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Abstract

In this paper, the best linear unbiased estimator of regression coefficients in the linear model

is studied. Under weighted balanced loss function the minimum risk properties of linear estimator

of regression coefficients in the class of linear unbiased estimator is discussed. Furthermore, some

kinds of relative efficiencies of the best linear unbiased estimator and ordinary least squares esti-

mator are given, and the lower bound or upper bound of these relative efficiencies are also given.
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§1. Introduction

Consider the following linear model
y = Xβ + ε,

E(ε) = 0,

Cov (ε) = σ2In,

(1.1)

where y is an n × 1 vector of observation, X is an n × p known matrix of rank p, β is a

p× 1 vector of unknown parameters, ε is an n× 1 vector of disturbances with expectation

E(ε) = 0 and variance-covariance matrix Cov (ε) = σ2In.

Let β̃ stands for any estimator of β, then the quadratic loss function which reflects

the goodness of the fitted model is

(y −Xβ̃)′(y −Xβ̃), (1.2)
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while the commonly employed loss function for the precision of estimation is squared error

loss function

(β̃ − β)′(β̃ − β) (1.3)

or weighted squared error loss function

(β̃ − β)′X ′X(β̃ − β). (1.4)

Both the criteria are important and it may be desirable to employ both the criteria

simultaneously in practice. Accordingly; considering both the criteria of goodness of fit

and precision of estimation together, Zellner (1994) has introduced the following balanced

loss function:

w(y −Xβ̃)′(y −Xβ̃) + (1− w)(β̃ − β)′X ′X(β̃ − β), (1.5)

where w is a scalar between 0 and 1. When w = 0, the loss function of (1.5) reflects the

precision of estimation and when w = 1, the loss function of (1.5) reflects the goodness of

fitted model.

Furthermore, using the idea of simultaneous prediction of actual and average values

of study variable, Shalabh (1995) has presented the following loss function as

w2(y−Xβ̃)′(y−Xβ̃)+(1−w)2(β̃−β)′X ′X(β̃−β)+2w(1−w)(Xβ̃−y)′X(β̃−β), (1.6)

where w is a scalar between 0 and 1. Such loss function is an extension of the balanced

loss function of (1.5) and also take care of the covariability between the goodness of fitted

model and precision of estimation.

The balanced loss function has been received considerable attention in the literature.

Rodrigues and Zellner (1994) have discussed the balanced loss function in the estimation

of mean time to failure. Gruber (2004) has studied the empirical Bayes and approximate

minimum mean square error estimator under a general balanced loss function. Zhu et

al. (2010) derived the best linear unbiased estimator under the balanced loss function. Hu

et al. (2010) obtained the optimal estimator under the balanced loss function and discussed

the relative efficiency of the optimal estimator with the ordinary least squares estimator.

Jozani et al. (2006) presented the weighted balance-type loss function and considered the

issues of the admissibility, dominance, Bayesianity and minimality.

Since the weighted balanced loss function is very popular, we consider it in this paper.

We will obtain the optimal estimator under the weighted balanced loss function. Some

relative efficiencies are also given in this paper.
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The rest of the paper is organized as follows: In Section 2, we present the model

and the weighted balanced loss function. In Section 3, we obtain the best linear unbiased

estimator and consider some relative efficiencies. Some conclusion remarks are discussed

in Section 4.

§2. Linear Model and Loss Function

Consider the following general linear model
y = Xβ + ε,

E(ε) = 0,

Cov (ε) = σ2V,

(2.1)

where y is an n× 1 observable random vector, ε denotes an n× 1 random error vector, X

represents an n × p known matrix with rank(X) = p, V shows an n × n known positive

definite matrix, β shows a p×1 unknown parameters. A lot of statisticians have proposed

many methods to obtain the best linear estimator of regression coefficient of this model.

