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Abstract

A stock daily return rate with price limits model, called two-limit Tobit-autoregression-GARCH (TLTARG)
is introduced. Maximum likelihood estimation (MLE) for this model is constructed. With Monte Carlo experi-
ments, the MLE is examined. An example of TLTARG model estimation on stock daily return rate in Shanghai
stock market is given.
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§1. Introduction

Daily price limits in stock market are supposed to be able to control market volatility and provide time
for rational reassessment during times of panic trading. Despite the debate about their impact on market, the
consequence is that they bound the price movements, truncate the distribution of true price changes and constrain
the observed prices within a specified range based on the previous day’s closing price.

Generally speaking, there are two kinds of daily price limits regulations in stock markets. One limits the
range of the daily price movements according to the previous day’s closing price, such as the price limits rule in

Tokyo stock market. That is

pr-1+ Ply if pf 2 pi— + PLy
Pt =< pp if pi—1+ PLy <p’{<pt~1+PL1,
pt-1+PL:  if p; <pi-1+ PL»
where p; is the closing price observed on t-day, p; is the latent closing price on t-day (p] is unobservable if it hits

the limits), PL, and PL, are the price upper limit and lower limit, respectively. The other sets the size of the

daily return rate, such as the rule in Shanghai stock market. This is

RL, if v >RL,
Tt =Qrf if RLy<r;f <RLy;

RL, if r} <RL,

where 7¢ = (pr — De—1)/pt—1 is the return rate observed on t-day, r; = (p; — pt—1)/pt—1 is the latent return
rate on t-day, RL, and RL» are, respectively, the return rate upper limit and lower limit. Perhaps, it is more
appropriate to call the latter daily return rate limits rule. In this paper, we discuss the latter.

Although the topic about price limits has attracted a great deal attention since 1987 crash and price limits
regulations exist actually in many stock markets in the world, an applicable econometric model has not been

developed yet that explains the mechanism of price limits in stock market. The main difficulty to model the
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stock movements with price limits might be that in a market with price limits, when a shock occurs such that the
price moves outside the daily maximum allowable range, it becomes unobservable. What is observed is merely
a limit price, in which case,'there is an imbalance between market demand and supply. Sametimes, the excess
demand/supply will accumulate and be carried over to successive trading days until it is fully reflected at the
trading price, at which time the price falls back within the limits again. When this case occurs, the analysis is

more difficult.

§2. Model

Since the stock price will be censored according to price limits rule, as first step, it is rational to consider
the two-limit Tobit regression model (Rosett (1975)). In this model with latent regression y; = o'z; + e, (t =
1,---,T), where a is a K x 1 vector of parameters, z; is a K x 1 vector of independent variables and {¢;} are
assumed to be i.i.d. N(0,0?) series, the dependent variable is bounded below and above by L; and L,. The

dependent variable y, is determined by

Ly if yy>Ly
=19y if Ly <y <Ly, (1)
Ls if yf <Ls

where y; is latent dependent variable and y; is observable dependent variable. In following discussion, ry will
replace y; denoting the daily return rate observed on t-day, r; will replace y; denoting the latent daily return
rate on {-day, Ly and L, are the return rate upper limit and lower limit, respectively.

Because of serial correlation of financial data, the explanatory item should include lagged auto-explanatory

variables. Thus, the latent regression equation is written as
ry = Ap(Dr] + &'z + €4, (2)

where 4,(1) = a1l + a2l + -+ - + @,l?, | is the lag operator and z; are other explanatory variables. Supposing
that other explanatory variable z; is only constant 1, equation (2) becomes a p-order autoregressive equation
T = ap +oarf_; + -+ apry_, + & Together with the price limits rule, it is defined the two-limit Tobit-
autoregression model

TE =agtaary_y + o+ apri_, + &y

L, if rf>L
e =971y if Lo<ri<I;. (3)
Ly if rf <Ly

This model has been used for futures market with price limits. The problem is how we estimate the model
since some of latent r;_; (i =1,2,--,p) are unobservable after they hit limits. In investigating futures market
with price limits, Koderes (1993) and Yang (1995) coped with the problem using a proxy based on corresponding
spot market price. However, the method is not suitable to stock market since stock market itself is the spot
market of asset. While studying the effect of price limits on stock market, Lee (1996) suggested to use the opening
price as the proxy of the previous day’s limit-hit élosing price. Sincé the market information will probably have
changed greatly overnight, with this method, the estimates will be rough and intractable, especially when hitting
limits continues for several days.
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In fact, in stock market, most investors try to forecast stock price according to known information. For
example, they predict a stock tomorrow’s price on the basis of today’s closing price, today’s price change rate or
other known market information but not unknown latent information. According to such a setting, we assume
that in a stock market with price limits, investors’ forecasting stock price is based on observable or known
information and actual stock price movements should be appropriate reflection of investors’ action. Based on
this assumption, the autoregressive equation is redefined as 7} = ag + ay7¢—1 + - -+ + apre—p + £;. Thus, we have
the modified two-limit Tobit-autoregression model

Ty =og+airig o Foprip + &g,
Ly if ry > Ly
Tt =< rf if Lo<r; <Ly, (4)
Ly if r; <Ly
where Ly <r;_; < Ly, i=1,2,---,p.

