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Abstract

This paper proposes a differential geometric framework for nonlinear models for Failure Time
Data. The framework may be regarded as an extension of that presented by Bates & Wates for
nonlinear regression models. As an application, we use this geometric framework to derive three
kinds of improved approximate confidence regions for parameter and subset parameter in terms of
curvatures. Several results such as Bates and Wates (1980), Hamilton (1986) and Wei (1998) are
extended to our models.
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§1. Introduction

The problem of analyzing time to event data arises in a number of applied fields, such
as medicine, biology, public health, epidemiology, engineering, economics, and demogra-
phy. A common feature of these data sets is that they contain censored observations,
especially right censored data. And there is an enormous literature on dealing with these
data sets. One simple method proposed by Aitkin (1981), in this paper, we use this method
to deal with nonlinear model for right censored data. This type of model has been used
for analyzing correlated survival observations (Hougaard, 1986). For Cox’s proportional
hazards model (Cox, 1972) with a gamma-fraility, inference procedures has been proposed
by Klein (1992). Zhang et. al (1998) consider inference for a semiparametric stochastic
mixed model for longitudinal data, and Cai, Cheng and Wei (2002) discussed Cox model
for analyzing univariate failure time data by using semiparametric mixed-models.

Bates & Wates (1980) proposed a differential geometric framework for analyzing sta-

tistical problems related to ordinary nonlinear regression models. In this paper, we modify
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the Bates & Wates geometric framework by using the inner product given by Fisher infor-
mation so that the modified Bates & Wates geometric framework can be used for nonlinear
models for Failure Time Data. We use this geometric framework to derive three kinds of
improved approximate confidence regions for parameter and parameter subsets in terms
of curvatures from a geometric viewpoint. Several results such as Bates and Wates (1980),
Hamilton (1986), Lee and Nelder (1996) and Wei (1998) are extended.

§2. Life Time Nonlinear Regression Model

Consider a life-testing experiment in which n + m items are put on test and m items
still survive at the conclusion of the test. Suppose that Y is an (m+mn) x 1 observed vector
of y;. Let the life times y; (i = 1,--- ,n + m) be independently and normally distributed
with mean p; and common variance o2, and without loss of generality that the last m
lifetimes are censored because of termination of the experiment.

The means p; are related to design or explanatory variables z; by

pi = f(zi, ), (2.1)

where (3 is a p X 1 unknown parameter vector defined in B, xZT = (z41,- -+, x4p) is observed

vector. Denote f(z,3) = (t1," -, fntm)” -

Let
1 192 > Yi — i ¢(y)
oly) = —=e /2, yz/ p(t)dt, = . Sy =
) = 7= o= [ ot n=t =0
The joint likelihood function is
1 n n+m
L=—Tl¢) I et),
0" i=1 i=n+1
then the joint log-likelihood function can be written as
m+n
1(B) = —*10g27w — 53 Z( flzi, 0+ % llogw( i)- (2.2)
i=n-+

Differentiating the above formula to 3, we get
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where

Yi, Z:1,2,"',7'L;
Zi =

.1
ZQZEEDTQ (2.3)

where e = Z — f(z,3), Z is the n+m vector with the element z;, D = 9 f(z, 3)/(03057T).

i 9%l

= g
_ 1 (& 0f (23, B) 0f (w5, 8) ™A Of(z,8) ¢ (t:)®(t;) + ¢(t:) Of (i, B)
- '_55{2;_ ap apT +};%i1 B 2(t;) opT }

' P f(xi,B) | ™k 9*f(xi, B) ,
%0 = Flaw ) g5+ 2 Sagger oSt}

- 1 1
lm:—ﬁﬁm*p+?wﬂwL (2.4)
where Q = diagonal(vi,ve, -, Untm),
1 1=1,2,--- ,n; 2
B ) y &y s Ty B 0 f(.’L',,B)
Vi = ¢ (t)®(t:) + ¢* (1) i=n+l, n4m, W= dp05T

D2(t;) ’
and [-][-] denotes the array multiplication, see Wei (1998) Appendix A for details.

We assume that regular conditions such as Wei (1998) for our model are satisfied, in

particular, we assume that

Let B be the maximum likelihood estimate of /3, then it follows from (2.3) that B
satisfies
pr(Bae =0,

where e* = Qe, e = 7 — f(x,ﬁ)]a.

