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Abstract

The classical concentration inequalities deal with the deviations of functions of independent

and identically distributed (i.i.d.) random variables from their expectation and these inequalities

have numerous important applications in statistics and machine learning theory. In this paper

we go far beyond this classical framework by establish two new Bernstein type concentration in-

equalities for β-mixing sequence and uniformly ergodic Markov chains. As the applications of the

Bernstein’s inequalities, we also obtain the bounds on the rate of uniform deviations of empirical

risk minimization (ERM) algorithms based on β-mixing observations.

Keywords: Concentration inequality, β-mixing, Markov chains, uniform deviation, empiri-

cal risk minimization.

AMS Subject Classification: 68T01.

§1. Introduction

The laws of large numbers of classical probability theory state that sums of indepen-

dent random variables are close to their expectation with a large probability, which can be

applied to statistical learning problems under very mild assumptions. Such sums are the

most basic examples of random variables concentrated around their expectation. In recent

years some new tools and methods have been introduced making it possible to establish

simple and powerful concentration inequalities such as martingale methods (see Milman

and Schechtman, 1986), information-theoretic methods (see Marton, 1986), Talagrand’s
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induction method (see Talagrand, 1996), the decoupling method (see de la Peña and Giné,

1999) and various problem-specific methods (see Janson et al., 2000). These inequalities

are at the heart of the mathematical analysis of various problems in machine learning

and made it possible to derive new efficient algorithms. Most of these inequalities are

mainly focus on the case of i.i.d. process. However, independence is a very restrictive

concept (see Vidyasagar, 2003). Therefore, relaxations of such i.i.d. assumption have

been considered for quite a while in both machine learning and statistics literatures. For

example, Yu (1994) established the rates of convergence for empirical processes of sta-

tionary mixing sequences. Modha and Masry (1996) established the minimum complexity

regression estimation with m-dependent observations and strongly mixing observations

respectively. Vidyasagar (2003) considered the notions of mixing and proved that most of

the desirable properties (e.g., PAC, UCEMUP) of i.i.d. sequence are preserved when the

underlying sequence is mixing sequence. Kontorovich and Ramanan (2008) established

the concentration inequalities for dependent random variables via the martingale method.

There are many definitions of non-independent sequences in Vidyasagar (2003), but we

are only interested in β-mixing sequence and Markov chains in this paper, the reasons are

as follows: First, Vidyasagar (2003) pointed out that in machine learning applications, α-

mixing is “too weak” an assumption and φ-mixing is “too strong” an assumption, β-mixing

is “just right” and more meaningful in the context of PAC learning. Second, Markov chain

samples appear so often and naturally in applications, especially in biological (DNA or

protein) sequence analysis, speech recognition, character recognition, content-based web

search and marking prediction, and Vidyasagar (2003) proved that a very large class

of Markov chains and hidden Markov models (HMM) can produce β-mixing sequences.

In addition, in statistical learning theory, we can use the variance of the functions to

establish the better rates of convergence of learning algorithms such as support vector

machine classification (SVMC) and regularization algorithms (see Chen et al., 2004). For

these purposes, in this paper we first establish a new Bernstein’s concentration inequality

for β-mixing sequences. As the applications of the Bernstein’s inequality for β-mixing

sequences, we not only establish a new Bernstein’s concentration inequality for Markov

chains, but also apply this Bernstein’s inequality for β-mixing sequence to establish the

bound on the rate of uniform convergence of ERM based on β-mixing observations.

This paper is organized as follows: In Section 2 we introduce some notions and nota-

tions used in this paper. In Section 3 we present the main result obtained in this paper.

As an application of the obtained main results, we obtain a new Bernstein’s concentration

inequality for uniformly ergodic Markov chains. In Section 4, we apply these Bernstein’s

《
应
用
概
率
统
计
》
版
权
所
有



572 A^VÇÚO 1n�ò

inequalities to establish the bounds on the rate of uniform convergence of ERM algorithm

based on β-mixing observations.

§2. Preliminaries

In this section we introduce the definitions and notations used throughout the paper.

