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Abstract
This paper proposes a differential geometric framework for nonlinear models for Failure Time

Data. The framework may be regarded as an extension of that presented by Bates & Wates for

nonlinear regression models. As an application, we use this geometric framework to derive three

kinds of improved approximate confidence regions for parameter and subset parameter in terms of

curvatures. Several results such as Bates and Wates (1980), Hamilton (1986) and Wei (1998) are

extended to our models.
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§1. Introduction

The problem of analyzing time to event data arises in a number of applied fields, such

as medicine, biology, public health, epidemiology, engineering, economics, and demogra-

phy. A common feature of these data sets is that they contain censored observations,

especially right censored data. And there is an enormous literature on dealing with these

data sets. One simple method proposed by Aitkin (1981), in this paper, we use this method

to deal with nonlinear model for right censored data. This type of model has been used

for analyzing correlated survival observations (Hougaard, 1986). For Cox’s proportional

hazards model (Cox, 1972) with a gamma-fraility, inference procedures has been proposed

by Klein (1992). Zhang et. al (1998) consider inference for a semiparametric stochastic

mixed model for longitudinal data, and Cai, Cheng and Wei (2002) discussed Cox model

for analyzing univariate failure time data by using semiparametric mixed-models.

Bates & Wates (1980) proposed a differential geometric framework for analyzing sta-

tistical problems related to ordinary nonlinear regression models. In this paper, we modify
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the Bates & Wates geometric framework by using the inner product given by Fisher infor-

mation so that the modified Bates & Wates geometric framework can be used for nonlinear

models for Failure Time Data. We use this geometric framework to derive three kinds of

improved approximate confidence regions for parameter and parameter subsets in terms

of curvatures from a geometric viewpoint. Several results such as Bates and Wates (1980),

Hamilton (1986), Lee and Nelder (1996) and Wei (1998) are extended.

§2. Life Time Nonlinear Regression Model

Consider a life-testing experiment in which n + m items are put on test and m items

still survive at the conclusion of the test. Suppose that Y is an (m+n)×1 observed vector

of yi. Let the life times yi (i = 1, · · · , n + m) be independently and normally distributed

with mean µi and common variance σ2, and without loss of generality that the last m

lifetimes are censored because of termination of the experiment.

The means µi are related to design or explanatory variables xi by

µi = f(xi, β), (2.1)

where β is a p× 1 unknown parameter vector defined in B, xT
i = (xi1, · · · , xip) is observed

vector. Denote f(x, β) = (µ1, · · · , µn+m)T .

Let

φ(y) =
1√
2π

e−1/2y2
, ϕ(y) =

∫ ∞

y
φ(t)dt, ti =

yi − µi

σ
, S(y) =

φ(y)
ϕ(y)

.

The joint likelihood function is

L =
1
σn

n∏
i=1

φ(ti)
n+m∏

i=n+1
ϕ(ti),

then the joint log-likelihood function can be written as

l(β) = −n

2
log 2πσ2 − 1

2σ2

n∑
i=1

(yi − f(xi, β))2 +
m+n∑

i=n+1
log ϕ(ti). (2.2)

Differentiating the above formula to β, we get

∂l

∂β
=

1
σ2

n∑
i=1

(yi − f(xi, β))
∂f(xi, β)

∂β
+

1
σ

m+n∑
i=n+1

S(ti)
∂f(xi, β)

∂β

=
1
σ2

{ n∑
i=1

∂f(xi, β)
∂β

(yi−f(xi, β))+
1
σ2

m+n∑
i=n+1

∂f(xi, β)
∂β

[σS(ti)+f(xi, β)−f(xi, β)]
}

=
1
σ2

[ n+m∑
i=1

∂f(xi, β)
∂β

(zi − f(xi, β))
]
,
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where

zi =





yi, i = 1, 2, · · · , n;

σS(ti) + f(xi, β), i = n + 1, · · · , n + m.

l̇β =
1
σ2

DT e, (2.3)

where e = Z−f(x, β), Z is the n+m vector with the element zi, D = ∂2f(x, β)/(∂β∂βT ).