According to Shalabh (1995)’s thought of weighted balanced loss, we propose the

following weighted balanced loss function:

W (β̃, β, σ2) = w2(y −Xβ̃)′V −1(y −Xβ̃) + (1− w)2(β̃ − β)′S(β̃ − β)

+ 2w(1− w)(Xβ̃ − y)′V −1X(β̃ − β), (2.2)

where w is a scalar between 0 and 1, S is a positive definite matrix and β̃ is an any

estimator of β. The corresponding risk function is defined by

R(β̃, β, σ2) = E{W (β̃, β, σ2)}. (2.3)

§3. The Best Linear Unbiased Estimator

Write =1 = {Ly;L is a p × n constant matrix and LX = Ip}, the optimal estimator

in =1 is obtained when V is a positive definite matrix.

Definition 3.1 If Ly in =1, let

R(Ly, β, σ2) = E{W (Ly, β, σ2)}

= E{w2(y −XLy)′V −1(y −XLy) + (1− w)2(Ly − β)′S(Ly − β)

+ 2w(1− w)(XLy − y)′V −1X(Ly − β)} (3.1)
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reach the minimum, then Ly is the best linear unbiased estimator.

Lemma 3.1 (Wang, 1987) Let X be an n × p matrix, L is a p × n matrix, then

∂trL′X ′XL/∂L = 2X ′XL.

Lemma 3.2 (Yang, 1988) Let A be an n × n positive definite matrix, and λ1 ≥
· · · ≥ λn > 0 be the ordered eigenvalues of A, P is an n× k matrix with P ′P = Ik, n > k.

Denote l = min(k, n− k), then

1 ≤ tr(P ′AP )

tr(P ′A−1P )−1
≤
[ l∑
i=1

(λi + λn−i+1)
/(

2
l∑

i=1
(
√
λiλn−i+1)

)]2
.

Lemma 3.3 (Wang et al., 2006) Let A be an n× n positive definite matrix, and

λ1 ≥ · · · ≥ λn > 0 be the ordered eigenvalues of A, P is an n× k matrix with P ′P = Ik,

n > k. Denote l = min(k, n− k), then

tr(P ′AP − (P ′A−1P )−1) ≤
l∑

i=1
(
√
λi −

√
λn−i+1)

2.

3.1 The Optimal Estimator

In this subsection, we will present the linear unbiased estimator of β in =1. Now, we

begin with the following theorem.

Theorem 3.1 For the model (2.1), when V is a positive definite matrix, if L =

(X ′V −1X)−1X ′V −1, then Ly is the best linear unbiased estimator of β under the weighted

balanced loss function.

Proof Consider the weighted loss function

W (β̃, β, σ2) = w2(y −Xβ̃)′V −1(y −Xβ̃) + (1− w)2(β̃ − β)′S(β̃ − β)

+ 2w(1− w)(Xβ̃ − y)′V −1X(β̃ − β). (3.2)

Assume that Ly ∈ =1 and according to the weighted balanced loss function of (3.2), then

its risk function is given by

R(Ly, β, σ2) = E{W (Ly, β, σ2)}

= E{w2(y −XLy)′V −1(y −XLy) + (1− w)2(Ly − β)′S(Ly − β)

+ 2w(1− w)(XLy − y)′V −1X(Ly − β)}

= σ2[w2tr(In −XL)′V −1(In −XL)V + (1− w)2trL′SLV

+ 2w(1− w)tr(XL− In)′V −1XLV ]

+w2β′X ′(In −XL)′V −1(In −XL)Xβ + (1− w)2β′(LX − Ip)′S(LX − Ip)β

+ 2w(1− w)β′X ′(XL− In)′V −1X(LX − Ip)β, (3.3)
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where S is a positive definite matrix. Since LX = Ip and tr(AB) = tr(BA), then we

obtain

R(Ly, β, σ2) = E{W (Ly, β, σ2)}

= σ2[w2tr(In −XL)′V −1(In −XL)V + (1− w)2trL′SLV

+ 2w(1− w)tr(XL− In)′V −1XLV ]