Much research on securities market has demonstrated that the data are potentially characterized by condi-
tional heteroskedasticity. If ignored, it will cause inconsistent estimates in Tobit model (Hurd (1979), Arabmazar
(1981), and Amemiya (1984)). Moreover, besides the rate of return, an asset holder would be interested in forecast
of its risk (i.e., conditional variance) over the holding period. It is necessary, therefore, to specify the conditional

variance-covariance structure for estimating the model consistently and forecasting the conditional variance. We

model the disturbance ¢; in equation (4) following a generalized autoregressive conditional heteroskedastic, or

GARCH(p, q), process (Bollerslev (1986)).

£¢|©¢—1 ~ N(0, hy),

where

9 r 9 T
he=Bo+ 3 Bihej+ 3 8605 (ﬁo >0, B; 20, §; 20, .Elﬂf + 151 < 1)
=1 i=1 i= j=

and ©;_; is the set of past information.

§3. Maximum Likelihood Estimation of TLTARG

Let ¥ = {1,2,---,T} denote the full sample and then split it into three subsamples according to r;
‘I'O:{t‘Vt if L'g < Tt <L1}, \I’l ={t|Vt if 'I't=L1}, ‘I‘2= {t[Vt if 'I‘tZLz}.
Since ¢ is assumed normally distributed with conditional heteroskedasticity, the conditional probability of upper
limit moves is

P(T! = Lll1't—l7rt—27 to 7rt—p; 0)

= Pleg 2Ly ~ap— Ap(l)TtITt—l,Tt—m"' ,Tt—p;g)
Ly —ap — Ap(D)ry
= 1-e(2)

and the conditional probability of lower limit moves is

P(ry = La|ry—1,me—2, - ,Tt~p; 6)
P(Et <Ly—oap— Ap(l)"'tlrt—lyrt~2) s ,Tt—p;9)

_ @(Lz - a(:/—};_tA,,(l)rt)'
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The conditional density (Hamilton (1994, Chapter 5)) of no limit move is

L —ag — Ap(l
Srdriosricsy s repif) = (L),

Thus, the likelihood function may be written as

L= EIO __%t_(p(n — ao\;h_tAp(l)T:) 1;11 (1 _ (I)(Ll — a(:/-h-—tAp(!)Tt)> 1\1_’12 @(LZ - a(i/;—tAp(l)rt), (5)

where 6 is the vector of parameters, A,(l) = azl + aal® + - - + apl?, L is the lag operator, ¢(z) = (1/V2m)e=* /2
and ®(z) = ffoo(l/\/27r)e”\2/2d/\ are the p.d.f. and c.d.f.,, respectively, of a standard normal random variable.
The logarithm of (5) is

_% ;()lnht + §Oln¢(” — ao\/—’l_t_Ap(l)Tt) + %In (1 _ <I>(L1 - a(\,/;_tAp(l)r,))

+ZlntI>(L2—a0_A"(l)rt). (6)
¥,

Inl

Il

Vhe
The normal equations are defined in vector notation as

Ol L
55 =0 (7)

If § is the solution of (7) and the second derivatives, 8% In £(9)/8688' is a negative definite matrix, then 8 is
defined as the estimator of the maximum likelihood estimation. Since equation (7) is highly nonlinear. to solve

it, an iterative numerical method must be used.