l̈ββ =
∂2l

∂β∂βT

= − 1
σ2

{ n∑
i=1

∂f(xi, β)
∂β

∂f(xi, β)
∂βT

+
m+n∑

i=n+1

∂f(xi, β)
∂β

· φ′(ti)Φ(ti) + φ2(ti)
Φ2(ti)

∂f(xi, β)
∂βT

}

+
1
σ2

{ n∑
i=1

(yi − f(xi, β))
∂2f(xi, β)
∂β∂βT

+
m+n∑

i=n+1

∂2f(xi, β)
∂β∂βT

σS(ti)
}

.

l̈ββ = − 1
σ2

DT Ω−1D +
1
σ2

[eT ][W ], (2.4)

where Ω = diagonal(v1, v2, · · · , vn+m),

vi =





1, i = 1, 2, · · · , n;
φ′(ti)Φ(ti) + φ2(ti)

Φ2(ti)
, i = n + 1, · · · , n + m,

W =
∂2f(x, β)
∂β∂βT

,

and [·][·] denotes the array multiplication, see Wei (1998) Appendix A for details.

We assume that regular conditions such as Wei (1998) for our model are satisfied, in

particular, we assume that

lim
n

DT Ω−1D

n
= K(β).

Let β̂ be the maximum likelihood estimate of β, then it follows from (2.3) that β̂

satisfies

DT (β̂)Ω−1ê∗ = 0,

where ê∗ = Ωê, ê = Z − f(x, β)|
β̂
.

The above equation shows that in Euclidean space Rn+m, the “residual vector” ê∗ is

orthogonal to the space spanned by column vectors of D(β̂) with respect to the matrix Ω−1

inner product. Combining this geometric interpretation with the geometric framework of

nonlinear regression models presented by Bates and Wates (1980), we can introduce a

modified BW geometric framework for our models (2.1) as follows.

Take η = f(x, β) as a coordinate in Euclidean space Rn, then η = f(x, β) may

be called solution locus. It is easily seen that the tangent space Tβ is spanned by the
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columns of D(β). For any two vectors a and b in Rn, we define an inner product as

< a, b >= aT Ω−1b. Under this inner product, the corresponding normal space is denoted

by T ′β. We can define curvature arrays for the solution locus η = f(β), connected with the

model (2.1). To this aim, we choose the orthogonal basis for spaces Tβ. Suppose that the

QR decomposition of D(β) under inner product is given by

D(β) = (Q,N)

(
R

0

)
, (2.5)

where R and L = R−1 are p×p nonsingular upper triangular matrices and the columns of

Q and N are orthogonal basis for the tangent space and the normal space of solus η = f(β)

at β. The matrices Q and N satisfy QT Ω−1Q = Ip, QT Ω−1N = 0, NT Ω−1N = In+m−p,

where Ip and In+m−p are identity matrices of order p and n + m− p, respectively.

Now we define the intrinsic curvature array AI and parameter-effects curvature array

AP as:

AI = [NT Ω−1][U ], AP = [QT Ω−1][U ], U = LT WL. (2.6)

Note that for an inner product space with weight Ω−1, the projection operator of matrix

D is PD = D(DT Ω−1D)−1DT Ω−1 and satisfies that P 2
D = PD and Ω−1PD = P T

DΩ−1.

Therefore PT = QQT Ω−1 and PN = NNT Ω−1 are orthogonal projection operators of

tangent space Tβ and normal space T ′β, respectively. It is also easy to show that U =

[N ][AI ] + [Q][AP ].

The geometric framework introduced above seems similar to that defined by Bates

and Wates (1980), so it may be called the modified BW (MBW) geometric framework.

But there are some differences between our MBW framework and BW framework.

§3. Confidence Regions in Terms of Curvature

Hamilton (1986) studied confidence regions for parameters in normal nonlinear models

based upon the Bates & Watts (1980) geometric framework. They obtained quadratic

approximations for the inference in terms of curvature measures. It is interesting that we

can completely extend all the results to the nonlinear models with random effects based

upon the modified Bates & Watts curvature measures.

A usual approximate confidence region of β for our models (2.1) is based on the

likelihood ratio static

LR(β) = −2{l(β)− l(β̂)}, (3.1)

《
应
用
概
率
统
计
》
版
权
所
用



第三期 宗序平: 带寿命数据非线性随机效应模型的置信域 303

which is a function of β and asymptotically has a χ2
p for β.

