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Abstract
Among those papers discussing statistical analysis of competing failure data, most of them

assume independence for failure modes. In this paper we use copula as the dependence link function

to assess competing risk models in accelerated life testing. We compare via simulation the results of

lifetime when the failure modes are dependent with those when the failure modes are independent,

and apply our approach to a real data set in the literature.
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§1. Introduction

The competing risk model assuming independent competing failure modes for each

stress level has been considered by a number of authors in the engineering, medical, econo-

metric and actuarial literature, and the list of references, scattered throughout these ar-

eas, is extensive. McCool (1978) considered a method of calculating estimate intervals for

Weibull parameters of a primary failure when a secondary failure mode had the same (but

unknown) Weibull shape parameter. Klein and Basu (1981, 1982) obtained maximum

likelihood estimators when the lifetimes followed exponential or Weibull distribution —

with common or different shape parameters under type I, type II or progressively censor-

ing. Zhang (2002) presented analytical (maximum likelihood) methods to analyze data on

competing failure modes in ALT, under two cases: ignoring the difference among failure

modes or not.

The methods mentioned above are based on the use of maximum likelihood estimation

which may require large sample size in order to obtain good estimators for each failure
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mode, which may be not appropriate for expensive components. Hence, a Bayesian ap-

proach is considered by some authors. DeGroot and Goel (1979) considered the partial

step-stress ALT in the framework of Bayesian inference. Van Dorp et al. (1996) devel-

oped a Bayesian model for multi step-stress ALT. Bunea and Mazzuchi (2005) presented

a Bayesian framework for the analysis of ALT data with possible multiple failure modes.

However, the competing failure modes are usually dependent. The literature about

dependent competing failure modes is rare in the engineering, but much more in the

biostatistics and econometrics. Models with copulas have become increasingly popular for

modeling multivariate survival data. Carriere (1994) and Escarela and Carriere (2003)

modeled dependence between two failure times by a two-dimensional copula. Carriere

(1994) used a bivariate Gaussian copula to model the effect of completely eliminating of

one of two competing cause of death on human mortality. In Escarela and Carriere (2003),

the bivariate Frank copula was fitted to a prostate cancer data set.

In this paper, we will introduce copula into the reliability and analyze ALT data with

dependent multiple failure modes. Section 2 is devoted to copulas and their properties,

and provides the background material on the Archimedean Copula. Section 3 presents the

constant stress ALT model and estimation of the model parameters. A simulation example

is given in Section 4 to show the effectiveness of the method. The model is applied to the

real data set from Klein and Basu (1981) in Section 5.

§2. Copulas and Their Properties

2.1 Definition

Copulas provide a very convenient way to model and measure the dependence among

competing failure modes since they give the dependence structure which relates the known

marginal distributions of failure modes to their multivariate joint distribution. In order

to see this, we first provide a short introduction on copulas.

Let u = (u1, . . . , um)′, uj ∈ [0, 1]. An m-dimensional copula C(u) is convention-

ally defined as a multivariate cumulative distribution function with uniform margins. A

probabilistic way to define the copula is provided by the theorem of Sklar (1959).

Theorem 2.1 (Sklar, 1959) Let X1, X2, . . . , Xm be random variables with contin-

uous distribution functions (d.f.) F1(x1), F2(x2), . . . , Fm(xm) respectively, and H(x1, . . .,

xm) be their joint d.f.. Then there exist a unique m-dimensional copula C, such that for
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all x in Rm

H(x1, . . . , xm) = C(F1(x1), . . . , Fm(xm)). (2.1)

Conversely, if C is an m-dimensional copula and F1(x1), F2(x2), . . . , Fm(xm) are d.f.s, then

C(F1(x1), . . . , Fm(xm)) is an m-dimensional d.f. with margins F1(x1), F2(x2), . . . , Fm(xm).