§4. Monte Carlo Experiment

Amermiya (1973) proved that the MLE (i.e., ML estimator) of a standard Tobit model is strongly consistent
and asymptotically normal with the asymptotic variance-covariance matrix equal to —(8%1n £/0606')~. At
present, however, we can not conclude whether the MLE of TLTARG maintains these properties since the
TLTARG model is different from a standard Tobit model. For this reason, it is necessary to examine whether
the procedure discussed in Section 3 works well or not. Since the solution of equation (7) is complicated, the
analytical evaluation is difficult. Therefore, we evaluate the MLE by a numerical procedure (i.e., Monte Carlo
experiments). A TLTAR(1)G(1,1) model

*®
Ty = Qo+ QT¢—1 + &,

Ly if r>1L

re =<1} if Ly<r; <Ly, (8)
L2 if 7‘; S L2
€t|O¢t_1 ~ N(0, hy), he = Bo + Brhe—1 + Bagl_, (9)

is adopted in experiments. The true values of five parameters are taken as ag = 0.5, ¢y = 0.5, 8o = 1, f1 = 0.5
and 82 = 0.4. In our experiments, L; = |Ly| = L, i.e., the limits are symmetric. We select [ = 2(34.5%),
4(12.7%), 6(5.3%) and L = 0o(0%), where the percentage in parentheses is called “ ALS ratio » defined as:
ALS ratio = average limit hit number / sample size!. For each L, we select i‘he sample size T = 250, 500, 1000

1We take sample size n = 1000, simulate the TLTAR(1)G(1,1) process and then count up the limit hit number. In order to obtain
the ALS ratio, this procedure is repeated 1000 times.
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and then use these generated data to estimate the model with ML method discussed in Section 3. These steps

are repeated 1000 times. Thus, for each given L and T, we obtain 1000 estimates of g, a1, By, 8; and Bs.

Table 1.a  Monte Carlo experiments with the estimation of TLTAR(1)G(1,1) model

Sample Estimator Limit L = 2(34.5%)* Limit L = 4(12.7%)
Size T (True Value) Mean SD Bias Mean SD Bias
250 «0(0.500) 0.514 0.134 0.014 0.498 0.137 0.002
a1 (0.500) 0.490 0.092 0.010 0.499 0.070 0.001
Bo(1.000) 1.325 0.939 0.325 1.267 0.733 0.267
£1(0.500) 0.390 0.323 0.110 0.431 0.209 0.069
2(0.400) 0.432 0.249 0.032 0.415 0.162 0.015
500 a0 (0.500) 0.509 0.093 0.009 0.504 0.096 0.004
1(0.500) 0.495 0.065 0.005 0.500 0.047 0.000
30(1.000) 1.217 0.735 0.217 1.112 0.497 0.112
B1(0.500) 0.430 0.248 0.070 0.477 0.137 0.023
32(0.400) 0.418 0.174 0.018 0.396 0.111 0.004
1000 ao(0.500) 0.502 0.067 0.002 0.502 0.067 0.002
a1 (0.500) 0.498 0.045 0.002 0.497 0.033 0.003
B0(1.000) 1.099 0.453 0.099 1.071 0.299 0.071
£1(0.500) 0.470 0.167 0.030 0.481 0.088 0.019
£2(0.400) 0.400 0.124 0.000 0.404 0.076 0.004

* The percentage in parentheses is ALS ratio.

Table 1.b  Monte Carlo experiments with the estimation of TLTAR(1)G(1,1) model

Sample Estimator Limit L = 6(5.3%) Limit L = co(0%)
Size T (True Value) Mean SD Bias Mean SD Bias
250 a0(0.500) 0.516 0.143 0.016 0.500 0.140 0.000
a1 (0.500) 0.495 0.063 0.005 0.499 0.056 0.001
B0(1.000) 1.217 0.649 0.217 1.169 0.572 0.169
51 (0.500) 0.456 0.163 0.044 0.470 0.138 0.030
$2(0.400) 0.406 0.134 0.006 0.393 0.108 0.007
500 a(0.500) 0.508 0.095 0.008 0.500 0.101 0.000
a1(0.500) 0.495 0.044 0.005 0.497 0.044 0.003
B0(1.000) 1.105 0.399 0.105 1.095 0.343 0.095
51(0.500) 0.477 0.101 0.023 0.482 0.082 0.018
B2(0.400) 0.404 0.086 0.004 0.402 0.078 0.002
1000 ap{0.500) 0.503 0.069 0.003 0.500 0.072 0.000
o(0.500) 0.499 0.030 0.001 0.500 0.030 0.000
B0(1.000) 1.037 0.246 0.037 1.026 0.214 0.026
5,(0.500) 0.493 0.067 0.007 0.498 0.054 0.002
$2{0.400) 0.401 0.062 0.001 0.398 0.051 0.002