To derive improved approximate projections of the solution locus inference region onto

the tangent space, we introduce a nonlinear transformation for β as follows. In parameter

space, the point β and β̂ map to vectors η(β) and η(β̂), respectively. The projection

of η(β) − η(β̂) onto the tangent space at β̂ is t = QQT Ω−1{η(β) − η(β̂)}, where Q is

evaluated at β̂, all the quantities such as Q, D, R, L are evaluated at β̂ which we omit.

If the columns of Q are taken as an orthogonal basis for the tangent space at β̂, then the

coordinates of projection t in the tangent space are

τ(β) = QT Ω−1{η(β)− η(β̂)}. (3.2)

As a new parameter, τ = τ(β) represents a nonlinear mapping from the parameter space to

the tangent space and connects the solution locus and the tangent space. The coordinates

τ provide a natural reference system for the solution locus and approximations to it.

We may construct confidence regions for the parameter β in terms of coordinates τ by

using quadratic approximations. The analogous transformation to (3.2) has been used

for nonlinear regression models by Hamilton (1986). Notice that the transformation (3.2)

gives an one-to-one mapping between β and τ in some neighborhood of β̂, and β = β̂

corresponding to τ = 0. We denote the inverse of τ = τ(β) by β = β(τ).

3.1 Likelihood Region of Parameter

We can derive an improved approximate projection of the solution locus likelihood

region onto the tangent space using transformation (3.2). For simplicity, we denote the

log-likelihood l(β) and the likelihood ratio statistic LR(β) by l(τ) and LR(τ), respectively

when β = β(τ) is considered. Similarly, we denote l(β̂), l̇(β̂) and l̈(β̂) by l(0), l̇(0) and l̈(0),

respectively, when β = β(τ) at β̂ (i.e. τ = 0). We may derive a quadratic approximation

for LR(τ) in terms of the parameter τ = τ(β) instead of the parameter β. To do so, we

need the following lemma.

Lemma 3.1 For the models (2.1), the derivatives at β̂ of the functions of τ(β)

and β(τ) defined (3.2) are given by

∂τ

∂βT
= R,

∂2τ

∂β∂βT
= RT AP R. (3.3)

∂β

∂τT
= L,

∂2β

∂τ∂τT
= −[L][AP ]. (3.4)
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Proof It is easy to get (3.3) from (3.2), so we just prove (3.4). Since ∂τ/∂τT =

(∂τ/∂βT )(∂β/∂τ) = Ip, we have ∂β/∂τT = R−1 = L and

∂2τ

∂τ∂τT
=

( ∂β

∂τT

)T ( ∂2τ

∂β∂βT

)( ∂β

∂τT

)
+

[ ∂τ

∂βT

][ ∂2β

∂τ∂τT

]

= LT (RT AP R)L + [R]
[ ∂2β

∂τ∂τT

]
= 0,

which gives the second equation of (3.4). ¤

Theorem 3.1 For the model (2.1), the approximate tangent space projection of

the solution locus likelihood region of β with level 100(1− α)% can be represented as

τT (β)(Ip −B)τ(β) ≤ σ2χ2(p, α), (3.5)

where B = [êT N ][AI ], and Q, N , AI are all evaluated at β̂.

Proof Under the transformation (3.2), (3.1) can be represented as

LR(β) = −2{l(τ)− l(0)} ≈ −τT (β)l̈(0)τ(β), (3.6)

where l̈(0) = ∂2l/∂τ∂τT evaluated at τ = 0 (i.e. β = β̂). It follows from Lemma 3.1 that

l̈(τ) =
{(∂β

∂τ

)T ( ∂2l

∂β∂βT

)(∂β

∂τ

)
+

[( ∂l

∂β

)T ][ ∂2β

∂τ∂τT

]}
. (3.7)

From D = QR, DT Ω−1D = RT R, and Lemma 3.1 that

−l̈(β̂) =
1
σ2

RT {Ip − [êT ][LT WL]}R,

and from (2.4)-(2.6), we have [êT ][LT WL] = [êT ][U ] = [ê][(NNT Ω−1 + QQT Ω−1)U ] = B,

hence

−l̈(β̂) = σ−2RT (Ip −B)R. (3.8)