2.1 β-Mixing Sequence

let Z = {zi}∞i=−∞ be a stationary real-valued stochastic process defined on the prob-

ability space (Z∞,F∞,P). For −∞ < i < ∞, let Fk−∞ denote the σ-algebra generated

by the random variables zi, i ≤ k, and similarly let F∞k denote the σ-algebra generated

by the random variables zi, i ≥ k. Let P k−∞ and P∞k denote the corresponding marginal

probability measures respectively. Let P0 denote the marginal probability of each of the

zi and Fk−11 denote the σ-algebra generated by the random variables zi, i ≤ 0 as well as

zj , j ≥ k. With these notations, we can present the definition of β-mixing as follows (see

Vidyasagar, 2003):

Definition 2.1 The sequence Z is called β-mixing, or completely regular, if

sup
C∈Fk−1

1

|P (C)− (P 0
−∞ × P∞1 )(C)| = β(k)→ 0 as k →∞,

where β(k) is called the β-mixing coefficient.

Assumption 2.1 The sequence Z is called geometrically β-mixing (see Vidya-

sagar, 2003), if for some constants γ and ρ < 1, the β-mixing coefficient β(k) satisfies

β(k) ≤ γρk, k ≥ 1.

Remark 1 In Definition 2.1, if the “future” events beyond time k were to be truly

independent of the “past” events before time 0, then the probability measure P would

exactly equal the “split” measure P 0
−∞ × P∞1 . The β-mixing coefficient thus measures

how nearly the product measure approximates the actual measure P . If the sequence Z

consists of i.i.d. random variables, then P equals the measure (P0)
∞, which denotes the

measure on (Z∞,F∞). In such a case, the mixing coefficient β(k) is zero for any integer

k, that is, i.i.d. random variables satisfy Assumption 2.1.

2.2 Uniformly Ergodic Markov Chains

Suppose (Z,S) is a measurable space, a Markov chain is a sequence of random vari-

ables {Zt}t≥1 together with a set of transition probability measures Pn(A|zi), A ∈ S,
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zi ∈ Z. It is assumed that Pn(A|zi) := P{Zn+i ∈ A|Zj , j < i, Zi = zi}. Thus Pn(A|zi)
denotes the probability that the state zn+i will belong to the set A after n time steps,

starting from the initial state zi at time i. It is common to denote the one-step transition

probability by P 1(A|zi) := P{Zi+1 ∈ A|Zj , j < i, Zi = zi}. The fact that the transition

probability does not depend on the values of Zj prior to time i is the Markov property, that

is P{Zn+i ∈ A|Zj , j < i, Zi = zi} = P{Zn+i ∈ A|Zi = zi}. This is commonly expressed

in words as “given the present state, the future and past states are independent”. Given

two probabilities ν1, ν2 on the measure space (Z,S), we define the total variation distance

between the two measures ν1, ν2 as follows: ‖ν1 − ν2‖TV := supA∈S |ν1(A)− ν2(A)|. Thus

we have the following definition of uniformly ergodic Markov chain (see Vidyasagar, 2003).

Definition 2.2 A Markov chain {Zt}t≥1 is said to be uniformly ergodic if

‖Pn(·|z)− π(·)‖TV ≤ γ1ρn1 , ∀n ≥ 1

for some γ1 <∞ and ρ1 < 1, where π(·) is the stationary distribution of {Zt}t≥1.

A weaker condition than uniformly ergodic is V -geometrically ergodic (see Definition

3.5.1 of Vidyasagar, 2003). The difference between V -geometrically ergodic and uniformly

ergodic is that here the constant γ1 in Definition 2.2 is not depend on the initial state z.

§3. Two New Bernstein’s Inequalities

In this section, we establish two new Bernstein’s inequalities for β-mixing sequence

and uniformly ergodic Markov chains. Our main tools are the following three useful

lemmas.

Lemma 3.1 (Vidyasagar, 2003) Suppose i0 < i1 < · · · < il are integers, and define

k = min
0≤j≤l−1

ij+1−ij . Suppose g is essentially bounded and depends only on zi0 , zi1 , . . . , zil .

Then |E(g, P )− E(g, P∞0 )| ≤ lβ(k)‖g‖∞, where E(g, P ) and E(g, P∞0 ) are the expectation

values of g with respect to P and P∞0 respectively.