The results are shown as Table 1.a and Table 1.b, where Mean, SD and Bias denaote the estiinates’ average,
the standard deviation and the bias, which is defined as: Bias = |mean — true value|. From Table 1.a and Table
1.b, we can see that in small sample, the estimates of both ap and ai, the parameters in mean equation (8)
are unbiased, but the estimates of fo, f1 and B2, the parameters in variance equation (9) are biased. With
the sample size T increasing, the Mean’s of all estimates approach their corresponding true parameter values
and SD’s also decrease. Accordingly, it might be concluded that the MLE’s are consistent for large sample. In

addition, the results show that with the limit size decreasing (i.e., the ALS ratio increasing), the speed of the
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Mean'’s converging to the true parameter values slows down. Intuitively, since the information included in limit-
hit data is incomplete, the ALS ratio increasing means that the proportion of incomplete information increases.
As a result, for the same sample size, the greater the ALS ratio is, the greater the bias of estimates is. Thus.
with the ALS ratio increasing, it is necessary to take larger sample size for estimation in order to make up lost

information.

Table 2.a Monte Carlo experiments with the estimation of AR(1)G(1,1) model

Sample Estimator Limit L = 2(34.5%) Limit L = 4(12.7%)
Size T (True Value) Mean SD Bias Mean SD Bias
250 ,(0.500) 0.386 0.100 0.114 0.509 0.145 0.009
a,(0.500) 0.347 0.066 0.153 0.434 0.065 0.066
Bo(1.000) 0.770 0.600 0.230 1.177 0.808 0.177
£1(0.500) 0.402 0.382 0.098 0.492 0.236 0.008
8:(0.400) 0.121 0.063 0.279 0.198 0.079 0.202
500 p(0.500) 0.397 0.076 0.103 0.524 0.103 0.024
a;(0.500) 0.345 0.046 0.155 0.435 0.047 0.065
Bo(1.000) 0.648 0.399 0.352 1.066 0.476 0.066
$31(0.500) 0.482 0.258 0.018 0.527 0.148 0.027
32(0.400) 0.118 0.045 0.282 0.190 0.054 0.210
1000 «p(0.500) 0.397 0.049 0.103 0.517 0.062 0.017
1(0.500) 0.345 0.032 0.155 0.439 0.030 0.061
BSo(1.000) 0.600 0.266 0.400 1.005 0.284 0.005
£1(0.500) 0.512 0.174 0.012 0.542 0.095 0.042
B82(0.400) 0.119 0.030 0.281 0.194 0.037 0.206

Table 2.b Monte Carlo experiments with the estimation of AR(1)G(1,1) model

Sample Estimator Limit L = 6(5.3%) Limit L = c0(0%)
Size T (True Value) Mean SD Bias Mean SD Bias
250 ap(0.500) 0.535 0.147 0.035 0.506 0.141 0.006
«1(0.500) 0.468 0.059 0.032 0.491 0.059 0.009
Bo(1.000) 1.286 0.788 0.286 1.161 0.509 0.161
£1(0.500) 0.487 0.190 0.013 0.465 0.129 0.035
£2(0.400) 0.281 0.092 0.119 0.402 0.108 0.002
500 p(0.500) 0.525 0.103 0.025 0.495 0.103 0.005
«1(0.500) 0.470 0.044 0.030 0.499 0.041 0.001
Bo(1.000) 1.155 0.401 0.155 1.091 0.358 0.091
51(0.500) 0.512 0.105 0.012 0.488 0.085 0.012
B2(0.400) 0.283 0.061 0.117 0.390 0.078 0.010
1000 ap{0.500) 0.522 0.068 0.022 0.502 0.071 0.002
«1(0.500) 0.474 0.030 0.026 0.498 0.032 0.002
B0(1.000) 1.076 0.269 0.076 1.029 0.200 0.029
£1(0.500) 0.533 0.073 0.033 0.494 0.052 0.006
$2(0.400) 0.275 0.044 0.125 0.399 0.052 0.001

In contrast, Table 2.a and Table 2.b report also the estimates of AR(1)G(1,1) (i.e., autoregression(1)-
GARCH(1,1)) model, in which estimation, the price limits are ignored. In this case, the results show that MLE’s
are biased and inconsistent. With the size of limit L increasing (i.e., ALS ratio decreasing), the bias of estimates
decreases. When L — oo (i.e., no price limit exists), both methods’ estimates are almost the same. The Monte

Carlo experiment procedure of TLTAR(1)G(1,1) is written by TSP code.
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§5. Estimation of Shanghai Stock Daily Return Rate

With only 8 listed stocks, the Shanghai stock market commenced on 19 December 1990 and there had been
nearly 600 listed stocks by the end of 2000. Initially, an upper and lower bound of 5% daily change rate of stock
price was set. The price restriction was finally lifted on 21 May 1992. Without daily price limits, the stock price
moved violently at times. For this reason, the daily price limits regulation was introduced again in December
1996. It sets that the size of both upper and lower limits of daily price change rates based on previous closing
price is 10%.