The above equation shows that in Euclidean space R, the “residual vector” €* is
orthogonal to the space spanned by column vectors of D(B) with respect to the matrix Q!
inner product. Combining this geometric interpretation with the geometric framework of
nonlinear regression models presented by Bates and Wates (1980), we can introduce a
modified BW geometric framework for our models (2.1) as follows.

Take n = f(z,) as a coordinate in Euclidean space R", then n = f(z,() may

be called solution locus. It is easily seen that the tangent space Tj is spanned by the
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columns of D(B). For any two vectors a and b in R", we define an inner product as
< a,b >=a”Q7'b. Under this inner product, the corresponding normal space is denoted
by TE]. We can define curvature arrays for the solution locus n = f(3), connected with the
model (2.1). To this aim, we choose the orthogonal basis for spaces Tj3. Suppose that the
QR decomposition of D(3) under inner product is given by

D(B) = (Q.N) < ; > , (25)
where R and L = R™! are p x p nonsingular upper triangular matrices and the columns of
Q@ and N are orthogonal basis for the tangent space and the normal space of solus n = f(3)
at . The matrices Q and N satisfy QTQ1Q = I, QTQIN =0, NTQ™IN = ntm—p»
where I, and I,,4,,,—p are identity matrices of order p and n + m — p, respectively.

Now we define the intrinsic curvature array A’ and parameter-effects curvature array
AP as:

Al = [INTQ U], AF =[QTa YU], U=L"WL. (2.6)

Note that for an inner product space with weight Q1. the projection operator of matrix
D is Pp = D(DTQ7'D)"1DTQ~! and satisfies that P3 = Pp and Q7 'Pp = PLO-L.
Therefore Pr = QQTQ™! and Py = NNTQ™! are orthogonal projection operators of
tangent space T and normal space T}, respectively. It is also easy to show that U =
IN][AT] + [Q][A7].

The geometric framework introduced above seems similar to that defined by Bates
and Wates (1980), so it may be called the modified BW (MBW) geometric framework.

But there are some differences between our MBW framework and BW framework.

§3. Confidence Regions in Terms of Curvature

Hamilton (1986) studied confidence regions for parameters in normal nonlinear models
based upon the Bates & Watts (1980) geometric framework. They obtained quadratic
approximations for the inference in terms of curvature measures. It is interesting that we
can completely extend all the results to the nonlinear models with random effects based
upon the modified Bates & Watts curvature measures.

A usual approximate confidence region of § for our models (2.1) is based on the

likelihood ratio static

LR(B) = —2{1(8) = I(B)}, (3.1)
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which is a function of 3 and asymptotically has a X% for 3.

To derive improved approximate projections of the solution locus inference region onto
the tangent space, we introduce a nonlinear transformation for 3 as follows. In parameter
space, the point 3 and E map to vectors n(3) and 17(3), respectively. The projection
of n(B8) — n(3) onto the tangent space at 3 is t = QQTQ{n(8) — n(B)}, where Q is
evaluated at B, all the quantities such as @, D, R, L are evaluated at B which we omit.
If the columns of ) are taken as an orthogonal basis for the tangent space at B, then the

coordinates of projection ¢ in the tangent space are

7(8) = QT Hn(8) — n(B)}. (3.2)

As a new parameter, 7 = 7([3) represents a nonlinear mapping from the parameter space to
the tangent space and connects the solution locus and the tangent space. The coordinates
7 provide a natural reference system for the solution locus and approximations to it.
We may construct confidence regions for the parameter § in terms of coordinates 7 by
using quadratic approximations. The analogous transformation to (3.2) has been used
for nonlinear regression models by Hamilton (1986). Notice that the transformation (3.2)
gives an one-to-one mapping between [ and 7 in some neighborhood of 3, and 0 = 3

corresponding to 7 = 0. We denote the inverse of 7 = 7(3) by 8 = 5(7).