Lemma 3.2 (Craig, 1933) Let W be a random variable such that E(W ) = 0, and

W satisfies the Bernstein moment condition, that is, for some K1 > 0,

E|W |k ≤ Var (W )

2
k!Kk−2

1 (3.1)

for all k ≥ 2. Then, for all 0 < ζ < 1/K1, E[exp(ζW )] ≤ exp[ζ2E|W |2/(2(1− ζK1))].

Remark 2 If |W | ≤ 3K1 almost everywhere, then the Bernstein moment condition

(3.1) holds true (see Modha and Masry, 1996).

《
应
用
概
率
统
计
》
版
权
所
有



574 A^VÇÚO 1n�ò

Lemma 3.3 (Vidyasagar, 2003) Let {Zt}t≥1 be a Markov chain V -geometrically

ergodic. Then the sequence {Zt}t≥1 is geometrically β-mixing, and the β-mixing coefficient

β(k) is given by

β(k) = E{‖P k(·|ξ)− π(·)‖TV, π} =

∫
‖P k(·|ξ)− π(·)‖TVπ(dξ).

By these lemmas, we first establish the following new Bernstein’s concentration in-

equality for β-mixing sequence.

Theorem 3.1 Let Z = {zi}∞i=−∞ be a stationary β-mixing sequence with the

mixing coefficient satisfying Assumption 2.1. Suppose that ξ is a random variable on the

probability space (Z∞,F∞,P) with mean E(ξ) = µ and variance σ2(ξ) = σ2. Set m(β) =

bmd{8m/ ln(1/ρ)}1/2e−1c, where m denotes the number of observations and buc(due) de-

notes the greatest (least) integer less (greater) than or equal to u. If |ξ(z) − µ| ≤ B for

almost all z ∈ Z, then for any ε > 0,

P
{∣∣∣ 1

m

m∑
i=1

ξ(zi)− µ
∣∣∣ ≥ ε} ≤ 2(1 + γe−2) exp

{ −ε2m(β)

2(σ2 + εB/3)

}
. (3.2)

Proof We decompose the proof into three steps.

Step 1: To exploit the β-mixing property, we decompose the index set I = {1, 2, . . .,
m} into different parts by following the idea from Vidyasagar (2003), that is, given an

integer m, choose any integer km ≤ m, and define lm = bm/kmc to be the integer part of

m/km. For the time being, km and lm are denoted respectively by k and l, so as to reduce

natational clutter. Let r = m− kl, and define

Ii =

{i, i+ k, . . . , i+ lk}, i = 1, 2, . . . , r;

{i, i+ k, . . . , i+ (l − 1)k}, i = r + 1, . . . , k.

Let pi = |Ii|/m for i = 1, 2, . . . , k, and define

Ti = ξ(zi)− µ, am(z) =
1

m

m∑
i=1

Ti, bi(z) =
1

|Ii|
∑
j∈Ii

Tj .

Then we have
1

m

m∑
i=1

ξ(zi)− µ = am(z) =
k∑
i=1

pibi(z).

Since exp(·) is convex, we have that for any s > 0,

exp[sam(z)] = exp
[ k∑
i=1

pisbi(z)
]
≤

k∑
i=1

pi exp[sbi(z)].
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We have

E(esam(z), P̃ ) ≤
k∑
i=1

piE(esbi(z), P̃ ). (3.3)

Since

exp[sbi(z)] = exp
[ s
|Ii|

∑
j∈Ii

Tj

]
=
∏
j∈Ii

exp
(sTj
|Ii|

)
≤
[

exp
(sB
|Ii|

)]|Ii|
≤ esB,

where in the last step we use the assumption |Tj | = |ξ(zj) − µ| ≤ B. By Lemma 3.1, we

have that for any s > 0,

E(esbi(z), P̃ ) ≤ (|Ii| − 1)β(k)‖esbi(z)‖∞ + E(esbi(z), P̃∞0 )

≤ (|Ii| − 1)β(k)‖esB + E(esbi(z), P̃∞0 ). (3.4)

Since under the measure P̃∞0 , the various zi are independent, using Lemma 3.2, we have

that for any 0 < s < 3|Ii|/B,

E(esbi(z), P̃∞0 ) = E
[ ∏
j∈Ii

exp(sTj/|Ii|), P̃∞0
]

=
∏
j∈Ii

E[exp(sTj/|Ii|), P̃∞0 ]

=
{
E
[

exp
(sT1
|Ii|

)
, P̃0

]}|Ii|
≤ exp

[ s2E|T1|2

2|Ii|(1− sB/3|Ii|)

]
.

