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Abstract

The strong stability of linear forms had found many applications in the science and technology.
In this paper, we investigate the strong stability of linear forms for -mixing sequence. By using
the termination, Borel-Cantelli lemma and properties of ¢-mixing sequence, the sufficient condition
of the strong stability of linear forms for ¢)-mixing sequence is given. Stability of other linear forms
in ¥-mixing sequence are given at the same time.
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§1. Introduction

Probability density estimation, nonparametric and nonlinear regression are probably
the most widely studied nonparametric estimation problems. Many methods have been
developed under the independent observations. In recent years, some papers have been
developed to extending these method to dependent case due to the widely existence of
dependent random variables, which arose lots of probability questions, such as the strong
stability of linear forms. The strong stability of linear forms had found many applications
in ecology, molecular biology, biochemistry etc. Study of the strong stability of linear
forms is promoted by the large number law and is useful in compatibility of least square
estimation in linear model. Therefore the research about the strong stability of linear
forms is undoubtedly very important.

In 2004, Gan (2004)[1] studied the almost sure convergence of p-mixing random vari-
ables. For strictly stationary sequences, the 1-mixing sequences was first introduced by

Blum et al. (1963)[?. -mixing sequences include some widely used examples, such as
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countable state space Markov processes. More examples of 1-mixing sequences can be
found in Blum et al. (1963)12. As we have known, few studies can been found about the
stability of ¥-mixing sequence.

In this paper, we first study the variables by using termination and then taken the
sufficient condition of the strong stability of linear forms for ¥-mixing sequence in usual
situation through Borel-Cantelli lemma and properties of -mixing sequence. Based on
above result, we give results on the stability of other linear forms in ¥-mixing sequence.

In the following, we present some results on the strong stability of linear forms in
1-mixing sequence. The rest of the article is organized as follows: In Section 2, we state
and prove the main result. Then in Section 3, we prove some theorems on the stability of

other linear forms for -mixing sequence.

§2. Strong Stability of Linear Forms for X,

Before we state the main results, we recall some definitions which will be useful in

the following.

Definition 2.1 Let {X,,n > 1} be a stationary random variables defined on
probability space (£2, F,P). Denote by F,, the o field generated by {X;,1 <i < m} and
by F™ the o field generated by {X;,i > n}. Let

P(AB)
r) = sup sup — 1,
v =sp s I Baes)

P(A)P(B)#0
{X,,n > 1} is said to be a 1-mixing random sequence if ¥(r) — 0 as r — oo. ¥(r) are
the -mixing coeflicients.

Definition 2.2 A random variable sequence {X,,n > 1} is said to be strongly
stable if there exist two constant sequences {b,} and {d,,} with 0 < b,, T co such that

b !X, —d, -0  as. (2.1)

Definition 2.3 A random variable sequence { X,,,n > 1} is said to be stochastically
dominated by a non-negative random variable X if there exists a positive constant ¢ such
that

P(|Xn| >t) <cP(X >1t) for any ¢t >0, n > 1. (2.2)

We denote this case by {X,,} < X.
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Unless specially indicated, we suppose in the following that {X,,,n > 1} is ¢-mixing

and the corresponding mixing coefficients satisfy:
[e.@]
Zld)(r) < 00. (2.3)
r=

The following theorems summarize the strong stability of linear forms for -mixing

sequence {X,}.

Theorem 2.1 Let {b,,n > 1} be a sequence of positive numbers with b, T co.
o0

Under the condition that EX,, = 0 and >_ b,”E|X,|P < oo for some 1 < p < 2, we have

n=1

n
bt X, — 0 a.s..
i=1

To prove Theorem 2.1, we need the following lemmas.

Lemma 2.1 ([3|, Lemma 1.2.11) Suppose {X,,n > 1} be a 1-mixing random
variable sequence, suppose X € F*, Y € Fri,, E|X| < 00, E|Y]| < oo, then

E[XY]|<oco, and |EXY — EXEY| < 4(r)E|X|E|Y].