= σ2[w2tr(V −1 − 2L′X ′V −1 + L′X ′V −1XL)V + (1− w)2trL′SLV

+ 2w(1− w)tr(L′X ′V −1XLV − V −1XLV )]

= wσ2(nw − 2p) + σ2tr[L′(w(2− w)X ′V −1X + (1− w)2S)LV ]. (3.4)

Now, we define M = w(2− w)X ′V −1X + (1− w)2S. If we want Ly to be the best linear

unbiased estimator of β that is equal tomin tr(L′MLV )

s.t. LX = Ip

. (3.5)

Using the Lagrange method, put

F (L, λ) = tr(L′MLV )− 2tr[λ′(LX − Ip)], (3.6)

where λ is a p× p matrix of Lagrangian multipliers. By Lemma 3.1, we get

MLV − λX ′ = 0, (3.7)

LX − Ip = 0. (3.8)

From Equation (3.7) and M=w(2−w)X ′V −1X+(1−w)2S > 0, we have L=M−1λX ′V −1,

then substitute it into (3.8), we obtain λ = M(X ′V −1X)−1. Then substitute it into (3.7),

we get

L = (X ′V −1X)−1X ′V −1. (3.9)

Next, we prove that (X ′V −1X)−1X ′V −1y obtain the minimum risk in =1.

Let L̃y be an any estimator of β in =1. By LX = Ip, we get L̃ = (X ′V −1X)−1X ′V −1+

µN , where µ is an any p × n matrix and N = (I −X(X ′V −1X)−1X ′V −1), thus the risk

function of Ly is

R(L̃y, β, σ2)

= wσ2(nw − 2p) + σ2tr{((X ′V −1X)−1X ′V −1 + µN)′M((X ′V −1X)−1X ′V −1 + µN)V }

= wσ2(nw − 2p) + σ2tr{V −1X(X ′V −1X)−1M(X ′V −1X)−1X}

+ 2σ2tr{X(X ′V −1X)−1M(µN)V }+ σ2tr(µN)′M(µN)V

= R((X ′V −1X)−1X ′V −1y, β, σ2) + σ2tr(µNV 1/2)′M(µNV 1/2). (3.10)
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Since M > 0, then we have R(L̃y, β, σ2) ≥ R((X ′V −1X)−1X ′V −1y, β, σ2) and the equality

holds if and only if L = (X ′V −1X)−1X ′V −1. �

Remark 1 Under the weighted balanced loss function, the best linear unbiased

estimator of β in =1 is β̂ = (X ′V −1X)−1X ′V −1y, which is same as the estimator got by

Zhu et al. (2010) under the balanced loss function.

Remark 2 Under the weighted balanced loss function, the best linear unbiased

estimator of β in =1 is β̂ = (X ′V −1X)−1X ′V −1y. By Wang and Yang (1995), the best

linear unbiased estimator is superior over the ordinary least squares estimator β̂OLS =

(X ′X)−1X ′y under the Pitman’s closeness criterion.

3.2 Relative Efficiencies of the Best Linear Unbiased Estimator

In Subsection 3.1, we got the best linear unbiased estimator β̂ = (X ′V −1X)−1X ′V −1y

under the weighted balanced loss function in the linear regression model. However, as we

all know, the covariance matrix is usually unknown, at this time, we use the ordinary least

squares estimator β̂OLS = (X ′X)−1X ′y to replace the best linear unbiased estimator. We

know this will lead to some loss. There are many papers have discussed this loss, such as:

Rao (1985), Yang and Wang (2009), Yang and Wu (2011), Liu (2000), Liu et al. (2009),

Wang and Yang (2012). In this subsection, we define two relative efficiencies to measure

the loss under the weighted balanced loss risk function.

Now we define two relative efficiencies:

e1(β̂|β̂OLS) = R(β̂OLS, β, σ
2)−R(β̂, β, σ2) (3.11)

and

e2(β̂|β̂OLS) =
R(β̂, β, σ2)

R(β̂OLS, β, σ2)
, (3.12)

where R(β̃, β, σ2) is defined in (2.3), β̂ = (X ′V −1X)−1X ′V −1y and β̂OLS = (X ′X)−1X ′y.

