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Abstract

In order to improve the accuracy of the diffusion coefficient estimation, we propose a new

combining estimator to estimate the diffusion coefficient by dynamically integrating information

from the time-domain and the state-domain. We find that the proposed estimator can effective-

ly estimate the diffusion coefficient of diffusion models, as we show in this paper on simulated

time series. Under certain conditions, the asymptotic normality is separately established for the

proposed nonparametric estimators and the proposed theorem proves that the time-domain and

state-domain estimators are asymptotically independent. Extensive simulations demonstrate the

proposed estimator outperforms the other two estimators, and also outperforms the ones in the

literature.

Keywords: Nonparametric estimation, diffusion coefficient, combining estimation, diffusion

models.
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§1. Introduction

Consider the problem of estimating the diffusion coefficient, σ2(·), for a continuous-

time diffusion process Xt satisfying the stochastic differential equation

dXt = µ(Xt)dt+ σ(Xt)dWt, t ∈ [0, T ], (1.1)

where Wt is a Wiener process on [0,∞]. The function µ(·) is a drift coefficient and σ(·) is

referred to as a diffusion coefficient. As far as the model (1.1) is concerned, we know that

it has wide applications in asset price, yields of bonds, financial markets; see the Vasicek
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model (Vasicek, 1977), CIR model (Cox et al., 1985), CKLS model (Chan et al., 1992),

the semiparametric model (Fan and Zhang, 2003), etc., for details.

The diffusion coefficient, most commonly known as spot volatility, plays a fundamen-

tal role in modern financial analysis. It is a measure of risk of a portfolio and is related to

the Value-at-Risk, asset pricing, portfolio allocation, capital requirement and risk adjust-

ed returns, among others. Various nonparametric estimators of the diffusion coefficient

have been proposed in the finance literature, building on theoretical developments in the

statistic literature. See, Florens-Zmirou (1993); Jiang and Knight (1997); Stanton (1997);

Arfi (1998); Fan and Yao (1998); Jacod (2000); Hoffmann (1999); Fan and Zhang (2003);

Bandi and Phillips (2003); Nicolau (2003); Aı̈t-Sahalia and Mykland (2004); Jeffrey et al.

(2004); Renò (2006); Arapis and Gao (2006); Bandi and Moloche (2008), etc..

For a given state variable Xt, most estimating methods are based on the assumption

that the diffusion coefficient σ2(·) depends on either price level or time level. But the

economic conditions change from time to time. Thus, it is reasonable to expect that

the diffusion coefficient prediction depends on both time and price level. For using more

information to improve the accuracy of the diffusion coefficient estimation, how to combine

information from both the time domain and state domain is a key problem. Some efforts

have been made to propose the dependence of the estimator on both time and price level.

Brenner, Harjes and Kroner (1996) proposed an interesting model on term interest rate

that has some flavor of combining the time- and state-domain information in a parametric

form. However, there is no formal work in the literature on efficiently integrating the time-

and state-domain estimators. Recently, Fan et al. (2007) successfully proposed a integrated

estimator to estimate the volatility function by weightedly integrating both time estimator

and state estimator, and they pointed out that if the underlying process is continuous in

time domain and stationary in state domain, such as model (1.1), both methods are

applicable. Today, with advance of computer technology, the available data collection and

storage are becoming more easy. The high-frequency financial data provide an incredible

experiment more generally for analyzing financial markets. By using a two-step procedure

in (2.1) — In the first step, estimate the time series σ̃i, which is implemented in the second

step with equation (2.1), Renò (2008) constructed a nonparametric kernel estimator based

on the combination of daily and high-frequency data.

On the one hand, in Renò’s methodology, the advantage of estimating quadratic vari-

ation with intraday data is obviously the gain in precision. The proposed estimator is

a fully nonparametric, in the sense that we impose very loose restrictions on the func-

tional form of the drift term. They compared the proposed estimator with some existing

methods in the literature, some results showed that the proposed estimator based on re-

alized volatility is more precise. On the other hand, we should pay attention to the Fan’s

integrated method because of borrowing the strengths of both time- and state-domain
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estimators with aggregated information from the data. It is important to combine the

estimators from the time-domain and state-domain separately, because this combination

allows us to use more sampling information and to get better estimation. In fact, com-

pared with the state-domain estimator, the integrated estimator will put more emphasis

(weight) on recent data, in contrast with the time-domain estimator, it will use historical

data to improve the efficiency. In short, two methods are two more effective approaches to

nonparametrically estimate the diffusion coefficient. Whereas the former uses a dynamic

weighting scheme to combine the two weekly dependent estimators in the diffusion esti-

mation, the latter relies mainly on using a combination of daily and high-frequency data

to construct a fully kernel estimator for estimating the diffusion coefficient.