3.1 Likelihood Region of Parameter

We can derive an improved approximate projection of the solution locus likelihood
region onto the tangent space using transformation (3.2). For simplicity, we denote the
log-likelihood () and the likelihood ratio statistic LR(3) by I(7) and LR(7), respectively
when (8 = (3(7) is considered. Similarly, we denote l(ﬁ), Z(B) and l(ﬁ) by 1(0), [(0) and [(0),
respectively, when § = (1) at ,/6\ (i.e. 7 =0). We may derive a quadratic approximation
for LR(7) in terms of the parameter 7 = 7(/3) instead of the parameter 5. To do so, we

need the following lemma.

Lemma 3.1 For the models (2.1), the derivatives at 3 of the functions of 7(8)
and [(7) defined (3.2) are given by

87- . 827- o T «P
gar =B g = HATR. (3.3)
W, PO yun (3.4)

orT drorT ~
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Proof It is easy to get (3.3) from (3.2), so we just prove (3.4). Since o7/97T =
(01/0BT)(08/07) = I,, we have 93/07T = R™! = L and

2 2 2
s = (arr) (a5) (o) * [ (a7
0?3
aTaTT} =0,

— LT(RTAPR)L + [R] [
which gives the second equation of (3.4). O

Theorem 3.1 For the model (2.1), the approximate tangent space projection of

the solution locus likelihood region of 3 with level 100(1 — «)% can be represented as

TT(ﬂ)(Ip - B)T(ﬁ> < 02X2(p7 Oé), (35)

where B = [eT N][A!], and Q, N, A are all evaluated at B

Proof Under the transformation (3.2), (3.1) can be represented as

LR(B) = —2{l(1) = 1(0)} = —7"(B)I(0)7(B), (3.6)

where [(0) = 821/0707" evaluated at 7 =0 (i.e. § = B) It follows from Lemma 3.1 that

i0={(5)" (5057) (50) + [(53) (57} 7

From D = QR, DTQ™'D = RTR, and Lemma 3.1 that

~i(B) = S RT{L, - [T WL R,

and from (2.4)-(2.6), we have [e?][LTW L] = [eT][U] = [e][((NNTQ! + QQTQ1)U] = B,
hence
—i(B) = o 2R (I, — B)R. (3.8)

Substituting this equation into LR(/3) gives
LR(B) = o 277 (8)(I, — B)7(B). (3.9)

It follows from equation (3.8) that I, — B > 0, therefore expression (3.5) shows that the
approximate tangent space projection of the solution locus likelihood region is an ellipsoid
which does not depend on the parameterizations. Our Theorem 3.1 for nonlinear models
for failure time data is similar to the result obtained by Wei (1998) for the embedded
models. If o2 is unknown, then (3.5) can be represented as 77 (3)(I, — B)7(8) < 6%, and
62 is decided by F(p,n —p,1 — a). O
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3.2 Confidence Region for Parameter Subsets Based Upon
Likelihood Ratio

If a subset of parameters is of primary interest as discussed by Hamilton, often the
parameter vector 3 cab be partitioned as 37 = (5], 3%, where the last k& parameters (3,
are of interested. Further, parton 77 = (r{,7]), D = (D1, D2), R = (R;;), and B = (B;;)
(1,7 = 1,2), to confirm to the portioning of 3, similar partings are used later.

The likelihood ratio statistic corresponding to (33 is similar to (3.1) and given by

where §T = (ElT(ﬂg), BT and ng (B2) maximizes () for each value of 2. The function
LRs(B2), which is analogous to LR((3), depends on parameters (2 and asymptotically
has distribution y?(k) for each B2 (see [11]-[13]). To obtain an improved approximate
likelihood region for the parameter subset 2, the transformation (3.2) can also be used.

In this case, (3.2) has the form

7=7(8) = QT {n(B) — n(B)}, (3.11)

where 7 = 7(f3) is a function of B2. Form (3.11) we have Theorem 3.2.
Theorem 3.2 For the nonlinear models with random effects stated above, the

approximate tangent space projection of the solution locus likelihood region of § with

level 100(1 — )% can be represented as
(I, — )72 < 072 (k, ), (3.12)

where T' = Byy + Bo1 (I — Bi1) " 'Biz, 77 = (7] ,73).