By inequality (3.4), we have that for any 3|Ii|/B > s > 0,

E(esbi(z), P̃ ) ≤ exp
[ s2E|T1|2

2|Ii|(1− sB/3|Ii|)

]
+ (|Ii| − 1)β(k)esB.

Thus by inequality (3.3) and the inequality above, we have that for any 3|Ii|/B > s > 0,

E(esam(z), P̃ ) ≤
k∑
i=1

pi

{
exp

[ s2E|T1|2

2|Ii|(1− sB/3|Ii|)

]
+ (|Ii| − 1)β(k)esB

}
. (3.5)

Step 2: We now bound the second term on the right-hand side of inequality (3.5)

which is denoted henceforth by φ. By Assumption 2.1, we have that for any 0 < s ≤
3|Ii|/B,

φ = exp
[ s2E|T1|2

2|Ii|(1− sB/3|Ii|)

]
+ (|Ii| − 1)β(k)esB

≤ exp
[ s2E|T1|2

2|Ii|(1− sB/3|Ii|)

]
+ e|Ii|e−2γρk · esB

≤ exp
[ s2E|T1|2

2|Ii|(1− sB/3|Ii|)

]
+ γe−2 exp{k ln(ρ) + 4|Ii|}.

The above inequality follows from the fact that |Ii − 1| ≤ e|Ii|−2 for |Ii| ≥ 2. We re-

quire exp{k ln(ρ) + 4|Ii|} ≤ 1. But |Ii| ≤ (m/k + 1), thus the bound holds if 4(m/k +
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1) ≤ k ln(1/ρ) or 4(m + k) ≤ k2 ln(1/ρ). Since m + k ≤ 2m, then the bound holds if

{8m/ ln(1/ρ)}1/2 ≤ k. Let k = d{8m/ ln(1/ρ)}1/2e. Since for all i = 1, 2, . . . , k, |Ii| ≥ l,

and l = bm/kc, we have

φ ≤ exp
[ s2E|T1|2

2l(1− sB/3l)

]
+ γe−2. (3.6)

Since inequality (3.6) is true for all s, 0 < s ≤ 3|Ii|/B. To make the constraint uniform over

all i, we then require s satisfy 0 < s < 3l/B ≤ 3|Ii|/B. Since s2E|T1|2/[2l(1−sB/3l)] > 0,

we have that for any 0 < s < 3l/B,

φ ≤ (1 + γe−2) exp
[ s2E|T1|2

2l(1− sB/3l)

]
.

Returning to inequality (3.5), we have that for any 0 < s < 3l/B,

E(esam(z), P̃ ) ≤ (1 + γe−2) exp
[ s2E|T1|2

2l(1− sB/3l)

]
. (3.7)

Step 3: By Markov’s inequality and inequality (3.7), we have that for any 0 < s ≤
3l/B,

P
{ 1

m

m∑
i=1

ξ(zi)− µ ≥ ε
}

= P
{

e
s
[
m−1

m∑
i=1

ξ(zi)−µ
]
≥ esε

}

≤
E
{

e
s
[
m−1

m∑
i=1

ξ(zi)−µ
]}

esε

≤ (1 + γe−2) exp
{
− sε+

s2E|T1|2

2l(1− sB/3l)

}
.

Substituting s = lε/(E|T1|2 + εB/3) and noting that the selected value for s satisfies

s ≤ 3l/B, then we have that for any ε > 0,

P
{ 1

m

m∑
i=1

ξ(zi)− µ ≥ ε
}
≤ (1 + γe−2) exp

{ −lε2

2(E|T1|2 + εB/3)

}
.

By symmetry, we also have that for any ε > 0,

P
{
µ− 1

m

m∑
i=1

ξ(zi) ≥ ε
}
≤ (1 + γe−2) exp

{ −lε2

2(E|T1|2 + εB/3)

}
.