Thus, from (2.1), one can construct a dependence structure, i.e., an m-dimensional

d.f. H by appropriately choosing a set of margins F1(x1), F2(x2), . . . , Fm(xm) and a copula

function C. In order to construct a copula function, a corollary of Sklar’s theorem can

be applied, according to which a copula can be represented as an m-dimensional distri-

bution function with continuous margins, evaluated at the inverse functions F−1
1 (u1), . . .,

F−1
m (um), i.e.,

C(u1, . . . , um) = H(F−1
1 (u1), . . . , F−1

m (um)). (2.2)

Let S1(x1), S2(x2), . . . , Sm(xm) be survival functions of X1, X2, . . . , Xm respectively,

and S(x1, . . . , xm) be joint survival function. By using the probability integral transfor-

mation, Xj 7→ Fj(Xj) = 1 − Sj(Xj). It is easy to verify (see Sklar (1959)) that Sklar’s

theorem, given by (2.1), can be restated to express the multivariate survival function

S(x1, . . . , xm) via an appropriate copula C called the survival copula of (X1, . . . , Xm).

Thus,

S(x1, . . . , xm) = C(S1(x1), . . . , Sm(xm)). (2.3)

The survival copula, which is also a copula, relates the marginal survival functions S1(x1),

S2(x2), . . . , Sm(xm) to the multivariate joint survival function S(x1, . . . , xm) in much the

same way as the copula C relates the marginal distribution functions to the multivariate

distribution function. Note that the copula C and the survival copula C of a random vector

(X1, . . . , Xm) are not the same in general. However, they satisfy some relationship, for

example, in two-dimensional case, C(1− u, 1 − v) = 1 + u + v − C(u, v). This will be the

approach taken here in modeling the joint survival function of competing failure modes.

2.2 Measures of Association

We will consider here the standard dependence measures, Kendall’s τ and Spearman’s

ρS . These measures are related to the copula since the latter is an expression of the

stochastic relationship between X and Y within the entire range of values the variables

can take. It is not difficult to show that

ρS(X, Y ) = 12
∫ 1

0

∫ 1

0
C(u1, u2)du1du2 − 3, (2.4)
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and that

τ(X, Y ) = 4
∫ 1

0

∫ 1

0
C(u1, u2)du1du2 − 1. (2.5)

For further properties of ρS and τ , see Nelson (1999).

2.3 Archimedean Copula

Archimedean copulas have a wide range of applications, because

• they can be constructed easily;

• they have many nice properties;

• a lot of families belong to this class;

• they can be extended from two-dimension to m-dimension easily when satisfying

some conditions.

The Archimedean copula family is given through its generator φθ(·) indexed by a parameter

θ, i.e.

Cθ(u, v) = φθ{φ−1
θ (u) + φ−1

θ (v)}, (2.6)

where 0 ≤ u ≤ 1, 0 ≤ v ≤ 1, φθ(0) = 1, φ′θ(t) < 0, φ′′θ(t) > 0, 0 ≤ φθ(t) ≤ 1. In this

paper Gumbel copula, which belongs to Archimedean copula family, is used to depict the

dependence among competing failure modes.

Gumbel’s family, with generator φθ(t) = (− log(t))θ, θ ∈ [1,+∞), can be expressed

as

Cθ(u, v) ≡ exp(−[(− log u)θ + (− log v)θ]1/θ), θ ∈ [1,+∞). (2.7)

The failure modes are positively associated, and independent when θ = 1.

§3. The Statistical Analysis of Constant-Stress ALT

3.1 Estimation of Mean Lifetime with competing Failure Modes

First we consider a k constant stress ALT for series systems with two competing

failure modes. At each stress level Si, i = 1, 2, . . . , k, a number of ni systems are tested

until ri of them fail. (ti1, ci1), (ti2, ci2), . . . , (tiri , ciri) are the failure data, where til denotes

the failure time of l-th system under stress level Si, ti1 ≤ ti2 ≤ · · · ≤ tiri and cil takes any

integer in the set of {1, 2}. cil = 1 and cil = 2 indicate the failure is caused by failure

mode 1 and 2 respectively.

The approach discussed in this paper is based on the following five assumptions.
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Assumption 1 The failures occur due to one of the two competing failure

modes, with lifetime T1 and T2, and the dependence of the two competing failure modes

is depicted by the bivariate Gumbel copula. Here the survival copula (2.7) is used.

Assumption 2 The lifetime of the series system is the shorter of Tj , j = 1, 2.

Assumption 3 The failure time of Tj under stress level Si follows the expo-

nential distribution with failure rate λij with density function

fij(t) = λije
−λijt, i = 1, 2, . . . , k, j = 1, 2.