Motivated by the empirical and theoretical success of combination estimation based on

time-domain and state-domain in Fan et al. (2007) and based on combination of daily and

high-frequency data in Renò (2008), we propose a new combining estimator and presents

some new results. We use high-frequency data to estimate the diffusion coefficient in

time domain and use daily data to estimate it in state domain. Then we define a new

combining estimator by a dynamic integrated method of Fan et al. (2007). We find that the

proposed estimator can effectively estimate the diffusion coefficient and some simulations

demonstrate that the proposed estimator outperforms the ones in the literature, and also

outperforms the other two estimators. Asymptotic normal behaviour as the time- and

state-domain estimators is established under certain conditions, and we point out that the

time-domain and state-domain estimators are asymptotically independent. This paper

investigates how these two methods can be used together, and compares their combined

use with the existing estimators. The main contribution of this paper is to propose a new

combining estimator by combining the respective advantages of Fan’s and Renò methods.

This paper is organized as follows. In Section 2, we firstly give some definitions for

describing and illustrating our main results. Asymptotic normality is separately estab-

lished for the proposed estimators. Section 3 present some simulations to evaluate the

finite sample performance of the proposed estimator. We give some conclusions and the

future work in Section 4. All the technical conditions and proofs are collected to Section

5.

§2. Methodology and Main Results

2.1 The Estimator are Based on the Estimation of Quadratic Vari-

ation between Observations

Suppose that we observe a discrete sample {X̂ti}ni=1 at n equally spaced time points

from the diffusion process (1.1). T = n∆ is the time span of the sample, where ∆ is the

《
应

用
概

率
统

计
》

版
权

所
有



228 A^VÇÚO 1n�ò

step size between observations and is fixed. We build our theory on Nadaraya-Watson

estimators of the kind:

σ̂2(x) =
n∑
i=1

K
(X̂ti − x

hn

)
σ̃2
i

/ n∑
i=1

K
(X̂ti − x

hn

)
, (2.1)

where σ̃i is a consistent estimate of the volatility at time ti and hn is a bandwidth. The

most popular fully nonparametric estimator of the diffusion coefficient is that proposed

by Florens-Zmirou (1993). Her estimator is obtained by setting σ̃2
i = (n/T )(X̂ti − X̂ti−1)2

in (2.1), and is described by

σ̂2
FZ(x) =

n∑
i=1

K
(X̂ti − x

hn

)n
T

(X̂ti − X̂ti−1)2
/ n∑
i=1

K
(X̂ti − x

hn

)
. (2.2)

An estimator similar to that of Florens-Zmirou estimator has been proposed by Bandi and

Phillips (2003). In the framework of (2.1), the estimator in Bandi and Phillips (2003) is

obtained by setting

σ̃2
i =

n

T

1

mi

mi∑
j=0

(X̂ti,j+1 − X̂ti,j)
2, (2.3)

where mi is the number of times that |X̂tk − X̂ti | ≤ εs, εs is a parameter to be selected,

ti,j is a subset of indexes such that

ti,0 = inf{k ≥ 0 : |X̂tk − X̂ti | ≤ εs} and ti,j+1 = inf{t ≥ ti,j + ∆ : |X̂tk − X̂ti | ≤ εs}.

A different estimator of the diffusion coefficient with the same asymptotic properties

can be devised as follows: in the estimator (2.2), we replace (n/T )(X̂ti − X̂ti−1)2 with the

integrated volatility in the interval [ti−1, ti], i.e. we set σ̃2
i = (n/T )

∫ ti

ti−1

σ2
sds in (2.1).

This estimator is proposed by Renò (2008) and is defined by

σ̂2
Renò(x) =

n∑
i=1

K
(X̂ti − x

hn

)n
T

∫ ti

ti−1

σ2
sds
/ n∑
i=1

K
(X̂ti − x

hn

)
. (2.4)

Such an estimator would be unfeasible, but we can substitute the integrated variance with

a consistent estimate of it, namely, realized volatility1 (Barndorff-Nielsen and Shephard,

2002a, 2002b; Andersen et al., 2001a, 2001b, 2003). Based on the estimation of quadratic

variation between observations by means of realized volatility, Renò (2008) proposed a

new nonparametric estimator of the diffusion coefficient, and showed that it is consistent

and asymptotically normally distributed. Define the local time as

Lt(x) = lim
ε→0

1

2ε

∫ t

0
I[x−ε,x+ε](Xs)ds.

1Renò (2008) use the realized volatility to estimate integrated volatility in (2.4), but we also can substitute it

with the realized bi-power variation (See, Barndorff-Nielsen and Shephard, 2003, 2004a, 2004b, 2005, 2006; Andersen

et al., 2004, 2007). In the simulations, we check out their performances. Specifically, Section 3 can be seen.
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The local time of a diffusion is estimated by the following approximation

Lnt (x) =
T

nhn

[nt/T ]∑
i=1

K
(X̂ti − x

hn

)
,

where [x] is the integer part of x.

Lemma 2.1 (cf. Florens-Zmirou, 1993) If n→∞, we have nh4
n → 0, then Lnt (x)

→ Lt(x) in the L2 sense. The convergence is almost sure if log n/(nh2
n)→ 0.

Let

Vn(x) =
T

nhn

n∑
i=1

K
(X̂ti − x

hn

)(X̂ti − X̂ti−1√
T/n

)2
,

we have

Lemma 2.2 (cf. Florens-Zmirou, 1993) If nh4
n → 0 as n → ∞, then Vn(x) con-

verges to σ2(x)LT (x) in the L2 sense.

