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Abstract

In this paper, we investigate the precise large deviations for a sum of claims in compound

renewal risk model with negative dependence structure, in which we assume that {Xn, n ≥ 1} is

a sequence of negative dependence rv’s with distribution functions {Fn, n ≥ 1} and the average of

right tails of distribution functions Fn is equivalent to some distribution function F with consis-

tently varying tails. We try to build a platform for the classical large deviation theory and for the

compound renewal risk model.
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§1. Introduction

Mainstream research on precise large deviation probabilities has been concentrated

on the study of the asymptotics P(S(t) − ES(t) > x) ∼ λ(t)F (x), which holds uniformly

for all x ≥ γλ(t) for every fixed γ > 0 as t → ∞. Here {Xn, n ≥ 1} is a sequence of

independent, identically distributed (i.i.d.) nonnegative heavy-tailed rv’s with common

distribution function F and finite expectation µ, independent of a process {N(t), t ≥ 0}
driven by a sequence of nonnegative, integer-valued rv’s. Assume that λ(t) = EN(t) <∞

for all t ≥ 0 but λ(t)→∞, as t→∞. S(t) =
N(t)∑
i=1

Xi, t ≥ 0, denote randomly indexed sums

(random sums). All limit relations, unless explicitly stated, are for t→∞ or consequently

for λ(t)→∞.

We say X (or its df F ) is heavy-tailed if it has no exponential moments. An important

subclass of heavy-tailed distributions is D, which consists of all distributions with dominat-

ed variation in the sense that the relation lim sup
x→∞

F (xy)/F (x) <∞ holds for any y ∈ (0, 1)
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(or equivalently, for y = 1/2). Another slightly smaller subclass is C, which consists of

all distributions with consistent variation in the sense that lim
y↘1

lim inf
x→∞

F (xy)/F (x) = 1 or,

equivalently, lim
y↗1

lim sup
x→∞

F (xy)/F (x) = 1. For a distribution F , we know that if F ∈ D,

then for any y > 0, F (xy) and F (x) are of the same order as x→∞, that is

0 < lim inf
x→∞

F (xy)/F (x) ≤ lim sup
x→∞

F (xy)/F (x) <∞.

See Cline and Samorodnitsky (1994) for more details. We denote this by F (xy) � F (x).

Set

γ(y) := lim inf
x→∞

F (xy)/F (x) and γF := inf{−log γ(y)/log y : y > 1};

µ(y) := lim sup
x→∞

F (xy)/F (x) and µF := sup{−logµ(y)/log y : y > 1}.

We call γF and µF the upper and lower Matuszewska index of the distribution function

F respectively. See Chapter 2.1 of Bingham et al. (1987) and Cline and Samorodnitsky

(1994) for more details of the Matuszewska indices.

Strolling in past literature on precise large deviations, we find that most works were

conducted only for independent rv’s, though several dealing with non-identically distribut-

ed rv’s. Here, we introduce some important dependence structures of the rv’s. These

dependence structures have been systematically investigated in the literature since they

were introduced by Ghosh (1981) and Block et al. (1982).

Definition 1.1 We call rv’s {Xk, k ≥ 1}

(1) lower negatively dependent (LND) if for each n, n ≥ 1 and all x1, . . . , xn,

P(X1 ≤ x1, . . . , Xn ≤ xn) ≤
∏

1≤k≤n
P(Xk ≤ xk); (1.1)

(2) upper negatively dependent (UND) if for each n, n ≥ 1 and all x1, . . . , xn,

P(X1 > x1, . . . , Xn > xn) ≤
∏

1≤k≤n
P(Xk > xk); (1.2)

(3) negatively dependent (ND) if both (1.1) and (1.2) hold for each n, n ≥ 1 and all

x1, . . . , xn.

Tang et al. (2001) studied the precise large deviations in the compound renewed model,

and the model is as follows:

Definition 1.2 The compound renewal risk model

(a) the individual claim sizes {Xn, n ≥ 1} are i.i.d. nonnegative rv’s with a common

distribution function F and a finite mean µ = EX1;
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(b) the accident inter-arrival times {Yn, n ≥ 1} are i.i.d. non-negative rv’s with a

finite mean EY1 = 1/λ, independent of {Xn, n ≥ 1};

(c) the number of accidents in the interval [0, t] is denoted by τ(t) = sup{n ≥ 1 :

Tn ≤ t}, t ≥ 0, where Tn =
n∑
i=1

Yi, n ≥ 1, denote the arrival time of the nth accident;

(d) the number of individual claims caused by the nth accident is a non-negative,

integer-valued rv Zn, and {Zn, n ≥ 1} constitutes a process of i.i.d. rv’s with a common

df G, independent of {Xn, n ≥ 1} and {Yn, n ≥ 1};

(e) the total number of claims up to time t is given by N ′(t) =
τ(t)∑
i=1

Zi, t ≥ 0;

(f) the total claim amount process {S′(t), t ≥ 0} is defined by S′(t) =
N ′(t)∑
i=1

Xi.