Based on the definition of weighted balanced loss risk function, we obtain

R(β̂OLS, β, σ
2) = E{W ((X ′X)−1X ′y, β, σ2)}

= E{w2(y −X(X ′X)−1X ′y)′V −1(y −X(X ′X)−1X ′y)

+ (1− w)2((X ′X)−1X ′y − β)′S((X ′X)−1X ′y − β)

+ 2w(1− w)(X(X ′X)−1X ′y − y)′V −1X((X ′X)−1X ′y − β)}
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= σ2[w2tr(V −1 − 2X(X ′X)−1X ′V −1 +X(X ′X)−1X ′V −1X(X ′X)−1X ′)V

+ (1− w)2trX(X ′X)−1X ′V −1X(X ′X)−1X ′V

+ 2w(1− w)tr(X(X ′X)−1X ′V −1X(X ′X)−1X ′V − V −1X(X ′X)−1X ′V )]

= wσ2(nw − 2p) + σ2trM(X ′X)−1X ′V X(X ′X)−1 (3.13)

and

R(β̂, β, σ2) = E{W ((X ′V −1X)−1X ′V −1y, β, σ2)}

= E{w2(y −X(X ′V −1X)−1X ′V −1y)′V −1(y −X(X ′V −1X)−1X ′V −1y)

+ (1− w)2((X ′V −1X)−1X ′V −1y − β)′S((X ′V −1X)−1X ′V −1y − β)

+ 2w(1− w)(X(X ′V −1X)−1X ′V −1y − y)′V −1X((X ′V −1X)−1X ′V −1y − β)}

= wσ2(nw − 2p) + σ2trM(X ′V −1X)−1, (3.14)

where M = w(2− w)X ′V −1X + (1− w)2S.

Now, we give the bounds of the two relative efficiencies.

Theorem 3.2 For the model (2.1), when V is a positive definite matrix, let V =

Q′ΛQ, Q is an n × n orthogonal matrix, Λ = diag(λ1, . . . , λn), and λ1 ≥ · · · ≥ λn > 0.

c1 ≥ · · · ≥ cp > 0 = cp+1 = · · · = cn is the eigenvalues of QXM−1X ′Q′, then we have

e1(β̂|β̂OLS) ≤
σ2

m∑
i=1

(
√
λi −

√
λn−i+1)

2

cp
,

where rank(X) = p and n > p, m = min(p, n− p).

Proof Denote QX = γ, then we have rank(γ) = p and

e1(β̂|β̂OLS) = R(β̂OLS, β, σ
2)−R(β̂, β, σ2)

= {wσ2(nw − 2p) + σ2trM(X ′X)−1X ′V X(X ′X)−1}

−{wσ2(nw − 2p) + σ2trM(X ′V −1X)−1}

= σ2trM(X ′X)−1X ′V X(X ′X)−1 − σ2trM(X ′V −1X)−1

= σ2trM(γ′γ)−1γ′Λγ(γ′γ)−1 − σ2trM(γ′Λ−1γ)−1

= σ2tr[(ρ′ρ)−1ρ′Λρ(ρ′ρ)−1 − tr(ρ′Λ−1ρ)−1], (3.15)

where ρ = γM−1/2, rank(ρ) = p. Then do singular value decomposition for ρ, we obtain

ρ = Q1Γ
1/2Q′2, where Q1 is an n × p orthogonal matrix and Q2 is a p × p orthogonal
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matrix. Γ = diag(c1, . . . , cp), then by Lemma 3.3 and Equation (3.15), we obtain

e1(β̂|β̂OLS) = σ2trΓ−1[Q′1ΛQ1 − (Q′1Λ
−1Q1)

−1]

≤ σ2

cp
tr[Q′1ΛQ1 − (Q′1Λ

−1Q1)
−1]

≤
σ2

m∑
i=1

(
√
λi −

√
λn−i+1)

2

cp
. (3.16)

The proof of Theorem 3.2 is completed. �

Now, we present another theorem of this paper.