Therefore, Renò (2008) proved that the proposed estimator σ̂2
Renò(x) is consistent and

asymptotically normally distributed.

Lemma 2.3 (cf. Renò, 2008) If nh4
n → 0 as n → ∞, then σ̂2

Renò(x) is consistent

estimator of σ2(x) in the L2 sense.

Lemma 2.4 (cf. Renò, 2008) If nh3
n → 0, as n→∞, then

√
nhn

( σ̂2
Renò(x)

σ2(x)
− 1
)

d−→ 1√
LT (x)

N(0, 1),

where the convergence
d−→ is in distribution.

2.2 The Estimator are Based on the Combining Estimation

Firstly, the strategy for combination is to introduce a dynamic weighting scheme Wt

(0 ≤ Wt ≤ 1), to combine the two weekly dependent estimators. Then we define the

combining estimator based on time- and state-domain smoothing as,

σ̂2
I,(s,t) = Wtσ̂

2
t,time + (1−Wt)σ̂

2
t,state. (2.5)

Since σ̂2
t,time and σ̂2

t,state are asymptotically independent.2 By minimizing the variance of

the combining estimator, we can get the dynamic optimal weight,

Wt =
Var (σ̂2

t,state)

Var (σ̂2
t,state) + Var (σ̂2

t,time)
. (2.6)

2In Section 3, we prove that σ̂2
t,time and σ̂2

t,state are asymptotically independent, and thus they are close to

independent in finite sample.
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Estimated value of Wt is given by estimating unknown variances in (2.6). Therefore, we

get the feasible integrated estimator

σ̂2
I,(s,t) = Ŵtσ̂

2
t,time + (1− Ŵt)σ̂

2
t,state. (2.7)

On the one hand, the time-domain method has been extensively studied in the lit-

erature (Robinson, 1997; Härdle et al., 2003; Fan et al., 2003; Mercurio and Spokoiny,

2004; Fan et al., 2007). These methods depend on the assumption that the coefficients

are smooth so that they can be locally approximated by a constant. That’s to say, the

basic idea is to localizing in time, resulting in a time-domain smoothing. If high-frequency

financial data can be collected in local time (a day), the availability of high-frequency

intraday data allows us to accurately estimate the spot volatility (See, Foster and Nelson,

1996; Aı̈t-Sahalia et al., 2005; Fan and Wang, 2008).

The quadratic variation of Xt has expression [X,X]t =

∫ t

0
σ2
sds. Suppose that we

observe Xt at N discrete time points ti = iT/N , i = 1, 2, . . . , N . Our goal is to estimate

the spot volatility σ2
t = d[X,X]t/dt. Suppose M(·) is a kernel with support on [−1, 1].

We define the time-domain kernel type estimator as

σ̂2
t (x) =

1

b

t+b∑
ti=t−b

M
( ti − t

b

)
(Xti −Xti−1)2,

where b is bandwidth. If M(·) = 1, then the estimator results in a rolling average

σ̂2
t (x) =

1

b

t+b∑
ti=t−b

(Xti −Xti−1)2 =
1

b
[X,X]b.

If M(·) is one side kernel with support on [−1, 0], it yields an estimator that uses the

immediate past data,

σ̂2
MA,t(x) =

1

b

t∑
ti=t−b

M
( ti − t

b

)
(Xti −Xti−1)2. (2.8)

Theorem 2.1 Under conditions (A.1)-(A.4), we have

√
Nb(σ̂2

MA,t(x)− σ2
t )

d−→ N
(

0, 2σ4
t ·
∫
M2(x)dx

)
.

On the other hand, we exclude the N recent data points used in the time-domain

estimation. Suppose that the historical data at time t are X̂ti , i = 0, 1, . . . , n from process

(1.1) with a sampling interval ∆. Let f(x) = µ(x)∆1/2. By Euler approximation scheme,

we get Ŷi ≈ µ(X̂ti)∆
1/2 + σ(X̂ti)εi, where Ŷi = ∆−1/2(X̂ti − X̂ti−1) and εi ∼i.i.d. N(0, 1)

for i = 1, 2, . . . , n. Denote the squared residuals by R̂i = {Ŷi − f̂(X̂ti)}2. Then the local

linear estimator of f and σ2
t are f̂ = â and σ̂2

LLE;s = α̂ given by

(â, b̂) = arg min
a

n∑
i=1
{Ŷi − a− b(X̂ti − x)}2Uh(X̂ti − x)
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and

(α̂, β̂) = arg min
α,β

n∑
i=1
{R̂i − α− β(X̂ti − x)}2Wh(X̂ti − x),

where Uh(·) andWh(·) are kernel functions, h is bandwidth. Then the local linear estimator

can be expressed as

σ̂2
LLE,s =

n∑
i=1

ω2,i(x)R̂i, (2.9)

where ω2,i(x) = W ((X̂ti−x)/h)(S2(x)−(X̂ti−x)S1(x))/(S0(x)S2(x)−S2
1(x)) and Sj(x) =

n∑
i=1

(X̂ti − x)jW ((X̂ti − x)/h).