By these inequalities above and replacing l and E|T1|2 by m(β) and σ2 respectively, we can

complete the Proof of Theorem 3.1. �
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Remark 3 Since inequality (3.2) in Theorem 3.1 contains the information of vari-

ance of random variables, inequality (3.2) is a Bernstein type concentration inequality for

β-mixing sequence. To our knowledge, this inequality in Theorem 3.1 is the first Bern-

stein type inequality for β-mixing sequence in this topic. m(β) in Theorem 3.1 is called

the “effective number of observations” for the β-mixing processes. From Theorem 3.1, we

can find that m(β) play the same role in our analysis as that played by the number of

observations m in the i.i.d. case (see Cucker and Smale, 2002a). In particular, if Z is

i.i.d., according to Remark 1, we take γ = 0 in Theorem 3.1 and ignore the multiplicative

constant 1+γe−2, thus by Theorem 3.1, we can recover the classical Bernstein’s inequality

(see Cucker and Smale, 2002a) for sums of independent random variables.

As an application of the Bernstein’s inequality for β-mixing sequence, we establish a

new Bernstein’s inequality for uniformly ergodic Markov chains.

Theorem 3.2 Let {zi}mi=1 be a uniformly ergodic Markov chain. Suppose that ξ

is a random variable on a probability space with mean E(ξ) = µ and variance σ2(ξ) = σ2.

Set m̃(β) = bmd{8m/ ln(1/ρ1)}1/2e−1c. If |ξ(z)−µ| ≤ B for any z ∈ Z, then for any ε > 0,

P
{∣∣∣ 1

m

m∑
i=1

ξ(zi)− µ
∣∣∣ ≥ ε} ≤ 2(1 + γ1e

−2) exp
{ −ε2m̃(β)

2(σ2 + εB/3)

}
. (3.8)

Proof By Definition 2.2 and Lemma 3.3, we have β(k) = E{‖P k(·|ξ)− π(·)‖TV, π}
≤ γ1ρ

k
1. Then replacing γ and ρ by γ1 and ρ1 in Theorem 3.1, respectively, we can finish

the Proof of Theorem 3.2. �

Remark 4 In Theorem 3.2, we established a new Bernstein’s inequality for uni-

formly ergodic Markov chains. To our knowledge, this inequality here is the first Bernstein

type inequality for uniformly ergodic Markov chains in this topic.

§4. Applications to Learning Theory

In this section, we apply the Bernstein’s inequality to study the bounds on the rate of

uniform convergence of ERM algorithm and the generalization bounds of ERM algorithm.

Denote by z = {z1, z2, . . . , zm} the sample set of size m observations drawn from the

β-mixing sequence Z. The goal of machine learning from random sampling is to find a

function f that assigns values to objects such that if new objects are given, the function

f will forecast them correctly. Let E(f) = E[`(f, z)] =
∫
`(f, z)dP be the expected risk

of function f , where the function `(f, z), which is integrable for any f and depends on f

and z, called loss function. A learning task is to find the minimizer of the expected risk
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E(f) over a given hypothesis space H. Since one knows only the set z of samples instead

of the distribution P , the minimizer of the expected risk E(f) can not be computed

directly. According to the principle of ERM (see Vapnik, 1998), we minimize, instead of

the expected risk E(f), the so called empirical risk Em(f) = m−1
m∑
i=1

`(f, zi). Let fH be a

function minimizing the expected risk E(f) over f ∈ H, i.e.,

fH = arg min
f∈H
E(f) = arg min

f∈H

∫
`(f, z)dP.

We define the empirical target function fz to be a function minimizing the empirical risk

Em(f) over f ∈ H, i.e., fz = arg min
f∈H
Em(f) = arg min

f∈H
m−1

m∑
i=1

`(f, zi). According to the

principle of ERM, we shall consider the function fz as an approximation of the target

function fH. Thus a central question of ERM learning algorithm is how well fz really

approximate fH. If it is well, the ERM algorithm is said to be of generalization ability. To

characterize generalization capability of a learning algorithm requires in essence to decipher

how close fz is from fH, which is a very difficult issue in general (see Vapnik, 1998). In

framework of statistical learning, however, this is then relaxed to considering how close the

expected risk E(fz) is from E(fH), or equivalently, how small the excess risk E(fz)−E(fH).

In order to bound the excess risk, we should first estimate the bound on the rate of the

empirical risks uniform convergence to their expected risk on a given set H, that is, for any

ε > 0, we should to bound the uniform convergence bound P
{

sup
f∈H
|E(f) − Em(f)| > ε

}
.