Proof It is easily seen that equation (3.9) still holds at and it can be represented
as
LRy(B2) = —2{U(B) — 1(B)} ~ 7T (I, — B)7 /o> (3.13)
Form this equation, we may derive an approximate relationship between 77 and 75. In
fact, the approximations to (3.2) and (3.11) give 7 ~ QTQ"1D(B — B) = R(B — B) and
T= R(E - E), respectively. Then the components of 7 are give by 7o = Raa(52 — 32) and
T = Rll(gl — 31) + Ri2(f2 — Eg), respectively. On the other hand, it follow from (3.8)
that [(3) ~ [(B)(3 — B) = —o2RT(I — B)7, that is —o2LTi(8) = o—2(I — B)7. Since
(8l/8ﬁ1)5 = 0, this leads to

71 = (I — B11) ' B127o (T2 = T2). (3.14)
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Therefore we have
LRy(32) = 7o(I}, — T) 72 /02,
which implies (3.12) and the theorem is proved. O

Notice that both the expression and the geometric interpretation of (3.12) are very
similar to those of Hamilton (1986) for normal nonlinear regression models. Our Theorem

3.2 can be used for general classes.

3.3 Confidence Region for Parameter Subsets Based on the Score
Statistic

The score statistic can be used to construct confidence regions for parameter subsets
as discussed by Hamilton (1986) for nonlinear regression models. For our model (2.1), the

score statistic associated with [ is

[ OUNT g9 Ol
5C = {<3732> 7 (372»’
where J?2 is the lower right corner of parting J~1(Y) = (J¥) (i,j = 1,2) and J(Y) =

o2DTQ~1D. SC asymptotically has the x?(k) distribution for each 3. To get a quadratic

approximation of SC in terms of the curvature, we first give a lemma.
Lemma 3.2 Let P = D(DTQ"'D)=!1DTQ~! P = Di(D¥Q1Dy)"'DIQ! and

e =e(f), then
SC =0 2%"(P - P)e, (3.15)

where (~2, P and P are all evaluated at B
Proof It is easy to show from (2.3) and (2.4) that 91/93; = Dle, J?2 = (DIQ~!
-P|D3) o2 and
SC = o2 Dy(DIQ1P{ D)1 DIE, (3.16)
where P{ = I — P;. Since DT¢ = 0, € is orthogonal to the columns of D; and Pjé¢ = €

holds. Notice that (P])TQ~! = Q71 P] hold: substitution of these results into the above

equation gives
SC =0 2" P["Da(DFQ PIDy) ' Dj e}y 5 =0 " (P = Pi)e}, 5

where we use the fact that P — Pj is equal to the projection operator of P{Ds. ]
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Lemma 3.3 If § = ((7) is determined by (3.2), then the quadratic approximation

of B(7) can be represented as
n(8(7)) = n(B) + Qr + (1/2)N(r" A'7), (3.17)
where @, N and A’ are all evaluated at B

Proof It follows from Lemma 1 that
2 T 2 2
afaZT = (aafT> (aﬁaaZT) (57% + {aagnT] [afaZT]
— L"WL+ [D][-[LI[A"]

= U-[QIA"] = [N][A],

then (3.17) can be obtained by using the second order Taylor series expansion for n(3(7))
at 7 =0. O

Theorem 3.3 For the model (2.1) in Section 2, the approximate tangent space
projection of the solution locus inference region of 3 based on the score statistic with level

100(1 — a))% can be represented as
73 (B) Iy — T)*7a(B) < ox*(k, ), (3.18)
where T is defined in Theorem 3.2.
Proof By Lemma 3.2 and Lemma 3.3, we first use D to calculate
eTQ lpe =T 'D(D' QD) "' D' Qe
where D = D(g) It follows from (3.17) that at 3 = 3 (i.e. T = 7), we have
D=Q+NM (M=A% and DO Q'D)'=T+M'M),
&= —QF — %NﬁAI%
By a little calculation, we can get (3.18). O

The expression and geometric interpretation of Theorem 3.3 are very similar to those
given by Halmilton (1986, P.60) for nonlinear models. For the case when there is no

nuisance parameter under consideration, then 79 = 7, T'= B and (3.18) reduces to
T (B) I, — B)*r(8) < *X*(p, ),
which may be considered as an alternative confidence region for .
The geometric framework is introduced in this paper while the parameter 7 and

parameter subsets are interested, and some asymptotic inference may be studied based

upon this framework.
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