Remark 1 Stanton (1997) and Fan et al. (2003) showed that Ŷ 2
i instead of R̂i in

(2.9) also can be used for the estimation of σ2
t . Moreover, the variance of the estimator

can be approximated as Var (σ̂2
LLE,s|X̂ti) ≈ 2σ4

t

n∑
i=1

ω2
2,i.

Theorem 2.2 Let vj =

∫
ujK2(u)du for j = 0, 1, 2. Suppose that the second

derivatives µ(·) and σ2(·) exist in a neighborhood of x, then

√
nh(σ̂2

LLE,s − σ2
t − θn)

d−→ N(0, 2σ4
t p
−1(x)eT1 (H−1S−1)TS∗H−1S−1e1),

where θn = (1/2)h2σ̈2(x)σ2
w + o(h2) and σ2

w =

∫
u2w(u)du.

The asymptotic independence between the time- and state-domain estimators is the

basic condition of the combining method. The following theorem shows that both the time-

and state-domain estimators are asymptotically independent and the combining estimator

σ̂2
I,(s,t) exists the asymptotic normality.

Theorem 2.3 Suppose that the second derivatives µ(·) and σ2(·) exist in a neigh-

borhood of x. Under conditions (A.1)-(A.4) and (B.1)-(B.4). Then we present result at

the current time tN .

The asymptotic independence of both time-domain estimator and state-domain esti-

mator

(√
Nb(σ̂2

MA,t(x)− σ2
tN

),
√
nh2(σ̂2

LLE,s − σ2
tN
− θn)

)T d−→ N

((
0

0

)
,

(
V1 0

0 V2

))
,

where V1 = 2σ4
tN
·
∫ 1

−1
M2(x)dx and V2 = 2σ4

tN
p−1(x)eT1 (H−1S−1)TS∗H−1S−1e1.

The asymptotic normality of σ̂2
I,(s,tN ): if the limit d = lim

n→∞
N/nh2 exists, then

√
nh2/S2[σ̂2

I,(s,tN ) − σ
2
tN

]
d−→ N(0, 1),

where S2 = W 2
t V1/d+ (1−Wt)

2V2.
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Based on the asymptotic independence between the time- and state-domain esti-

mators, an dynamic weight of the integrated estimator is given by (2.6). Because that

σ̂2
MA,tN

(x) and σ̂2
LLE,s are consistent, we have

Ŵt =
V̂ar (σ̂2

LLE,s)

V̂ar (σ̂2
LLE,s) + V̂ar (σ̂2

MA,tN
(x))

Remark 2 Note that the theoretically optimal weight minimizing the variance in

Theorem 2.3 is Wt,opt = V2/(V1/d+ V2).

Thus, this results in the dynamically feasible combining estimator

σ̂2
I,(s,tN ) = ŴtN ∗ σ̂

2
MA,tN

+ (1− ŴtN ) ∗ σ̂2
LLE,s. (2.10)

§3. Numerical Analysis

To facilitate the presentation, we use the simple abbreviations in Table 1 to denote

six diffusion coefficient estimators.

Table 1 Six diffusion coefficient estimators

σ̂2
FZ(x): An popular nonparametric estimator in (2.2)

σ̂2
BP(x): An improved nonparametric estimator in (2.3)

σ̂2
Renò(x): The new fully nonparametric estimator in (2.4)

σ̂2
MA,t(x): The time-domain estimation method in (2.8)

σ̂2
LLE,s(x): The state-domain estimation method in (2.9)

σ̂2
I,(s,tN )(x): The new integrated estimator in (2.10)

The following five measures are employed to assess the performance of different pro-

cedures for estimating the diffusion coefficient.

Measure 1: Mean Error (ME):

ME =
1

m

m∑
i=1

(σ̂2
i − σ2

t ).

Measure 2: Root Mean Square Error (RMSE):

RMSE =

√
1

m

m∑
i=1

(σ̂2
i − σ2

t )
2.

Measure 3: Ideal Mean Absolute Deviation Error (IMADE):

IMADE =
1

m

m∑
i=1
|σ̂2
i − σ2

t |.

《
应

用
概

率
统

计
》

版
权

所
有



1nÏ �XI 'U� �;°: *Ñ�.¥*ÑXê��ëê|Ü�O 233

Measure 4: Ideal Square Root Absolute Deviation Error (IRADE):

IRADE =
1

m

m∑
i=1
|σ̂i − σt|.

Measure 5: Relative Ideal Mean Absolute Deviation Error (RIMADE):

RIMADE =
1

m

m∑
i=1

|σ̂2
i − σ2

t |
σ2
t

.

Generally speaking, the smaller the calculated value, the better the estimated approach.

Example 1 We use the Cox-Ingersoll-Ross model (CIR) as our data-generating

process

dXt = k(α−Xt)dt+ σX
1/2
t dWt, t ≥ t0, (3.1)

where the spot rate, Xt, moves around its long-run equilibrium level α at speed k. When

the condition 2kα ≥ σ2 holds, this process is shown to be positive and stationary. We

simulate the sample paths of the process by using the Euler scheme. In our implementation,

the values of the model parameters are cited from Fan and Zhang (2003), that is, k =

0.21459, α = 0.08571, σ = 0.07830. Throughout the paper we simulate daily observations,

that is ∆ = 1/252, where the number of days per year is assumed to be 252.