Lemma 2.2 Let {X,,,n > 1} be a mean zero ¢-mixing random sequences satisfy-
n

ing (2.3). Define S,, = Y X}, and suppose EX,? < oo for any k > 1, then for any ¢ > 0,

k=1
we have
143 v)] SEx:
< = =
P(lgl]aé( |S | = 6) - g2

Proof Foranye>0,let A= {w: max Sj(w)| > e}. For any w € A, define
<<

v(w)=min{j: 1 < j <n,[S;j(w)| > e},
Ay ={w:v(w) =k},

n
where max |Sj(w)] is taken to be zero for k = 1. Thus the Ay, are disjoint and A = |J A.
SIS k=1
It follows that

/ S2dp = Z SQdP = z [SF + 25,(Sy — Sk) + (Sn — Sk)?|dP,
k=1JAg

by same argument as [3] and Lemma 2.1, we have

32 [ESK(Sn — Sl < 32 (1) 3 EXZ,
k=1 =1 =1
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it follows

ES2 +2 f W(1) f} EX? > / S2dP + 2 fj ¥(l) i EX? > z S2dP > £2P(A). (2.4)
=1 A =

=1 i=1 Ag

By Lemma 2.1, we have

ES2 < ST EX2 423 ¢(j — i)E[X|E[X;] < [1+22w< )30 EX2,
=1 1<J =1 1=

together with (2.4), we have

[1 43 P() i EX?

= =1
P(A) < ! = . O

Lemma 2.3 Let {X,,n > 1} be a ¢-mixing random sequence satisfying (2.3). If
the following conditions are satisfied:
[e.e]
(i) Y EX, < oo

n=1

(ii) ni; Var (X) < oo,

n
then the series > X converges almost surely.
k=1

Proof By applying Lemma 2.2 to the series {X; — EX}, we have for any positive

integers m, n1 < ng

k 1 00 ng
- N> 0«02 )
P{ L max j;jn(xj EXJ)‘ > m} <m [1 LEpY w)] 2 Var (Xo),

it follows from the convergence of (ii) that for each m:

k 1
' _EXH)| > =l =0
oodim P max | 506 - EXp)| 2 o

Therefore the tail of > {X, — EX,} converges to zero a.s., it follows Y {X, — EX,}

n
converges, and so dose Y X, in view of (i). O
n

Proof of Theorem 2.1  For each n, let F,,(x) be the distribution function of X,.
Define Y,, = X,,I(|Xy| < by,), where I(+) is the indicator function. Then

Y? z? |x|P E| X, P
E(-Z) = dF,(z) < ——dF,(z) < n
% <b721) > j21<bn bR @) =2 je|<bn DR )<=

it follows
E[X. \”

svar(3r) < TE(y) <o

71
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Therefore, by Lemma 2.3, we have

> Y, — EY,

2 converges a.s.. (2.5)
n n

Note that EX,, = 0, we have

‘ /x|sz)n wan(I)‘ ( /|$>bn 2dF,(z)

EY.| _
2%, T 2T b, X,
p
<[ Hirwes [ Lanw
w Jlz|>b, bn n Jiz|>b, On
E|Xn|?
< TEgE <o (2.6)

It follows from (2.5) and (2.6) that > Y}, /b, converges a.s.. On the other hand,
n

SR # Ya) =2 MM@S%/N'gawmggng<m

n n J|z|>bn

By Borel-Cantelli lemma, we have > X,, /b, converges a.s..

n
Applying Kronecker lemma to Y X, /by, for each w in a set of probability one, we
n

n
obtain the desired result ;! >~ X; — 0 almost surely. u
i=1

§3. Stability of Other Linear Forms

In this section, we give results on the stability of other linear forms in t-mixing

random variables. All the proofs are based on the result of Theorem 2.1.

Theorem 3.1 Let {a,} and {b,} be two sequences of positive numbers with b,, T
00. Suppose that {X,,} is stochastically dominated by a non-negative random variable X,
ie. {X,} < X. Define N(z) = Card{n : ¢, < z}, where ¢, = b,/a,. If the following
conditions are satisfied:

(1) EN(X) < oo;

<m/mﬁ*%x>w/'N@vw“@w<amagpgm

0 t
then there exist a sequence d,, such that

n
b;l Z aiXi — dn — 0 a.s..
=1
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Proof DefineY, = X, I(|X,| <e¢pn), Sn=>_ a;X;, T, = > a;Y;. Then
i=1 i=1
o0 o0 oo
Y P(Xn#Y,) = > P(Xn| >cn) <c ) P(X >¢,) <cEN(X) < .
n=1 n=1 n=1
By Borel-Cantelli lemma, for any real sequence {d,}, {b;'T}, — d,} and {b;'S, — d,}
n

converge on the same set and to the same limit. We prove next that b;! 3~ a;(Y;—EY;) — 0

=1

n
a.s., which is the theorem with d,, = b;l > a;EY;.
i=1

Note that {a, (Y, —EY,),n > 1} is w—_mixing sequence with mean zero and satisfying

