt o P o)

—00 0

> (s, (4.8)

Similarly
EWZ, (s,t) > O(t — s)*™. (4.9)

Combining (4.6)—(4.9), we have
A > EWZ (s, t) EWE (s) > C(t — 5) 2t g2Hs

(4.3) follows from (4.4) and (4.5). O
Lemma 4.3  Let W (t) be a gfBm and satisfy condition (2.7), L(z,T), T € R, be the
local time of W(t), then the zero set of L(z,T) {x : L(x,T) = 0} is non-dense everywhere.
Proof By Theorem 3.1, W(t) has jointly continuous local time, hence from Adler
(1981), our conclusion is obvious. O

Now, we can show the lower bound of the Hausdorff dimension.

Theorem 4.2 Let W(t) be a gfBm and satisfy condition (2.7), then for any T € R
and almost every x,

dimpyg E(z,T) > 1 — Hry.

Proof By Lemma 4.3, for any T' € R, we have L(z,T) > 0 for almost every x. So

we can define random measure u:
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Then wu is a probability measure on E(x,7T). By the energy integration formulation, we

will just show for § < 1 — Hr, the energy integration
Is(u) = / s — ¢ Pdu(s)du(t) < oo. (4.10)
E2(z,T)

By an argument similar to the proof of Proposition 3.1 of Pitt (1978) (see also Theorem
8.7.4 of Adler (1981)), we have

1 T T '
B0 = g ), ) [ [ eelin o)
-Eexp{iuy W (s) + iugW (t) }|t — s| Pduy dusdsdt. (4.11)

Therefore in order to prove (4.10), it suffices to show that the right side of (4.11) is finite.
By Lemma 4.2, the right side of (4.11) is no more than

1 T T N N
12(2. TV (272 E ' ' )|t — s|Pduydugdsdt
L2(:c,T)(27r)2/0 /0 /R/R| exp{iuW(s) + iugW (6)}[t — s| " durdugds

C T t T
WW/ {/ !t—SI_Hts‘HSder/ It—sy—Hst—ths}\t—s\—ﬁdt

9 0 0 t
T T T
W/ {/ |75—5_Ht5_Hst+/ |t—5|_H3t_ths}|t—s|_ﬁdt
) 0 O 0
20 T T B B B
- W’W/o /0 |t — s| " Hes™He [t — s|Pdsdt

Cl T H ,@
L?(x,ﬂ(m?/o ful 77 du < 00

for almost every z. Hence

IN

IN

dimg E(x,T) > 1— Hy a.s..

This completes the proof of Theorem 4.2. O

The lower bound of the Hausdorff dimension is not sharp, but for a fBm, we have the

following corellary by combining Theorem 4.1 and Theorem 4.2.

Corollary 4.1 Let Wg(¢) be a fractional Browian motion, then for almost every

x in the range of Wy (t),
dimpg E(z,T) =1—- H.
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