The estimator (2.4) is implemented as follows. The distance between two adjacent

observations is 1/252 (daily data). For each observation at time ti, we divide this interval

into m steps, and we estimate the integrated volatility by using realized volatility or

realized bi-power variation (intraday data) as follows:

σ̃2
i =

n

T

m−1∑
j=0

(
Xi+(j+1)/m −Xi+j/m

)2
or

n

T
µ−2

1

n

n− 1

m−2∑
j=0

∣∣Xi+(j+1)/m −Xi+j/m

∣∣∣∣Xi+(j+2)/m −Xi+(j+1)/m

∣∣, (3.2)

where µa = E(|Z|a) and Z ∼ N(0, 1) (a > 0). For the estimator (2.4), we compute (3.2)

with m = 500.

The estimator (2.10) is implemented as follows. On each simulated sample path, we

estimate σ2
t over T = 1 day (i.e., T = N∆t = 1/252, since the parameter values are

all annualized) by using [Y, Y ]
(all)
b . We use daily data to estimate it in state domain.

That is to say, we set the first N observations as the time-domain data and the last

n observations as the state-domain data, and the start value Xt0 = 0.1. We focus on

an interior state point x = 0.1. A simple rule of thumb bandwidth formula is used

(Scott, 1992): hn = hsσ̂n
−1/5, where hs is a real constant (here hs = 1.06), and σ̂ is

the sample standard deviation, and the gaussian density function is a common kernel

K(s) = (1/
√

2π)e−s
2/2. The experimental results are based on 1,000 replications.
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Table 2 Simulated results for the estimator σ̂2
Renò(x)

σ̂2
Renò(x) Measure

σ̃2
i ME RMSE IMADE IRADE RIMADE

Based on RV -1.3419×10−6 1.2149×10−5 8.6622×10−6 1.7506×10−4 1.4129×10−2

Based on BPV -2.5028×10−6 1.2567×10−5 8.9990×10−6 1.8204×10−4 1.4678×10−2

The results show that the estimator σ̂2
Renò(x) based on realized volatility outperforms

based on realized bi-power variation. Moreover, Monte Carlo simulations show that the

precision of the high-frequency estimator increases with m, as we expected. In reality,

there are two problems. One is the disadvantage of this estimator is that it requires much

more data. Every σ̃2
i prediction is based on the intraday data. Other one is taking too

much computational time. When using the more days, the greater the time consumption.

Table 3 Simulated results for the six estimators

Method Measure

ME RMSE IMADE IRADE RIMADE

σ̂2
FZ(x) -3.1199×10−5 1.0914×10−4 8.9035×10−5 1.8476×10−3 1.4522×10−1

σ̂2
LLE,s(x) -1.3718×10−5 7.5369×10−5 5.5776×10−5 1.1441×10−3 9.0975×10−2

σ̂2
BP(x) -3.4813×10−5 6.6186×10−5 5.0805×10−5 1.0561×10−3 8.2868×10−2

σ̂2
Renò(x) -2.0127×10−6 1.2745×10−5 9.0184×10−6 1.8239×10−4 1.4710×10−2

σ̂2
MA,t(x) 3.9242×10−7 7.9969×10−6 6.3762×10−6 1.2870×10−4 1.0400×10−2

σ̂2
Int,(s,t)(x) 9.0786×10−8 7.9376×10−6 6.3006×10−6 1.2721×10−4 1.0277×10−2

To examine the efficiency of the integrated estimator, we simulate the price as dis-

cussed above. The results, summarized in Table 3, shows that the performance of our

proposed combining estimator uniformly dominates the other estimators because of its

lowest ME, RMSE, IMADE, IRADE and RIMADE. The results show that the proposed

combining estimator performs closely to the time-domain method. This is mainly because

high-frequency data is used so that the time-domain is far more informative than the

state-domain, supporting our statement at the end of the first paragraph in Section 1.

Due to the estimated method weightedly emphasis on daily realized volatility, the results

demonstrate that Renò’s estimator do not seem to produce more efficient estimation re-

sults than the others. Our proposed integrated method features high speed of convergence

and precision and is more reasonable compared with others, but less than the use of data

in Renò’s estimator.

Remark 3 In fact, we also consider the Vasicek model (Vasicek, 1977) as our data-

generating process: dXt = k(α − Xt)dt + σdWt. For this model the diffusion coefficient

is constant and equal to σ2. Set α = 8.3%, k = 0.5 and σ = 3%. These parameters
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values are given by Renò et al. (2006). Unreported simulation results also show that the

estimator σ̂2
Renò(x) based on realized volatility outperforms based on realized bi-power

variation. There is no substantial difference on the performance of all estimators in the

Vasicek model and the CIR model.

Example 2 We consider the geometric Brownian model (GBM)

dXt = (µ+ σ2/2)Xtdt+ σXtdBt. (3.3)

This model (3.3) is a non-stationary process to which we check if our method continues

to apply. Note that the celebrated Black-Scholes option price formula is derived based

on the Osborne’s assumptions that the stock price follows the GBM model. We simulate

1,000 times with ∆ = 1/252, the corresponding approximate process with parameters

µ = 0.087 and σ = 0.178, starting at Xt0 = 1.0 (Fan and Zhang, 2003). We choose the

Euler approximation scheme to simulate the process (3.3). For each scheme, 1,000 sample

paths of length 1,000 are generated. We focus on an interior state point x = 1.0 and the

bandwidth parameter hn = hsσ̂n
−1/5, where hs is a real constant, and σ̂ is the sample

standard deviation.