Substituting this equation into LR(β) gives

LR(β) = σ−2τT (β)(Ip −B)τ(β). (3.9)

It follows from equation (3.8) that Ip − B ≥ 0, therefore expression (3.5) shows that the

approximate tangent space projection of the solution locus likelihood region is an ellipsoid

which does not depend on the parameterizations. Our Theorem 3.1 for nonlinear models

for failure time data is similar to the result obtained by Wei (1998) for the embedded

models. If σ2 is unknown, then (3.5) can be represented as τT (β)(Ip − B)τ(β) ≤ δ2, and

δ2 is decided by F (p, n− p, 1− α). ¤
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3.2 Confidence Region for Parameter Subsets Based Upon

Likelihood Ratio

If a subset of parameters is of primary interest as discussed by Hamilton, often the

parameter vector β cab be partitioned as βT = (βT
1 , βT

2 ), where the last k parameters β2

are of interested. Further, parton τT = (τT
1 , τT

2 ), D = (D1, D2), R = (Rij), and B = (Bij)

(i, j = 1, 2), to confirm to the portioning of β, similar partings are used later.

The likelihood ratio statistic corresponding to β2 is similar to (3.1) and given by

LRs(β2) = −2{l(β̃)− l(β̂)}, (3.10)

where β̃T = (β̃T
1 (β2), βT

2 ) and β̃T
1 (β2) maximizes l(β) for each value of β2. The function

LRs(β2), which is analogous to LR(β), depends on parameters β2 and asymptotically

has distribution χ2(k) for each β2 (see [11]-[13]). To obtain an improved approximate

likelihood region for the parameter subset β2, the transformation (3.2) can also be used.

In this case, (3.2) has the form

τ̃ = τ(β̃) = QT Ω−1{η(β̃)− η(β̂)}, (3.11)

where τ̃ = τ(β̃) is a function of β2. Form (3.11) we have Theorem 3.2.

Theorem 3.2 For the nonlinear models with random effects stated above, the

approximate tangent space projection of the solution locus likelihood region of β with

level 100(1− α)% can be represented as

τ̃T
2 (Ik − T )τ̃2 ≤ σ−2χ2(k, α), (3.12)

where T = B22 + B21(Ik −B11)−1B12, τ̃T = (τ̃T
1 , τ̃T

2 ).

Proof It is easily seen that equation (3.9) still holds at and it can be represented

as

LRs(β2) = −2{l(β̃)− l(β̂)} ≈ τ̃T (Ip −B)τ̃ /σ2. (3.13)

Form this equation, we may derive an approximate relationship between τ̃1 and τ̃2. In

fact, the approximations to (3.2) and (3.11) give τ ≈ QT Ω−1D(β − β̂) = R(β − β̂) and

τ̃ = R(β̃ − β̂), respectively. Then the components of τ̃ are give by τ̃2 = R22(β2 − β̂2) and

τ̃1 = R11(β̃1 − β̂1) + R12(β2 − β̂2), respectively. On the other hand, it follow from (3.8)

that l̇(β̃) ≈ l̈(β̂)(β̃ − β̂) = −σ−2RT (I − B)τ̃ , that is −σ−2LT l̇(β̃) = σ−2(I − B)τ̃ . Since

(∂l/∂β1)β̃
= 0, this leads to

τ̃1 = (I −B11)−1B12τ̃2 (τ̃2 = τ2). (3.14)
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Therefore we have

LRs(β2) = τ̃2(Ik − T )τ̃2/σ2,

which implies (3.12) and the theorem is proved. ¤

Notice that both the expression and the geometric interpretation of (3.12) are very

similar to those of Hamilton (1986) for normal nonlinear regression models. Our Theorem

3.2 can be used for general classes.

3.3 Confidence Region for Parameter Subsets Based on the Score

Statistic

The score statistic can be used to construct confidence regions for parameter subsets

as discussed by Hamilton (1986) for nonlinear regression models. For our model (2.1), the

score statistic associated with β is

SC =
{( ∂l

∂β2

)T
J22

( ∂l

∂β2

)}
,

where J22 is the lower right corner of parting J−1(Y ) = (J ij) (i, j = 1, 2) and J(Y ) =

σ−2DT Ω−1D. SC asymptotically has the χ2(k) distribution for each β2. To get a quadratic

approximation of SC in terms of the curvature, we first give a lemma.