(2.3), we have

o0 _ p ]
S Elan(Yy EYn)’ < ¢y C;pE|Yn|_P
n=1 b:’lr)z n=1
o0 Cn
< ¢y, pcnp/ tPIP(1 X, | > t)dt
n=1 0
<

cp/ tPTIP(X >t) S e Pdt
0 {n:icp >t}

< cp2/ tp_lP(X>t)/ N(y)/yP T dydt.
0 t

The last inequality follows from the fact that

u

> ¢, = lim > ¢, = lim y PAN(y)
{n:icpn>t} U0 i< en <u} U0 Jt
= Jim [N NG+ [ N
u—0oo t<y<u
and
oo
u PN (u) Sp/ N(y)/y" T dy — 0 as U — 00.
u
By condition (2) and Theorem 2.1, we get the desired result. O

Theorem 3.2 If we replace the condition (1) and (2) of Theorem 3.1 by the

following conditions:
(3) EN(X) < o0

(4) /loo EN(X/s)ds < oo;

(5) max ¢} i c;’ =0(n),
j=n

1<j<n

n
and furthermore assume that EX,, = 0, we have b, 1 > a;X; — 0 as..
i=1
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Proof Y, S, and T;, are defined as in Theorem 3.1. Similarly we have Z P(X, #

Y,) < cEN(X) < oo. In order to prove the desired result, 1t suffices to prove that
n

b1 > a;Y; — 0. By condition (3) and (4), we can easy prove b, ! Z a;EY; — 0. Therefore
i=1 i=1
n
we only need to prove b;' Y a;(V; — EY;) — 0.
i=1
Since {an (Y, — EY,)} is also a ¢-mixing sequence with satisfying (2.3), therefore,

o0
E%Emn@%—EKJVﬂﬂ < CZICPHXTVIMY\<CM
n= n=1

IN

Z P(PP(X > ¢,) + EXPI(X < ¢,))

= CZ P(X>cn)—|—cz c PEXPI(X < cp).

n=1 n=1

Define d,, = max cj, dg = 0, then
1<j<n

z—%mwx<%)g G PEXPI(X < dy)

n=1 n=1

IN
(18
S
&

|

A

>

A
&

%
g

o
S

s

IA
o
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<
9
b@..
)
A
S
A
&

INA
o
—
—
+

18
9
>
\Y
O

N2
AN
8

n
By Theorem 2.1, we have b,! 3" a;(Y; — EY;) — 0 and the proof is complete. O
i=1

In what follows, let a(z) : R+ — Ry be a positive, non-increasing function. Define
n
an = a(n), b, = Z ai, ¢, = by /ay, and suppose that

-1

(I) 0< hm 1nf n~Llepa(loge,) < limsupn~le,a(loge,) < oo

n—oo
(IT) xa(log x) is non-decreasing for z > 0.

Under the above conditions (I) and (IT), we have the following theorem:

Theorem 3.3  Suppose {X,,} is identical distributed with E| X1 |a(log™ | X1]) < oo
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then there exist d,,, such that
n
b;l Z aiXi — dn — 0 a.s..
i=1

Proof By the definition of ay, by, ¢, and assumption (II), there exist my € N,
a > 0, B > 0 such that for any n > my,

an < cpa(logey,) < fn.

Therefore ¢, > an(a(logc,)) ™!, which guarantees that for any m > my,

o
> ;2 < aP(logen)/a’m,
j=m
Define Y,, = X,,I(|X,| < ¢,) as in Theorem 3.1, then for m > my,
= 2 /12 o -2 2
> Elaj(Y; —EY))[7/b; < ¢ >0 ¢ "EIXG T I([X;] < ¢j)
j=m j=m
o -2 2
= ¢ > ¢ EXal (|1 X1] < ¢)
j=m
o —21F 2 J 2
= ¢y ¢ [EXTI([X1] < eme1) + 30 EXTI(cio1 < [X3| < )]
j:m =m
X 2 2
< 0(1) +c Z ¢ Z Ele(Ci_l < |X1| < Ci)
j=m i=m
(o)
< O(1)+e Y a % a?(log i) EXTI(ci1 < |X1] < ¢)
i=m
9 o0
< 0O() +cBa " 3 a(loge)E[Xq|I(ci1 < [Xa] < )
=m
o0
< 0(1) +cfa? 2 E| X1 |a(log™ | X1|)(cii1 < | X1| < &)
=m
< Q.

n

By Theorem 2.1, we have b,;! 3" a;(V; — EY;) — 0 a.s..
=1
On the other hand, '

TP AY) = LP(X|>a)
- mgll (1Xi] >ci)+§nop(|xiy > &)
< (mo—1)+ 5 P(Xila(log* |Xi]) > cia(loge,))
)
< (mo—1)+ 3 P(IXila(log* |Xi]) > ai) < oo.

i=mg
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Borel-Cantelli lemma gives that the conclusion of the Theorem 3.3 is true, taking d,, =

n
b1 S a;EY;. a
=1
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