Since the uniform convergence bound is valid for all function of set H, we have to regulate

the capacity of the function set H. Here the capacity is measured by the covering number

(see Cucker and Smale, 2002a). We present the definition of covering number, some

assumptions and lemma as follows:

Definition 4.1 For a subset F of a metric space and ε > 0, the covering number

N (F , ε) of the function set F is the minimal n ∈ N such that there exist n disks in F with

radius ε covering F .

We give some basic assumptions on the space H and the loss function `(f, z):

(i) Assumption on the hypothesis space: We suppose that H is contained in a ball

of a Hölder space Cp on a compact subset of a Euclidean space Rd for some p > 0. Then

there exists constant C0 > 0 such that

N (H, ε) ≤ exp{C0ε
−2d/p}. (4.1)

(ii) Assumption on the loss function: We define

M = sup
f∈H

max
z∈Z
|`(f, z)|, L = sup

g1,g2∈H
max
z∈Z

|`(g1, z)− `(g2, z)|
|g1 − g2|

.
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We assume that M and L are finite. Note that fz is dependent on the sample z, and its

existence follows from the compactness of H.

Lemma 4.1 (Cucker and Smale, 2002b) Let c1, c2 > 0, and s1 > q1 > 0. Then

the equation xs1 − c1x
q1 − c2 = 0 has a unique positive zero x∗. In addition x∗ ≤

max{(2c1)1/(s1−q1), (2c2)(1/s1)}.

Theorem 4.1 Let Z be a stationary β-mixing sequence with the mixing coefficient

satisfying Assumption 2.1. Then for any ε > 0,

P
{

sup
f∈H
|E(f)− Em(f)| ≥ ε

}
≤ 2(1 + γe−2)N

(
H, ε

4L

)
exp

{ −ε2m(β)

8(σ2 + εM/6)

}
. (4.2)

Proof Let H = H1 ∪ H2 ∪ · · · ∪ Hn1 , n1 ∈ N, Lz(f) = E(f) − Em(f) then for

any ε > 0, whenever sup
f∈H
|E(f) − Em(f)| ≥ 2ε, there exists k, 1 ≤ k ≤ n1, such that

sup
f∈Hk

|E(f)− Em(f)| ≥ 2ε. This implies the equivalence

sup
f∈H
|E(f)− Em(f)| ≥ 2ε ⇐⇒ ∃ k, 1 ≤ k ≤ n1, s.t. sup

f∈Hk

|E(f)− Em(f)| ≥ 2ε. (4.3)

By the equivalence (4.3), and by the fact that the probability of a union of events is

bounded by the sum of the probabilities of these events, we have

P
{

sup
f∈H
|E(f)− Em(f)| ≥ 2ε

}
≤

n1∑
k=1

P
{

sup
f∈Hk

|E(f)− Em(f)| ≥ 2ε
}
. (4.4)

Now we estimate the term on the right-hand side of inequality (4.4). Let the balls

Dk, k ∈ {1, 2, . . . , n1} be a cover of H with center at fk and radius ε/(2L). Then, for all

z ∈ Zm and all f ∈ Dk,

|Lz(f)− Lz(fk)| ≤ |E(f)− E(fk)|+ |Em(f)− Em(fk)|

≤ 2L · ‖f − fk‖∞ ≤ 2L · ε/2L = ε.

It follows that for any z ∈ Zm and all f ∈ Dk, sup
f∈Dk

|Lz(f)| ≥ 2ε =⇒ |Lz(fk)| ≥ ε. We

thus conclude that for any k ∈ {1, 2, . . . , n1},

P
{

sup
f∈Dk

|Lz(f)| ≥ 2ε
}
≤ P{|Lz(fk)| ≥ ε}. (4.5)

By Theorem 3.1, we can get

P{|Lz(fk)| ≥ ε} ≤ 2(1 + γe−2) exp
{ −ε2m(β)

2(σ2 + εM/3)

}
.
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By inequalities (4.4) and (4.5), we have that for any ε > 0,

P
{

sup
f∈H
|E(f)− Em(f)| ≥ 2ε

}
≤ 2(1 + γe−2)N

(
H, ε

2L

)
exp

{ −ε2m(β)

2(σ2 + εM/3)

}
. (4.6)

Theorem 4.1 thus follows from inequality (4.6) by replacing ε by ε/2. Then we finish the

proof of Theorem 4.1. �

Remark 5 Since m(β) → ∞ as m → ∞, by Theorem 4.1, we have that as long

as the covering number of the space H is finite, the empirical risks Em(f) can uniformly

converge to their expected risks E(f), and the convergence speed may be exponential.