Lemma 3.2 Let P = D(DT Ω−1D)−1DT Ω−1, P1 = D1(DT
1 Ω−1D1)−1DT

1 Ω−1 and

ẽ = e(β̃), then

SC = σ−2ẽT (P̃ − P̃1)ẽ, (3.15)

where Ω̃, P̃ and P̃1 are all evaluated at β̃.

Proof It is easy to show from (2.3) and (2.4) that ∂l/∂β2 = DT
2 e, J22 = (DT

2 Ω−1

·P ′
1D2)−1σ−2 and

SC = σ−2ẽT D2(DT
2 Ω−1P ′

1D2)−1DT
2 ẽ, (3.16)

where P ′
1 = I − P1. Since DT

1 ẽ = 0, ẽ is orthogonal to the columns of D1 and P ′
1ẽ = ẽ

holds. Notice that (P ′
1)

T Ω−1 = Ω−1P ′
1 hold: substitution of these results into the above

equation gives

SC = σ−2{eT P ′T
1 D2(DT

2 Ω−1P ′
1D2)−1DT

2 e}
β=β̃

= σ−2{eT (P − P1)e}β=β̃
,

where we use the fact that P − P1 is equal to the projection operator of P ′
1D2. ¤
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Lemma 3.3 If β = β(τ) is determined by (3.2), then the quadratic approximation

of β(τ) can be represented as

η(β(τ)) ≈ η(β̂) + Qτ + (1/2)N(τT AIτ), (3.17)

where Q, N and AI are all evaluated at β̂.

Proof It follows from Lemma 1 that
∂2η

∂τ∂τT
=

( ∂β

∂τT

)T ( ∂2η

∂β∂βT

)( ∂β

∂τT

)
+

[ ∂η

∂βT

][ ∂2η

∂τ∂τT

]

= LT WL + [D][−[L][AP ]]

= U − [Q][AP ] = [N ][AI ],

then (3.17) can be obtained by using the second order Taylor series expansion for η(β(τ))

at τ = 0. ¤

Theorem 3.3 For the model (2.1) in Section 2, the approximate tangent space

projection of the solution locus inference region of β based on the score statistic with level

100(1− α)% can be represented as

τ̃T
2 (β)(Ik − T )2τ̃2(β) ≤ σ2χ2(k, α), (3.18)

where T is defined in Theorem 3.2.

Proof By Lemma 3.2 and Lemma 3.3, we first use D to calculate

ẽ∗T Ω−1P ẽ∗ = ẽ∗T Ω−1D(DT Ω−1D)−1D
T Ω−1ẽ∗,

where D = D(β̃). It follows from (3.17) that at β = β̃ (i.e. τ = τ̃), we have

D = Q + NM (M = AI τ̃) and (DT Ω−1D)−1 = (I + MT M)−1,

ẽ∗ = ê∗ −Qτ̃ − 1
2
Nτ̃T AI τ̃ .

By a little calculation, we can get (3.18). ¤
The expression and geometric interpretation of Theorem 3.3 are very similar to those

given by Halmilton (1986, P.60) for nonlinear models. For the case when there is no

nuisance parameter under consideration, then τ2 = τ , T = B and (3.18) reduces to

τT (β)(Ip −B)2τ(β) ≤ σ2χ2(p, α),

which may be considered as an alternative confidence region for β.

The geometric framework is introduced in this paper while the parameter β and

parameter subsets are interested, and some asymptotic inference may be studied based

upon this framework.
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带寿命数据非线性随机效应模型的置信域

宗 序 平

(扬州大学数学科学学院, 扬州, 225002)

本文对带寿命数据非线性随机效应模型, 建立了微分几何框架, 推广了Bates & Wates关于非线性模型几

何结构. 在此基础上, 我们导出了关于固定效应参数和子集参数的置信域的曲率表示, 这些结果是Bates and

Wates (1980), Hamilton (1986)和Wei (1998)等的推广.

关键词: 置信域, 曲率立体阵, Fisher信息, Score函数, 非线性模型.

学科分类号: O212.1.
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