For more details in compound renewal risk model, Tang et al. (2001) proved the

precise large deviations results, while Kaas and Tang (2005) proved again the precise large

deviations results when the number of individual claims {Zn, n ≥ 1} in Definition 1.2 are

ND structure. Based on Definition 1.1 and Definition 1.2, we introduce the following more

realistic model in the context of insurance.

Definition 1.3 The general compound renewal risk model is given by conditions

(b)-(f) in Definition 1.2 and

(a′) the individual claim sizes {Xn, n ≥ 1} are ND non-negative rv’s with distribution

function {Fn, n ≥ 1} and a finite mean vector µ = (EX1,EX2, . . . ,EXn, . . .).

The goal of this paper is to study the precise large deviations in general compound

renewal risk model. More precisely, we consider ND structures for the rv’s {Xn, n ≥ 1} in

the general compound renewal risk model, as the same time, we assume that the average

of right tails of distribution functions Fn is equivalent to some distribution function F

with consistently varying tails.

The rest of paper is organized as follows. In Section 2 we introduce some useful

properties and lemmas in the paper. The main results are presented in Section 3. Finally

the proofs of our results are given in Section 4.

§2. Preliminaries

The following properties of LND or UND rv’s are direct consequences of Definition

1.1 and were mentioned by Block et al. (1982, p.769):

Property 2.1 For rv’s {Xk, k ≥ 1} and real functions {fk, k ≥ 1},

《
应
用
概
率
统
计
》
版
权
所
有



1�Ï yá# ¾¹° ���: EÜ�#ºx�.¥K��¢��e�°[� � 171

(1) if {Xk, k ≥ 1} are LND (UND) and {fk, k ≥ 1} are all monotone increasing, then

{fk(Xk), k = 1, 2, . . .} are LND (UND);

(2) if {Xk, k ≥ 1} are LND (UND) and {fk, k ≥ 1} are all monotone decreasing, then

{fk(Xk), k = 1, 2, . . .} are UND (LND);

(3) if {Xk, k ≥ 1} are ND and {fk, k ≥ 1} are either all monotone increasing or all

monotone decreasing, then {fk(Xk), k = 1, 2, . . .} are ND;

(4) if {Xk, k ≥ 1} are nonnegative and UND, then for each n = 1, 2, . . .,

E
( ∏

1≤k≤n
Xk

)
≤

∏
1≤k≤n

EXk.

We restate following results that were obtained in the literature of the precise large

deviations. We need the following lemmas to prove the main results behind.

Lemma 2.1 Let {Xk, k ≥ 1} be upper negative dependence (UND) rv’s with

distribution functions {Fk, k ≥ 1} and mean vector be 0, satisfying sup
k≥1

E(X+
k )r < ∞ for

some r > 1. Then for each fixed γ > 0 and p > 0, there exist positive numbers υ and

C = C(υ, γ) irrespective to x and n such that for all x ≥ γn and n = 1, 2, . . .,

P
( ∑

1≤k≤n
Xk ≥ x

)
≤

∑
1≤k≤n

F k(υx) + Cx−p.

Remark 1 In fact, Lemma 2.1 is a modification of Lemma 2.3 of Tang (2006). We

just need give some modifications as following:

(1) nF (υx) in Tang (2006) is replaced by
n∑
k=1

F k(υx);

(2) h′ = (υx)−1 log
(
(υq−1xq)/(nE(X+

1 ))q + 1
)

in Tang (2006) is replaced by

h = (υx)−1 log
(

(υq−1xq)
/( n∑

k=1

E(X+
k )
)q

+ 1
)

;

(3) C ′ = sup
x≥0

exp
{
υ−1 + (υq−1xqF (υx))/E(X+

1 )q
}(

(vq−1γ)/E(X+
1 )q
)−1/(2υ)

< ∞ in

Tang (2006) is replaced by

C = sup
x≥0

exp
{
υ−1 +

(
υq−1xq

∑
1≤k≤n

F k(υx)
)/ ∑

1≤k≤n
E(X+

k )q
}

·
(

(vq−1γ)
/

max
1≤k≤n

E(X+
k )q
)−1/(2υ)

<∞.