From Assumptions 1 and 3, we know that under stress level Si (i = 1, 2, . . . , k), the

survival function of the lifetime is

Si(t) = exp{−(λθ
i1 + λθ

i2)
1/θt}. (3.1)

Assumption 4 Under stress level Si, the relation between lifetime and stress

(known as accelerate function, or AF for short) of the j-th failure mode satisfies the

log-linear equation

log µij = αj + βjϕ(Si), i = 0, 1, 2, . . . , k, j = 1, 2, (3.2)

where µij = 1/λij , αj and βj are unknown parameters, and ϕ(S) is a given function of

stress level S. (3.2) is a general form, which contains the Arrhenius model and the inverse

power law model as two commonly used special cases.

Assumption 5 Dependence of competing failure modes maintains the same

during ALT. That is, θ will not change as the stress changes.

Under stress level Si, let gij denote the failure number of products due to failure

modes j. That is,

gij =
ri∑

l=1

δj(cil), δj(cil) =





1, if cil = j,

0, if cil 6= j.

To get the likelihood function, we notice that when δ1(cil) = 1, til is the failure time due

to failure mode 1, and when δ1(cil) = 0, til is the failure time under failure mode 2, which

can be considered as a random censoring time of failure mode 1. Thus the likelihood due

to failure mode 1 under stress Si is

Li1 =
ri∏

l=1

{
lim

∆t→0

P[(T1 ≤ T2) ∩ (til ≤ T1 ≤ til + ∆t)]
∆t

}δ1(cil)

×
{

lim
∆t→0

P[(T2 ≤ T1) ∩ (til ≤ T2 ≤ til + ∆t)]
∆t

}1−δ1(cil)

×{P[T1 > tiri , T2 > tiri ]}ni−ri .
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Since

lim
∆t→0

P[(T1 ≤ T2) ∩ (til ≤ T1 ≤ til + ∆t)]
∆t

= lim
∆t→0

P[T1 ≤ T2|til ≤ T1 ≤ til + ∆t]× P[til ≤ T1 ≤ til + ∆t]
∆t

=
∂C(u1, u2)

∂u1

∣∣∣
u1=Si1(til),u2=Si2(til)

× fi1(til)

= λθ
i1(λ

θ
i1 + λθ

i2)
1/θ−1 · exp{−(λθ

i1 + λθ
i2)

1/θtil},

and similarly

lim
∆t→0

P[(T1 ≥ T2) ∩ (til ≤ T1 ≤ til + ∆t)]
∆t

= λθ
i2(λ

θ
i1 + λθ

i2)
1/θ−1 · exp{−(λθ

i1 + λθ
i2)

1/θtil},

we have

Li1 =
(λi1

λi2

)θgi1

λθri
i2

(
λθ

i1 +λθ
i2

)ri(
1
θ
−1)

exp
{
− (λθ

i1 +λθ
i2)

1/θ
( ri∑

l=1

til +(ni− ri)tiri

)}
. (3.3)

In the same manner, the likelihood due to failure mode 2 under stress Si is

Li2 =
(λi2

λi1

)θgi2

λθri
i1 (λθ

i1 + λθ
i2)

ri(1/θ−1) exp
{
− (λθ

i1 + λθ
i2)

1/θ
( ri∑

l=1

til + (ni − ri)tiri

)}
.

Noticing that gi1 = ri − gi2, we know Li1 = Li2. Therefore, the likelihood function under

stress level Si is Li = Li1Li2 = L2
i1. Let

TTTi =
ri∑

l=1

til + (ni − ri)tiri and T i = TTTi/ri,

the total lifetime under stress Si. We have

log Li = 2 ∗
[
θgi1 log λi1+θ(ri−gi1) log λi2+ri

(1
θ
−1

)
log (λθ

i1+λθ
i2)−(λθ

i1+λθ
i2)

1/θTTTi

]
.