Table 4 Simulated results for the estimator σ̂2
Renò(x) and the normal kernel

Bandwidth σ̂2
Renò(x) Measure

hs σ̃2
i ME RMSE IMADE IRADE RIMADE

1.06 RV 1.2721×10−3 2.6284×10−3 1.6728×10−3 4.5713×10−3 5.2796×10−2

BPV 1.2105×10−3 2.5972×10−3 1.6490×10−3 4.5087×10−3 5.2047×10−2

3 RV 5.2023×10−3 8.5507×10−3 6.0348×10−3 1.5708×10−2 1.9047×10−1

BPV 5.1299×10−3 8.4943×10−3 5.9882×10−3 1.5596×10−2 1.8900×10−1

5 RV 1.0119×10−2 1.6274×10−2 1.1525×10−2 2.8485×10−2 3.6373×10−1

BPV 1.0037×10−2 1.6202×10−2 1.1465×10−2 2.8354×10−2 3.6186×10−1

For a given kernel function, the choice of an effective bandwidth parameter is very

important to the performance of all nonparametric kernel estimator. For different values

of hs, the results are summarized in Table 4, which shows that the performance of the

estimator σ̂2
Renò(x) based on realized bi-power variation outperforms based on realized

volatility because of its lower ME, RMSE, IMADE, IRADE and RIMADE. These results

show that the performance of the estimator σ̂2
Renò(x) in Table 2 is opposite because of the

non-stationarity of the process. Furthermore, we find that hs = 1.06 is highly suitable for

estimating the diffusion coefficient.

It is widely recognized that the choice of the kernel function is much less important

than the choice of an appropriate smoothing parameter. But in Table 5, we find that the

performance of σ̂2
Renò(x) with Epanechnikov kernel outperforms it with normal kernel.

《
应

用
概

率
统

计
》

版
权

所
有



236 A^VÇÚO 1n�ò

Table 5 Simulated results for the estimator σ̂2
Renò(x) and the Epanechnikov kernel

K(u) = 0.75(1− u2)I(|u| ≤ 1)

Bandwidth σ̂2
Renò(x) Measure

hs σ̃2
i ME RMSE IMADE IRADE RIMADE

1.06 RV 4.7519×10−4 1.2136×10−3 7.1224×10−4 1.9734×10−3 2.2479×10−2

BPV 4.1594×10−4 1.1993×10−3 7.0966×10−4 1.9677×10−3 2.2398×10−2

3 RV 2.0657×10−3 3.9695×10−3 2.5272×10−3 6.8119×10−3 7.9763×10−2

BPV 1.9974×10−3 3.9280×10−3 2.4908×10−3 6.7171×10−3 7.8615×10−2

5 RV 3.9680×10−3 6.8042×10−3 4.5870×10−3 1.2074×10−2 1.4477×10−1

BPV 3.8969×10−3 6.7541×10−3 4.5436×10−3 1.1966×10−2 1.4340×10−1

In order to obtain the performance of each estimator in the literature, all estima-

tors are used to estimate the diffusion coefficient of the GBM model. The results are

summarized in Tables 6 and 7.

Table 6 Simulated results for the six estimators and the normal kernel

Method Measure

ME RMSE IMADE IRADE RIMADE

σ̂2
BP(x) -1.2782×10−2 1.2954×10−2 1.2796×10−2 4.0752×10−2 4.0388×10−1

σ̂2
FZ(x) 1.6266×10−3 5.5479×10−3 3.5327×10−3 9.5701×10−3 1.1150×10−1

σ̂2
LLE,s(x) 1.3039×10−3 6.4728×10−3 3.7006×10−3 9.9748×10−3 1.1680×10−1

σ̂2
Renò(x) 1.2582×10−3 2.5878×10−3 1.6449×10−3 4.4956×10−3 5.1916×10−2

σ̂2
MA,t(x) 4.1041×10−5 5.0724×10−4 4.0375×10−4 1.1333×10−3 1.2743×10−2

σ̂2
Int,(s,t)(x) 4.6800×10−5 5.0459×10−4 4.0231×10−4 1.1292×10−3 1.2697×10−2

Table 7 Simulated results for the six estimators and the Epanechnikov kernel

K(u) = 0.75(1− u2)I(|u| ≤ 1)