The data (company code: 600637) are downloaded from http://www.stockstar.com.cn (Estimation Period:
1996/12/9-2000/8/10). According to Akaike’s (1981) information criterion, the mean equation includes one
lagged observable dependent variable. We restrict the variance equation to a GARCH(1,1) specification since it
has been shown to be a parsimonious representation of conditional variance that adequately fits many economic

time series (e.g., Bollerslev (1987)). Therefore, the model to be estimated is TLTAR(1)G(1,1) written as

R =a+a R +e (L2 £ Ri—y £ 1n),
L if R >L
Riy=qR; it Ly<R{<Li,
Ly if R <L,
1|01 ~ N(0, hy), he = Bo + Brhe—1 + Bael_,,

(10)

where Ry = 100 x vy, 4 = (P — Po—1)/Pe—1, Rf =100 x v}, vf = (P} ~ Py-1)/Pi~1, P is the closing price
observed on t-day, P is the latent closing price on ¢-day, upper limit L, = 10 and lower limit L, = -10.
This study uses the BHHH algorithm, an algorithm attributed to Berndt, Hall, Hall and Hausman (1974). The
estimate procedure is written by TSP code.

Figure 1 shows the plot of Ry versus day t. Table 3 reports the summary statistics of sample data R;. Table
4.a and Table 4.b report the estimates of TLTAR(1)G(1,1) and AR(1)G(1,1) models respectively. Figure 2.a
and Figure 2.b show TLTAR(1)G(1,1) and AR(1)G(1,1) conditional heteroskedasticity h; (i.e., volatility) versus
day t. respectively. We can see that though the ALS ratio is merely 5%, averagely, the conditional variance in

TLTAR(1)G(1.,1) model is over 10 greater than that in AR(1)G(1,1) model, which ignores price limits.

15
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Daily Return Rate Ry
o

-15
Day (1996/12/9-2000/8/10)

Figure 1 Stock (Code: 600637) daily return rate R,

Table 3 Summary statistics of stock daily return rate R,
Company | Sample | Limit-hit | ALS | Mean | Variance | Skewness | Kurtosis

Code Size Number Ratio
600637 882 44 5.0% 0.230 14.633 0.329 3.997
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Table 4.a TLTAR(1)G(1,1) estimates of stock daily return rate

Parameter Estimate Error T-statistic P-value
ag 0.128 0.122 1.047 0.295
o 0.048 0.041 1.163 0.245
Bo 1.550 0.325 4,774 0.000
B 0.733 0.035 20.706 0.000
B2 0.196 0.031 6.412 0.000
log L -2348.39
Table 4.b AR(1)G(1,1) estimates of stock daily return rate
Parameter Estimate Error T-statistic P-value
Qg 0.135 0.119 1.133 0.257
Q) 0.047 0.038 1.237 0.216
Bo 1.421 0.342 4.151 0.000
5y 0.773 0.040 19.482 0.000
B, 0.128 0.026 4.866 0.000
log L -2378.43
70
60

Day (1996/12/11-2000/8/10)

Figure 2.a  Stock (600637) daily return rate volatility estimate using TLTAR(1)G(1,1) model
60

Day (1996/12/11-2000/8/10)

Figure 2.b  Stock (600637) daily return rate volatility estimates using AR(1)G(1,1) model

§6. Conclusions

In this paper, a stock return rate with price limits model, called two-limit Tobit-auregression-GARCH
(TLTARG) is introduced. Maximum likelihood estimation for this model is constructed. The Monte Carlo
experiments show that the MLE’s of mean equation are unbiased and consistent. However, the MLE’s of variance

equation are biased though consistent. With the limit L decreasing (i.e., the ALS ratio increasing), the speed
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that the MLE’s converge to the corresponding true parameter values slows down. These experiments show also
that if price limits are ignored (i.e., ARG model), the MLE’s are bias and inconsistent. With the ALS ratio
decreasing, however, the bias decreases. .

Finally, as an empirical application, we estimated a TLTAR(1)G(1,1), which is specified as the stock (com-
pany code: 600637) return rate model in Shanghai stock market. Meanwhile, we also estimated a AR(1)G(1,1)
model using the same data. It is shown that though the ALS ratio is 5% only, the average conditional variance
of TLTAR(1)G(1,1) model is over 10 greater than that of AR(1)G(1,1) model. It implies that though for some
stocks’ price movements, price limits may be hit so seldom that ignoring them makes no discernible difference,

the TLTARG model is more accurate than ARG.
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