This assertion is well known for the ERM algorithm with i.i.d. samples (see Cucker and

Smale, 2002a; Vapnik, 1998). In particular, if Z is i.i.d., according to Remark 3, we take

γ = 0 in Theorem 4.1 and ignore the multiplicative constant 1 + γe−2, we can recover the

classical results for i.i.d. samples in Cucker and Smale (2002a).

Now we can apply Theorem 4.1 to obtain the bounds on the generalization ability of

ERM algorithm based on β-mixing observations: By assumption (4.1), and using Theorem

4.1 we have that for any 0 < ε < M ,

P
{

sup
f∈H
|E(f)− Em(f)| ≥ ε

}
≤ 2(1 + γe−2) exp

{
C0

( ε

4L

)−2d/p
− ε2m(β)

2(σ2 +M2/3)

}
.

Let us rewrite the above inequality in the equivalent form. We equate the right-hand

side of the above inequality to a positive value δ (0 < δ < 1)

(1 + γe−2) exp
{
C0

( ε

4L

)−2d/p
− ε2m(β)

2(σ2 +M2/3)

}
= δ.

It follows that

ε2+2d/p − 2(σ2 +M2/3) ln[(1 + γe−2)/η]

m(β)
ε2d/p − 2C0(4L)2d/p(σ2 +M2/3)

m(β)
= 0.

By Lemma 4.1, we can solve this equation with respect to ε. The solution is then given

by

ε
.
= ε(m, δ)

≤ 2 max
{[(σ2 +M2/3) ln[(1 + γe−2)/δ]

m(β)

]1/2
,
[C0(4L)2d/p(σ2 +M2/3)

m(β)

]p/(2p+2d)}
.

Then we deduce that for the function fz that minimizes the empirical risk Em(f) over

H, with probability at least 1− δ, the following inequality is holds true

E(fz) ≤ Em(fz) + ε(m, δ). (4.7)
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In addition, by Theorem 3.1, we have that for any ε, M > ε > 0

P{|E(f)− Em(f)| ≥ ε} ≤ 2(1 + γe−2) exp
{ −ε2m(β)

2(σ2 +M2/3)

}
.

Then we conclude that for the same δ as above, and for the function fH that minimizes

the expected risk E(f) over H, the following inequality holds with probability 1− δ,

E(fH) > Em(fH) +

√
2(σ2 +M2/3) ln((1 + γe−2)/δ)

m(β)
. (4.8)

Note that Em(fH) ≥ Em(fz), and by inequalities (4.7) and (4.8), we deduce that with

probability at least 1− 2δ, the inequality

E(fz)− E(fH) ≤ ε(m, δ) +

√
2(σ2 +M2/3) ln((1 + γe−2)/δ)

m(β)
(4.9)

is valid provided that m(β) satisfies

m(β) ≥ max
{4(σ2 +M2/3) ln[(1 + γe−2)/δ]

M2
,
2(2p+2d)/pC0(4L)2d/p(σ2 +M2/3)

M2+2d/p

}
.

Remark 6 Bounds (4.7) and (4.9) describe the generalization performance of the

ERM algorithm based on β-mixing observations on the given function set H. Different

from that results in Zou et al. (2011) for β-mixing observations, the generalization bounds

(4.7) and (4.9) are based on the Bernstein’s inequality for β-mixing sequence, in other

words, these generalization bounds (4.7) and (4.9) contain the information of variance of

β-mixing observations.

However, inequality (4.2) in Theorem 4.1 fails to capture the phenomenon that for

those functions f ∈ H for which the expected risk E(f) is small, the deviation E(f)−Em(f)

is also small with large probability (see Vapnik, 1998). As an application of Theorem 3.1,

we also establish the bound on the relative uniform convergence bound for β-mixing mixing

sequence. Our result can be stated as follows:

Theorem 4.2 With all notations as in Theorem 4.1. Then for ε > 0 and 0 < α ≤ 1,

P
{

sup
f∈H

E(f)− Em(f)√
E(f) + ε

> 4α
√
ε
}
≤ N (H, αε)(1 + γe−2) exp

{−3α2εm(β)

8M

}
.