Method Measure

ME RMSE IMADE IRADE RIMADE

σ̂2
BP(x) -1.2880×10−2 1.3338×10−2 1.3014×10−2 4.1765×10−2 4.1074×10−1

σ̂2
FZ(x) 1.5154×10−3 6.7970×10−3 4.5191×10−3 1.2307×10−2 1.4263×10−1

σ̂2
LLE,s(x) 1.4196×10−3 7.8987×10−3 4.9018×10−3 1.3300×10−2 1.5471×10−1

σ̂2
Renò(x) 3.5770×10−4 1.0410×10−3 6.6232×10−4 1.8422×10−3 2.0904×10−2

σ̂2
MA,t(x) 2.4492×10−5 5.3035×10−4 4.2390×10−4 1.1901×10−3 1.3379×10−2

σ̂2
Int,(s,t)(x) 2.7013×10−5 5.2925×10−4 4.2264×10−4 1.1866×10−3 1.3340×10−2

The results show that the performance of the proposed integrated estimator is more

prominent than other estimators. It is easy to show that the the proposed integrated

estimator is effective. Moreover, the estimator σ̂2
MA,t(x) also performs better than the
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other estimators. But we find that the estimator σ̂2
Renò(x) result in a poor estimation may

because of the non-stationarity of the process. The conclusion similar to Example 1 can

be drawn from this example. This shows that our integrated method continues to perform

better than the others for this non-stationary case. When we use the Epanechnikov kernel

to replace the the normal kernel in the simulation study, we find that the results not to

change, as seen in Table 7.

§4. Conclusions

This paper introduces nonparametric estimation of the diffusion coefficient of diffu-

sion models. A new dynamical combining estimator to aggregate the information from the

time-domain and state-domain is proposed and studied. The performance of the proposed

estimator is assessed on simulations of several popular diffusion models. Some simulations

illustrated that the proposed combining estimator is effectively aggregating the informa-

tion from both the time and the state domains, and has advantages over some previous

methods. Our study has also revealed that proper use of information from both the

time-domain and state-domain makes volatility forecasting more accurately. Our method

exploits the continuity in the time-domain and stationarity in the state-domain.

The results briefly presented in this paper are encouraging, but they are also prelimi-

nary in many respects. First, a serious limitation to this approach is that the assumption

of a continuous sample path for asset prices may be too restrictive. We can extend the

estimators to allow for jumps in the equation driving the observable variable, as well as

to estimate leverage when the observable variable and the latent volatility factor are cor-

related. Second, the choice of the bandwidth parameter can be refined, for example using

automated techniques instead of the simple rule of thumb adopted here. Third, one im-

portant limitation is that they have been studied for single-factor models only. In practice,

it is well known that single-factor models are too naive, both for stock prices and spot

rate modeling. Finally, using intraday data to directly implement the estimator proposed

by Florens-Zmirou (1993) could be misleading, since intraday data display pronounced

seasonalities and microstructure effects that could seriously distort the estimation.

Appendix

We firstly introduce the following technical conditions which are necessary in the

proofs. Throughout the proofs, we denotes by C a generic constant.

(A.1) The drift term µt and diffusion term σt in (1.1) satisfy

sup{|µt − µs|, |t− s| ≤ c} = Op(c
1/2| log c|1/2)
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and

sup{|σt − σs|, |t− s| ≤ c} = Op(c
1/2| log c|1/2),

for any t, s ∈ [0, T ] and c is a positive constant.

(A.2) sup
{∣∣∣ ∫ ti

ti−1

(σs − σti−1)dWs

∣∣∣2, i = 1, . . . , n
}

= Op(N
−2+c), where c is an arbi-

trarily small positive number.

(A.3) b v N−1/2/ logN , M(·) is twice differentiable with support [−1, 1] and∫ 1

−1
M(x)dx = 1.

(A.4) There exists a positive constant C, such that

E|µ(Xs)|2(p+δ) ≤ C and E|σ(Xs)|2(p+δ) ≤ C, for any s ∈ [t− η, t],

where η is some positive constant, p is an integer not less than 2 and δ > 0.

(B.1) The discrete observations {X̂ti}ni=0 satisfy the stationarity condition of Banon

(1978). Furthermore, a stationary process Xt is said to satisfy the condition G2(s, α) of

Rosenblatt (1970).

(B.2) The conditional density pl(y|x) of X̂ti+l
for given X̂ti is continuous in the ar-

guments (x, y) and is bounded by a constant (independent of l).

(B.3) The kernel functions Uh(·) and Wh(·) are bounded, symmetric probability den-

sity function with compact support [−1, 1]. Furthermore, they are continuously differen-

tiable function.

(B.4) As n→∞, nh→∞ and nh5 → 0 and nh∆→ 0.

Proof of Theorem 2.1 The proof is completed by using the same lines in Fan

and Wang (2008). �

Proof of Theorem 2.2 Without loss of generality, we assume that f(x) = 0,

hence R̂i = Ŷ 2
i . Let

Y = (Ŷ 2
1 , Ŷ

2
2 , . . . , Ŷ

2
n ), W = diag

{
W
(X̂t1 − x

h

)
,W
(X̂t2 − x

h

)
, . . . ,W

(X̂tn − x
h

)}
and

X =


1 X̂t1 − x
...

...

1 X̂tn − x

 .

Denote by mi = E[Ŷ 2
i |Xti ], m = (m1,m2, . . . ,mn)T and e1 = (1, 0)T . Then it can be

written that

σ̂2
LLE,s = eT1 (XTWX)−1XTWY,
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σ̂2
LLE,s − σ2

t = eT1 (XTWX)−1XTW{m−XβN}+ eT1 (XTWX)−1XTW{Y −m}

= eT1 B + eT1 b,

where βN = (m(x),m′(x))T with m(x) = E[Ŷ 2
1 |X̂ti = x]. By Fan and Yao (1998), the

bias vector B converges in probability to a vector B with B = O(h2) = o(1/
√
nh). In the

following, we will show that the centralized vector b is asymptotically normal.