Therefore, we obtain the system of likelihood equations

d log Li

dλi1
=

θgi1

λi1
+

ri(1− θ)λθ−1
i1

λθ
i1 + λθ

2

− λθ−1
i1 (λθ

i1 + λθ
i2)

θ−1TTTi = 0, (3.4)

d log Li

dλi2
=

θ(ri − gi1)
λi2

+
ri(1− θ)λθ−1

i2

λθ
i1 + λθ

i2

− λθ−1
i2 (λθ

i1 + λθ
i2)

θ−1TTTi = 0, (3.5)

d log Li

dθ
= 0. (3.6)

Using simple algebra calculations, formulas (3.4) and (3.5) can be transformed into the

following form

(λθ
i1 + λθ

i2)
θ−1TTTi =

θgi1

λθ
i1

+
ri(1− θ)
λθ

i1 + λθ
i2

, (3.7)

(λθ
i1 + λθ

i2)
θ−1TTTi =

θ(ri − gi1)
λθ

i2

+
ri(1− θ)
λθ

i1 + λθ
i2

. (3.8)
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From equations (3.7) and (3.8), we obtain

λθ
i1 = λθ

i2 ·
gi1

ri − gi1
. (3.9)

Substituting (3.9) into (3.7) gives rise to

λ̂i1 =
1
T i

·
(gi1

ri

)1/θ
, λ̂i2 =

1
T i

·
(ri − gi1

ri

)1/θ
. (3.10)

If, in particular, θ = 1, which indicates independence, our result reduces to

λ̂i1 =
1
T i

gi1

ri
, λ̂i2 =

1
T i

ri − gi1

ri
, (3.11)

which is the same as in Zhang (2002). Then substituting λ̂i1 and λ̂i2 into (3.6), we find

that the equality holds true for all θ (≥ 1). In fact, we have from the two estimates above

that (λ̂θ
i1+λ̂θ

i2)
1/θ = 1/T i. This means that the copula parameter θ is not identifiable when

maximum likelihood method is used. This is why we assume the copula function is known.

See Zheng and Klein (1994, 1995) for graphical method. Besides, for a single stress, the

estimate of mean lifetime of the system is 1/T i for whether assuming independence of

competing failure modes or not.

Putting λ̂i1 and λ̂i2 into AF (3.2), we obtain from the Markov theorem the least

squares estimators (LSE) of αj and βj





α̂j =
A

k∑
i=1

ln µ̂ij −B
k∑

i=1
ϕi ln µ̂ij

kA−B2

β̂j =
A

k∑
i=1

ϕi ln µ̂ij −B
k∑

i=1
ln µ̂ij

kA−B2

, j = 1, 2,

where

ϕi = ϕ(Si), A =
k∑

i=1
ϕ2

i , B =
k∑

i=1
ϕi.

Hence, under the use stress level S0, the mean life time of failure mode j is

µ̂0j = exp(α̂j + β̂jϕ0).

Thus, under the use tress level S0, the estimator of the mean lifetime is

µ̂0 = 1/(λ̂θ
01 + λ̂θ

02)
1/θ, (3.12)

where λ̂0j = 1/µ̂0j , j = 1, 2.
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3.2 The Case of m Competing Failure Modes

We consider type II censoring ALT for series systems with m competing failure modes.

Let (ti1, ci1), (ti2, ci2), . . . , (tiri , ciri) be the failure data, where til denotes the failure time

of l-th product under stress level Si, til ≤ ti2 ≤ · · · ≤ tiri , and cil, takes any integer in the

set of {1, 2, . . . , m}, with j indicating the failure is caused by failure mode j.

With all the assumptions and notations in Section 3.2 except that the index j runs

from 1 to m, we have

Theorem 3.1 Let (T1, T2, . . . , Tn) be random vector with marginal survival func-

tions S1(t), S2(t), . . . , Sn(t) respectively, and C(u1, u2, . . . , un) be its survival copula. Sup-

pose C is an Archimedean copula with generator φθ(·) (shortly φ(·)), which is strict, i.e.,

φ(0) = ∞. Then the generator of survival copula of Tj and T ′j = min{T1, . . . , Tj−1, Tj+1,

. . . , Tn} is also φ(·).
Proof Since C is Archimedean copula, hence (n − 1)-dimensional margins of C is

also Archimedean copula (see Nelson, 1999). Therefore,

P{T ′j > t} = P{T1 > t, . . . , Tj−1 > t, Tj+1 > t, . . . , Tn > t}
= φ−1[φ(S1(t)) + · · ·+ φ(Sj−1(t)) + φ(Sj+1(t)) + · · ·+ φ(Sn(t))]. (3.13)