This lemma will be used in deriving the lower bound of the large-deviation probabilities

in the proof of Theorem 3.1.
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Lemma 2.2 and Lemma 2.3 can be found in Ng et al. (2004). These inequalities will

play a key role in the proof of Theorem 3.1.

Lemma 2.2 For a distribution function F ∈ D with a finite expectation, 1 ≤ γF

<∞ and as x→∞, x−p = o(F (x)) for any p > γF .

Lemma 2.3 For a distribution function F ∈ D and every ρ > γF , there exist

positive x0 and B such that, for all θ ∈ (0, 1] and all x ≥ θ−1x0, F (θx)/F (x) ≤ Bθ−ρ.

Lemma 2.4 and 2.5 are reformulations of Lemma 3.3 and 3.5 of Tang et al. (2001).

We will need these two lemmas in the later part of this paper.

Lemma 2.4 Let {ζ(t), t ≥ 0} be a stochastic process with a common expecta-

tion Eζ(t) = 1. If for any fixed δ > 0, Eζ(t)I{ζ(t)>1+δ} = o(1), then ζ(t)
P→ 1.

Lemma 2.5 Suppose {Yn, n ≥ 1} is a sequence of i.i.d. non-negative rv’s with

a common mean EY1 = 1/λ, constituting a renewal counting process {N(t), t ≥ 0}. We

have for any positive constants δ and m,
∑

k>(1+δ)λ(t)

kmP(N(t) = k) = o(1).

Next, we give two useful lemmas, which are the popularization and application of

Theorem 1 in Fuk and Nagaev (1971) and Lemma 2.3 in Skučaitė (2004) respectively.

These inequalities will play a key role in the proof of Theorem 3.1 and Theorem 3.2.

Lemma 2.6 Let {Xn, n ≥ 1} be UND rv’s with distribution functions {Fn, n ≥ 1},
x > 0 be any positive constant, and let (y1, . . . , yn) be any set of positive numbers. Then

for y > max
1≤k≤n

{yk} and 0 < t ≤ 1, we have P(Sn > x) ≤
n∑
k=1

P(Xk ≥ yk) + P1, where

P1 = exp
{
xy−1 − xy−1 ln

(
(xyt−1)

/ n∑
k=1

∫ yk

0
utdFk(u) + 1

)}
.

Lemma 2.7 Let {Xn, n ≥ 1} be UND or LND rv’s with distribution functions {Fn,

n ≥ 1} and finite expectations {µn, n ≥ 1}, and let {N(t), t ≥ 0} be a stochastic process

generated by non-negative integer-valued rv’s independent of the sequence {Xn, n ≥ 1}.
Assume that

(1) the expectations {µn, n ≥ 1} satisfy for some µ <∞, lim
n→∞

n∑
k=1

µk/n = µ;

(2) the stochastic process N(t) satisfies that N(t)/λ(t)
P→ 1, as t→∞.

Then ES(t) ∼ µλ(t), i.e. ES(t) = µλ(t)(1 + o(1)).

Remark 2 In fact, all the work that we need to do is just changing the inde-

pendence property among the variables {Xn, n ≥ 1} which appears in Theorem 1 of Fuk

and Nagaev (1971) and Lemma 2.3 of Skučaitė (2004) into negative dependence structure.
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However, this kind of change of relationships will not effect the final results and proofs at

all.

We also need the following result in the proof of Theorem 3.3.

Lemma 2.8 For a distribution function F ∈ D with a finite expectation and every

µ < µF , there exist a positive number M such that,

F (x) ≤Mx−µ as x→∞. (2.1)

Proof Since F ∈ D, we know that γF ≥ µF ≥ 0. From Proposition 2.2.1 of

Bingham et al. (1987) we know that, for any ε > 0, there exist positive constants B′ and

x0 such that the inequality

x−(γF +ε)/B′ ≤ F (xy)/F (y) ≤ B′x−(µF−ε) (2.2)

holds uniformly for x ≥ 1 and y ≥ x0. Hence, fixing the variable y in (2.2) leads to the

result (2.1). �

§3. Main Results

In this section, using Lemma 2.1 – 2.8, we give the main results, which indicate that

the precise large deviations are insensitive to the assumed ND structure. The following

theorem is a result about precise large deviations of nonrandom sums:

Theorem 3.1 Let {Xn, n ≥ 1} be a sequence of nonnegative ND rv’s with dis-

tribution functions {Fn, n ≥ 1} and finite expectations {µn, n ≥ 1}; X be a nonnegative

random variable with a distribution function F ∈ C and a finite expectation µ. Assume

that

(1) the distribution functions {Fn, n ≥ 1} and F satisfy Assumption (A):

lim
n→∞

∑
1≤k≤n

F k(x)/(nF (x)) = 1

holds uniformly for x ≥ X0, for some X0 > 0;

(2) the expectations µ and {µn, n ≥ 1} satisfy Assumption (B):

lim
n→∞

∑
1≤k≤n

µk/n = µ <∞, and sup
n≥1

µn <∞.

Then, for any fixed γ > 0,

P(Sn − E(Sn) > x) ∼ nF (x) (3.1)

holds uniformly for x ≥ γn, where Sn =
∑

1≤k≤n
Xk.
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Based on Theorem 3.1, we have the asymptotic results for random sums as follows:

Theorem 3.2 Let {Xn, n ≥ 1} be a sequence of nonnegative ND rv’s with dis-

tribution functions {Fn, n ≥ 1} and finite expectations {µn, n ≥ 1}; X be a nonnegative

random variable with a distribution function F ∈ C and a finite expectation µ. Assume

that

(1) the distribution functions {Fn, n ≥ 1} and F satisfy Assumption (A) in Theorem

3.1;

(2) the expectations µ and {µn, n ≥ 1} satisfy Assumption (B) in Theorem 3.1;

(3) {N(t), t ≥ 0} is a non-negative and integer-valued process independent of {Xn,

n ≥ 1}, and EN(t) = λ(t)→∞ as t→∞. For any fixed δ > 0, and some p > γF , {N(t),

t ≥ 0} satisfies Assumption I: ENp(t)I{N(t)>(1+δ)λ(t)} = O(λ(t)).

Then, for any fixed γ > 0,

P(S(t)− E(S(t)) > x) ∼ λ(t)F (x) (3.2)

holds uniformly for x ≥ γλ(t), as t→∞.

Using Theorem 3.2, we obtain the main result in this paper.

Theorem 3.3 In the general compound renewal risk model in Definition 1.3, let

G ∈ C and γF < µG , Assumption (A) and (B) be satisfied. Then the compound renewal

process {N ′(t), t ≥ 0} satisfies Assumption I in Theorem 3.2 and for any fixed γ > EZ,

P(S′(t) − E(S′(t)) > x) ∼ λ′(t)F (x) holds uniformly for x ≥ γλ′(t), as t → ∞, where

EN ′(t) = λ′(t).

§4. Proofs

4.1 The Proof of Theorem 3.1

Proof We modify the proof of Theorem 3.1 in Ng et al. (2004). At first, we estimate

the lower bound. For any λ > 1,

P
(
Sn −

∑
1≤k≤n

µk > x
)
≥ P

(
Sn −

∑
1≤k≤n

µk > x, max
1≤j≤n

Xj > λx
)

≥
∑

1≤j≤n
P
(
Sn −

∑
1≤k≤n

µk > x,Xj > λx
)

−
∑

1≤j<l≤n
P
(
Sn −

∑
1≤k≤n

µk > x,Xj > λx,Xl > λx
)
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≥
∑

1≤j≤n
P
(
Sn −Xj −

∑
1≤k≤n

µk > (1− λ)x,Xj > λx
)
−
( ∑

1≤j≤n
F j(λx)

)2
≥

∑
1≤j≤n

F j(λx)
(

1−
n∑
k=j

F j(λx)
)
−

∑
1≤j≤n

P
(
S(j)
n −

∑
1≤k≤n

µk ≤ (1− λ)x
)
, (4.1)

where S
(j)
n =

∑
1≤k 6=j≤n

Xk. Here we use the definition of ND rv’s (see (2) and (3) in

Definition 1.1) in the third inequality, and use an elementary inequality P(AB) ≥ P(B)−
P(Ac) for all events A and B in the last inequality. For any δ1 > 0, using Assumption

(A), for all large n, x ≥ X0, we have

(1− δ1)nF (x) ≤
∑

1≤j≤n
F j(x) ≤ (1 + δ1)nF (x). (4.2)

We estimate the second term in (4.1), for all large x, x ≥ X0, we have

P
(
S(j)
n −

∑
1≤k≤n

µk ≤ (1− λ)x
)
≤ P

( ∑
1≤k 6=j≤n

(µk −Xk) ≥ (λ− 1)x/2
)
.