Put u = n−1H−1XTW (Y −m), where H = diag{1, h}, then by Fan and Yao (2003)

the vector b can be written as

b = p−1(x)H−1S−1u(1 + op(1)), (5.1)

where S = (µi+j−2), i, j = 1, 2 with µj =

∫
ujk(u)du.

For any constant vector c, we define

Qn = cTu =
1

2

n∑
i=1
{Ŷ 2

i −mi}Ch(X̂ti − x),

where C(u) = c1W (u) + c2uW (u) with Cu(h) = C(u/h)/h.

Applying the “big-block” and “small-block” arguments in Fan and Yao (2003, Theo-

rem 6.3), we obtain

θ−1(x)
√
nhQn → N(0, 1), (5.2)

where θ2(x) = 2p(x)σ4
t

∫
C2(u)du. Therefore, we have

√
nhcTu→ N

(
0, 2p(x)σ4

t

∫
C2(u)du

)
.

Because that Qn is a linear transform of u,

√
nhu→ N(0, 2σ4

t p(x)S∗/nh),

where S∗ = (vi+j−2), i, j = 1, 2 with vj =

∫
ujK2(u)du.

We can reduce to u → N(0, 2σ4
t p(x)S∗/nh). Because that b = p−1(x)H−1S−1u(1 +

op(1)), we have

b→ N(0, 2σ4
t p(x)−1(H−1S−1)TS∗H−1S−1/nh).

Thus, we have σ̂2
LLE,s−σ2

t −θn → N(0, 2σ4
t p(x)−1eT1 (H−1S−1)TS∗e1H

−1S−1/nh). �

Proof of Theorem 2.3 Based on the above results, we will decompose Qn into

two parts Q′n and Q′′n, which satisfy that

(i) nhE[θ−1(x)Q′n]2 ≤ (h/n)(h−1an(1 + o(1)) + no(h−1))→ 0;

(ii) Q′′n is identically distributed as QN and is asymptotically independent of σ̂2
MA,t.

Define

Q′N =
1

n

an∑
i=1
{Ŷ 2

i − E[Ŷ 2
i |X̂ti ]}Ch(X̂ti − x) (5.3)
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and Q′′n = Qn − Q′n, where an is a positive integer with an = o(n) and an∆ → ∞. Let

vn,l = vl+1

√
h and vi = {Ŷi − mi}Ch(X̂ti − x) (i = 1, 2, . . . , n), then by Fan and Yao

(2003),

Var [θ−1(x)vn,0] = (1 + o(1)) and
n−1∑
l=1

|Cov (vn,0, vn,l+1)| = o(1),

which yields the result in (i). This combined with (5.1), (i) and (5.2) leads to

θ−1(x)
√
nhQ′′n → N(0, 1).

According to the stationarity conditions of Banon (1978) and a stationary process Xt is

said to satisfy the condition G2(s, α) of Rosenblatt (1970) and the Proposition 2.6 of Fan

and Yao (2003) imply that the ρ(l) of {X̂ti} decays exponentially and the strong-mixing

coefficient α(l) ≤ ρ(l), it follows that

|E exp{iζ(Q′′n + σ̂2
MA,t)} − E exp{iζQ′′n}E exp{iζσ̂2

MA,t}| ≤ 16α(sn)→ 0

for any ζ ∈ R. By theorem of Volkonskii and Rozanov (1959), we get the asymptotic

independence of σ̂2
MA,t and Q′′n.

By (i),
√
nhQ′n is asymptotically negligible. This together with Theorem 2.3 leads to

d1θ
−1(x)

√
nhQn + d2V

−1/2
2

√
Nb[σ̂2

MA,t − σ2
t ]→ N(0, d2

1 + d2
2)

for any d1, d2 ∈ R, where V2 = 2σ4
t ·
∫ 1

−1
M2(x)dx. Since Qn is a linear transform of u,

V −1/2

( √
nhu

√
Nb[σ̂2

MA,t − σ2
t ]

)
−→ N(0, I2),

which V = blockdiag{V1, V2} with V1 = 2σ4
t p(x)S∗ where S∗ = (vi+j−2), i, j = 1, 2

with vj =

∫
ujK2(u)du. This combined with equation (5.1) gives the joint asymptotic

normality of b and σ̂2
MA,t. Note that B = op(1/

√
nh), it follows that

Σ
−1/2
2

( √
nh[σ̂2

LLE,s − σ2
t − θn]

√
Nb[σ̂2

MA,t − σ2
t ]

)
−→ N(0, I2),

where Σ
−1/2
2 = diag{2σ4

t p(x)−1eT1 (H−1S−1)TS∗H−1S−1e1, V2}. Note that σ̂2
MA,t and

σ̂2
LLE,s are asymptotically independent, it follows that the asymptotical normality of σ̂2

I,(s,t)

holds. �
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