Thus,

P{Tj > tj , T
′
j > t} = P{Tj > tj , T1 > t, . . . , Tj−1 > t, Tj+1 > t, . . . , Tn > t}

= φ−1{φ(Sj(tj)) + φ(S1(t)) + · · ·+ φ(Sj−1(t))

+φ(Sj+1(t)) + · · ·+ φ(Sn(t))}
= φ−1{φ(Sj(tj)) + φ[φ−1(φ(S1(t)) + · · ·+ φ(Sj−1(t))

+φ(Sj+1(t)) + · · ·+ φ(Sn(t)))]}. (3.14)

This ends the proof. ¤
The generator of Gumbel copula is strict, so it satisfies the condition of Theorem 3.1.

Therefore, we know from Assumption 3 and Theorem 3.1 that the survival function of T ′j
is

S′j = exp
{
−

( m∑
h6=j

λθ
ih

)1/θ
t
}

,

and the dependence between Tj and T ′j is depicted by bivariate Gumbel copula. Thus the

likelihood function of m competing failure modes is similar to the case of two competing

failure modes: just replacing λi1 and λi2 by λij and −
( m∑

h6=j

λθ
ih

)1/θ
respectively in formula

(3.3).
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Let Lij be the likelihood function of Tj under stress Si. Then

Lij =
[
λij

( m∑
h6=j

λθ
ih

)−1/θ]θgij
( m∑

h6=j

λθ
ih

)ri
( m∑

j=1
λθ

ij

)ri(1/θ−1)
exp

{
−

( m∑
j=1

λθ
ij

)1/θ
TTTi

}
.

(3.15)

Let Li be the likelihood function under stress level Si, then Li =
m∏

j=1
Lij . Thus

log Li =
m∑

j=1
log Lij

=
m∑

j=1

[
θgij log λij + (ri − gij) log

( m∑
h6=j

λθ
ih

)
+ ri

(1
θ
− 1

)
log

( m∑
j=1

λθ
ij

)

−
( m∑

j=1
λθ

ij

)1/θ
TTTi

]
. (3.16)

We can perform the same procedure as in the case of two competing failure modes

and the MLEs of λij are

λ̂ij =
1
T i

·
(gij

ri

)1/θ
, j = 1, 2, . . . , m. (3.17)

§4. Simulation

We simulate 4 constant stress ALTs with type II censoring with temperature-accel-

erated stress levels S1 = 80◦C = 353K, S2 = 100◦C = 373K, S3 = 120◦C = 393K, and

S4 = 150◦C = 423K. The use temperature is S0 = 25◦C = 298K. 100 products are put

on each stress level until 35, 30, 25 and 20 of them fail, respectively. Only two competing

failure modes are considered and their dependence is depicted by bivariate Gumbel copula.

The lifetime of the failure modes follows the exponential distribution with mean lifetime

related to stress level by the Arrennius model, that is,

log θij = αj + βj/Si, i = 0, 1, 2, 3, 4, j = 1, 2.

We repeated 100 times for different test schemes with different dependence structures.

The sample average of these 100 estimators of mean lifetime are compared.

1. Let the parameter of Gumbel copula θ = 2 or equivalently τ = 1/2. The result of

simulation is presented in Table 1, where µ̂0 is calculated according to formula (3.12), µ̂′0
is the estimation under falsely-taken independent competing failure modes. We see that

µ̂0 is much closer to true value than µ̂′0, though the discrepancy of the two estimates are

not substantial. To a certain extent, the estimation of considering dependence is more

precise.
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2. Let the parameter of Gumbel copula θ = 4, 6 or equivalently τ = 3/4, 5/6. The

result of simulation is presented in Table 2 and Table 3. We see that as the dependence of

failure modes becomes stronger, θ̂0 becomes closer to the true value, while θ̂′0 departures

from true value much further. This shows that the dependence structure is very important

in statistical analysis.