By (2) and (3) in Property 2.1, the rv’s {µk − Xk, k ≥ 1} are UND. Then for arbitarily

fixed γ > 0 and p > γF , by Lemma 2.1 there exist positive constants υ0 and C irrespective

to x and n such that

P
( ∑

1≤k 6=j≤n
(µk −Xk) ≥ (λ− 1)x/2

)
≤

∑
1≤k 6=j≤n

P(µk −Xk ≥ (λ− 1)x/(2υ0)) + Cx−p

≤
∑

1≤k≤n
Fk(−(λ− 1)x/(4υ0)) + Cx−p

holds for all x ≥ γn and for all large n. Using the fact that {Xn, n ≥ 1} be non-negative

rv’s and Lemma 2.2, we know that

P
(
S(j)
n −

∑
1≤k≤n

µk ≤ (1− λ)x
)

= o(F (λx)). (4.3)

Plugging (4.2) and (4.3) into (4.1) yields that

P
(
Sn −

∑
1≤k≤n

µk > x
)
≥ (1− δ1)nF (λx)(1− (1 + δ1)nF (λx))− δ1(nF (λx)).

Let δ1 ↓ 0, we have

lim inf
n→∞

inf
x≥γn

P
(
Sn −

∑
1≤k≤n

µk > x
)/

(nF (λx)) ≥ lim inf
n→∞

inf
x≥γn

(1− nF (λx)) = 1. (4.4)
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Here, we use nF (λx)→ 0, as n→∞, uniformly for x ≥ γn in the last step. Hence, using

(4.4) we have

lim inf
n→∞

inf
x≥γn

P
(
Sn −

∑
1≤k≤n

µk > x
)/

(nF (x))

≥
(

lim inf
n→∞

inf
x≥γn

(1− nF (λx))
)

lim inf
x→∞

F (λx)/F (x).

Since F ∈ C and λ > 1 is arbitrary, we can conclude that

lim inf
n→∞

inf
x≥γn

P
(
Sn −

∑
1≤k≤n

µk > x
)/

(nF (x)) ≥ lim
λ↘1

lim inf
x→∞

F (λx)/F (x) = 1. (4.5)

Now we start to estimate the upper bound. For any θ ∈ (0, 1), we define

X̃k := XkI(Xk≤θx) for k ≥ 1, S̃n :=
∑

1≤k≤n
X̃k and x̃ := x+

∑
1≤k≤n

µk.

By a standard truncation argument, we can show that

P
(
Sn −

∑
1≤k≤n

µk > x
)

≤ P
(

max
1≤k≤n

Xk > θx
)

+ P
(

max
1≤k≤n

Xk ≤ θx, Sn −
∑

1≤k≤n
µk > x

)
≤

∑
1≤k≤n

P(Xk > θx) + P(S̃n > x̃). (4.6)

Applying (4.2) to the first term in (4.6), we can conclude that, for any δ2 > 0,

P
(
Sn −

∑
1≤k≤n

µk > x
)
≤

∑
1≤k≤n

F k(θx) + P(S̃n > x̃)

≤ (1 + δ2)nF (θx) + P(S̃n > x̃). (4.7)

We estimate the second term in (4.7). Let a = {− log(nF (θx)), 1}, which tends to ∞
uniformly for x ≥ γn. For arbitrarily fixed h = h(x, n) > 0, we have

P(S̃n > x̃)/(nF (θx)) ≤ Eeh(S̃n−x̃)+a

≤ exp
{ ∑

1≤k≤n

∫ θx

0
(eht − 1)dFk(t)− hx̃+ a

}
. (4.8)

Here we use the property of ND rv’s (see (4) in Property 2.1) in the second inequality.