Proof By Theorem 3.1, we have that for ε > 0 and 0 < α ≤ 1,

P
{E(f)− Em(f)√

E(f) + ε
> α
√
ε
}
≤ (1 + γe−2) exp

{ −α2ε(E(f) + ε)m(β)

2(σ2 +Mα
√
ε
√
E(f) + ε/3)

}
. (4.10)
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Here σ2 ≤ E[(`(f, z))2] ≤ME(f), since 0 ≤ E(f) ≤M . Then we have that

σ2 +Mα
√
ε
√
E(f) + ε/3 ≤ME(f) +M(E(f) + ε)/3 ≤ 4M(E(f) + ε)/3.

By inequality (4.10), we have

P
{E(f)− Em(f)√

E(f) + ε
> α
√
ε
}
≤ (1 + γe−2) exp

{−3α2εm(β)

8M

}
. (4.11)

We denote the covering number (H, αε) by n2, then there exist n2 disks {Dj}n2
j=1

covering H, for which Dj = {f ∈ H : ‖f − fj‖∞ ≤ αε}. We have that for any f ∈ Dj ,

P
{

sup
f∈Dj

E(f)− Em(f)√
E(f) + ε

> 4α
√
ε
}

= P
{

sup
f∈Dj

E(f)− Em(f)√
E(f) + ε

+ S1 + S2 > 4α
√
ε
}

≤ P
{E(fj)− Em(fj)√

E(fj) + ε
> α
√
ε
}

≤ (1 + γe−2) exp
{−3α2εm(β)

8M

}
,

where

S1 =
E(fj)− Em(fj)√
E(f) + ε

, S2 =
Em(fj)− Em(f)√

E(f) + ε
.

We finish the proof of Theorem 4.2 by summing up the inequalities and noting the fact

P
{

sup
f∈H

E(f)− Em(f)√
E(f) + ε

> 4α
√
ε
}
≤

n2∑
j=1

P
{

sup
f∈Dj

E(f)− Em(f)√
E(f) + ε

> 4α
√
ε
}
. �

Now we apply Theorem 4.2 to obtain the bounds on the generalization ability of

ERM algorithm based on β-mixing observations: Taking α = 1/4 and the fact that
√
ε
√
E(f) + ε ≤ E(f)/2 + ε, by Theorem 4.2, we have that for any ε > 0,

P
{
E(fz)− Em(fz) >

1

2
E(fz) + ε

}
≤ N (H, ε/4)(1 + γe−2) exp

{−3εm(β)

128M

}
.

By assumption (4.1), we have

P{E(fz)− 2Em(fz) > 2ε} ≤ (1 + γe−2) exp
{
C0

(ε
4

)−2d/p
− 3εm(β)

128M

}
.

Let us rewrite the above inequality in the equivalent form. We equate the right-hand side

of the above inequality to a positive value η (0 < η < 1)

(1 + γe−2) exp
{
C0

(ε
4

)−2d/p
− 3εm(β)

128M

}
= η.
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It follows that

ε1+2d/p − 128M ln[(1 + γe−2)/η]

m(β)
ε2d/p − 128MC04

2d/p

m(β)
= 0.

By Lemma 4.1, we can solve this equation with respect to ε. The solution is then given

by

ε
.
= ε(m, η) ≤ 4 max

{[64M ln[(1 + γe−2)/δ]

m(β)

]
,
[64C0M

m(β)

]p/(p+2d)}
.

Then we conclude that with probability at least 1− η, the following inequality is valid.

E(fz) ≤ 2Em(fz) + 2ε(m, η). (4.12)

In addition, by inequality (4.11), we have that with probability 1− η, the inequality

E(fH) > 2Em(fH) +
16M ln[(1 + γe−2)/η]

3m(β)

holds true. Then we conclude that with probability at least 1− 2η,

E(fz)− E(fH) ≤ 2ε(m, η) +
16M ln[(1 + γe−2)/η]

3m(β)
. (4.13)
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