Table 1 Estimation comparison of mean lifetime when τ = 1/2

AF under failure mode 1 AF under failure mode 2 True mean lifetime µ̂0 µ̂′0
ln θi = −5 + 4000/Si ln θi = −14.29 + 7700/Si 4545 4917 3609

ln θi = −5 + 4000/Si ln θi = −16.28 + 8876/Si 4550 4610 3781

ln θi = −3.8 + 2800/Si ln θi = −15.26 + 7102/Si 269 300.2 244.3

ln θi = −3.8 + 2800/Si ln θi = −11.28 + 5876/Si 268.9 271.9 231.5

ln θi = −4.67 + 4637/Si ln θi = −14.26 + 8366/Si 53582 52773 45375

ln θi = −4.67 + 4637/Si ln θi = −16.52 + 8163.6/Si 37642 36403 39565

Table 2 Estimation comparison of mean lifetime when τ = 3/4

AF under failure mode 1 AF under failure mode 2 True mean lifetime µ̂0 µ̂′0
ln θi = −4.8 + 3235/Si ln θi = −14.37 + 6723/Si 426.5 486 179.4

ln θi = −5.21 + 4216/Si ln θi = −12.26 + 7102/Si 7613 8549 4429

ln θi = −2.31 + 3216/Si ln θi = −15.37 + 8121/Si 4827 5979 1304

ln θi = −3.62 + 3362/Si ln θi = −12.37 + 6837/Si 2126 2616 991

Table 3 Estimation comparison of mean lifetime when τ = 5/6

AF under failure mode 1 AF under failure mode 2 True mean lifetime µ̂0 µ̂′0
ln θi = −5.12 + 4356.5/Si ln θi = −16.65 + 8876/Si 13343 15637 2755

ln θi = −4.89 + 4032.8/Si ln θi = −14.52 + 7872.6/Si 5665 6089 1559

ln θi = −4.8 + 3235/Si ln θi = −14.37 + 6723/Si 426.5 469.9 74.64

ln θi = −2.3 + 3157/Si ln θi = −18.28 + 9122/Si 4000 3558 203.3

§5. Real Data Application

We will apply the above method to the data set about insulated system of electromotor

from Klein and Basu (1981). The original data consists of three failure modes: turn failure,
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phase failure and ground failure. 323K and 423K are the two use temperatures, and the

four accelerated temperatures are 453K, 463K, 493K and 513K. Using the approach above,

we obtain the three accelerate functions as follows

log µi1 = −6.60 + 6686.55/Si,

log µi2 = −3.48 + 5376.72/Si,

log µi3 = −6.95 + 6993.09/Si.

Thus the estimates of mean lifetime at temperature 323K and 423K are µ̂0 = 477497.6h

and µ̂0 = 6406.4h respectively.

§6. Conclusions and Remarks

1. A very simple and elegant copula model for dependent competing risks in constant

stress ALT is introduced. This model is more general and practical and simulation shows

that the usual independence assumption would have a crucial effect on the reliability

assessment for constant stress ALTs when the failure modes of the series system were

dependent.

2. For a life test under use condition, if the failure modes of the failures were not

known (masked), the mean life of the system could still be estimated as the total test time

over the number of failures. Thus the reliability analysis will be the same whether the

failure modes are independent or not, whether the failures are masked or not. However,

as is shown in this paper, this is not the case for constant ALTs.

3. It is the first time for us to introduce copula to depict the dependent structure

between/among failure modes in system reliability analysis. Though more effort need to be

done in practice, advantages of it are clear, including: (1) It has the ability to capture the

dependence structure between/among different failure modes; (2) it seems more effective

and flexible with respect to the choice of the marginal distributions. However, as to

the assumption 5, it needs to be investigated based on the physical or chemical features

of the product lot from which the date set comes. The case of step stress ALT is not

considered here, however, it is expected that the derivation process are the same based on

the assumption of Nelson (1980). For the choice of copula, either frequentist or Bayesian

method can be used . This is currently under consideration.
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基于Copulas加速寿命试验中竞争失效模型的统计分析

徐安察

(温州大学数学与信息科学学院, 温州, 325035)

汤银才

(华东师范大学金融与统计学院, 上海, 200241)

在已有讨论竞争失效数据统计分析的文献中, 大多数都假设失效机理之间相互独立. 本文使用copula作

为连接函数来考查加速寿命试验中的竞争失效模型. 通过模拟, 把失效机理相关时得到的结果与失效机理独

立时得到的结果做了比较. 最后分析了文献中的一个实际数据.

关键词: 竞争风险, 加速寿命试验, copula.
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