Theorem 3.3 For the model (2.1), when V is a positive definite matrix, let V =

Q′ΛQ, Q is an n × n orthogonal matrix, Λ = diag(λ1, . . . , λn), where λ1 ≥ · · · ≥ λn > 0

is the ordered eigenvalues of V . c1 ≥ · · · ≥ cp > 0 = cp+1 = · · · = cn is the eigenvalues of

QXM−1X ′Q′. If wn− 2p = 0, then we have

e2(β̂|β̂OLS) ≥ cp
c1

[
2

m∑
i=1

(
√
λiλn−i+1)

/ m∑
i=1

(λi + λn−i+1)
]2
,

where rank(X) = p and n > p, m = min(p, n− p).

Proof By the proof of Theorem 3.2 and Lemma 3.2, we have

e2(β̂|β̂OLS) =
R(β̂, β, σ2)

R(β̂OLS, β, σ2)

=
trM(X ′V −1X)−1

trM(X ′X)−1X ′V X(X ′X)−1

=
tr(ρ′Λ−1ρ)−1

tr(ρ′ρ)−1ρ′Λρ(ρ′ρ)−1

=
trΓ−1(Q′1Λ

−1Q1)
−1

trΓ−1Q′1ΛQ1

≥ cp
c1

[
2

m∑
i=1

(
√
λiλn−i+1)

/ m∑
i=1

(λi + λn−i+1)
]2
. (3.17)

The proof of Theorem 3.3 is completed. �

Theorem 3.4 For the model (2.1), when V is a positive definite matrix, let V =

Q′ΛQ, Q is an n × n orthogonal matrix, Λ = diag(λ1, . . . , λn), where λ1 ≥ · · · ≥ λn > 0

is the eigenvalues of V , c1 ≥ · · · ≥ cp > 0 = cp+1 = · · · = cn is the ordered eigenvalues of

QXM−1X ′Q′. If wn− 2p 6= 0, then

e2(β̂|β̂OLS) ≥ 1−
σ2

m∑
i=1

(
√
λi −

√
λn−i+1)

2

w2(n− p)cp
,

where rank(X) = p and n > p, m = min(p, n− p).

《
应
用
概
率
统
计
》
版
权
所
有



1nÏ �R� Æ3Å: \�²ï��¼êe£8Xê��Z�5Ã �O 311

Proof By the proof of Theorem 3.2 we have

e2(β̂|β̂OLS) =
R(β̂, β, σ2)

R(β̂OLS, β, σ2)

=
w(nw − 2p) + trM(X ′V −1X)−1

w(nw − 2p) + trM(X ′X)−1X ′V X(X ′X)−1

= 1− trMX(X ′X)−1X ′V X(X ′X)−1 − trM(X ′V −1X)−1

w(nw − 2p) + trM(X ′X)−1X ′V X(X ′X)−1

≥ 1−

[
σ2

m∑
i=1

(
√
λi −

√
λn−i+1)

2
]/
cp

w(nw − 2p) + trM(X ′V −1X)−1

= 1−
σ2

m∑
i=1

(
√
λi −

√
λn−i+1)

2

(w(nw − 2p) + w(2− w)p+ (1− w)2tr(X ′V −1X)−1S)cp

≥ 1−
σ2

m∑
i=1

(
√
λi −

√
λn−i+1)

2

w2(n− p)cp
. (3.18)

The proof of Theorem 3.4 is completed. �

In this section, we obtain the best linear unbiased estimator when V is a positive

definite matrix, and we also discuss the relative efficiencies for the best linear unbiased

estimator with the ordinary least squares estimator.

§4. Conclusions

In this paper, we discussed the best linear unbiased estimator in linear model under

the weighted balanced loss function. The relative efficiency of the best linear unbiased

estimator relative to the ordinary least squares estimator is also discussed.
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