The value of h above will be specified later. Splitting the integral on the right-hand side

of (4.8) into two terms, and applying an inequality ex − 1 ≤ xex for all x, we obtain that

for every k ≥ 1,∫ θx

0
(eht − 1)dFk(t) ≤ ehθx/a

2

∫ θx/a2

0
htdFk(t) + ehθxF k(θx/a

2)

≤ hµkehθx/a
2

+ ehθxF k(θx/a
2). (4.9)
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Plugging (4.9) into (4.8) yields that, for all large n, for any δ3, δ4 > 0, we have

P(S̃n > x̃)/(nF (θx))

≤ exp
{
h
∑

1≤k≤n
µke

hθx/a2 + ehθx
∑

1≤k≤n
F k(θx/a

2)− hx̃+ a
}

≤ exp
{
h
∑

1≤k≤n
µk(e

hθx/a2 − 1) + (1 + δ3)e
hθxnF (θx/a2)− hx+ a

}
≤ exp

{
(1 + δ4)hnµ(ehθx/a

2 − 1) + (1 + δ3)Ba
2ρehθxnF (θx)− hx+ a

}
. (4.10)

Here we use Assumption (A) in the second inequality, and use Assumption (B) and Lemma

2.3 in the third inequality. Let h = (a − 2ρ log a)/(θx) in (4.10), we obtain that, for all

large n, for any δ5 > 0,

P(S̃n > x̃)/(nF (θx))

≤ exp
{
nhµ(1 + δ4)(e

a−1 − 1) + (1 + δ3)B − (a− 2ρ log a)θ−1 + a
}

≤ e(1+δ3)B exp{(1− θ−1 + (1 + δ4)δ5)a}. (4.11)

Let δ2 ↓ 0, δ3 ↓ 0, δ4 ↓ 0, δ5 ↓ 0, combining (4.11) with (4.7) we have

lim sup
n→∞

sup
x≥γn

P
(
Sn −

∑
1≤k≤n

µk > x
)/

(nF (θx)) ≤ 1 + lim sup
n→∞

sup
x≥γn

P(S̃n > x̃)/(nF (θx)) = 1.

Since F ∈ C and the arbitrariness of θ ∈ (0, 1) we obtain

lim sup
n→∞

sup
x≥γn

P
(
Sn −

∑
1≤k≤n

µk > x
)/

(nF (x))

= lim
θ↗1

lim sup
n→∞

sup
x≥γn

P
(
Sn −

∑
1≤k≤n

µk > x
)/

(nF (θx))(F (θx)/F (x)) ≤ 1. (4.12)

The result (3.1) follows from (4.5) and (4.12). �

4.2 The Proof of Theorem 3.2

Proof By Lemma 2.4 with ζ(t) = N(t)/λ(t), we can easily see that Assumption I

implies

N(t)/λ(t)
P→ 1. (4.13)

By the same approach as used in the proof of Lemma 4.2 of Klüppelberg and Mikosch

(1997) and Theorem 4.1 of Ng et al. (2004), we know that, for any δ > 0, we have

P(S(t)− E(S(t)) > x)

=
( ∑
n≤(1+δ)λ(t)

+
∑

n>(1+δ)λ(t)

)
P(N(t) = n)P(Sn − E(S(t)) > x). (4.14)
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First, we estimate the first term in (4.14), clearly,∑
n≤(1+δ)λ(t)

P(N(t) = n)P(Sn − E(S(t)) > x)

=
∑

|n−λ(t)|<ε(t)λ(t)
+

∑
n−λ(t)<−ε(t)λ(t)

+
∑

ε(t)λ(t)<n−λ(t)<δλ(t)

=: K1 +K2 +K3. (4.15)

Here ε(t) is a positive function, such that ε(t) → 0 as t → ∞. By Lemma 2.7 and

Assumption (B), we know that, for any δ6 > 0, t→∞,

(1− δ6)λ(t)µ ≤ ES(t) ≤ (1 + δ6)λ(t)µ.

Start with the estimation of K1, for any δ7 > 0,

K1 ≤
∑

|n−λ(t)|<ε(t)λ(t)
P(N(t) = n)P(Sn − E(Sn) > x− (1 + δ6)nµ+ (1− δ6)µλ(t))

≤
∑

|n−λ(t)|<ε(t)λ(t)
P(N(t) = n)P(Sn − E(Sn) > x− ε(t)λ(t)µ− δ6(n+ λ(t))µ)

≤ (1 + δ7)(1 + ε(t))λ(t)F (x)
∑

|n−λ(t)|<ε(t)λ(t)
P(N(t) = n).

Here, in the last inequality, we use Theorem 3.1 and the fact

F (x− ε(t)λ(t)µ− δ6(n+ λ(t))µ) ≤ (1 + δ7)F (x)

for any fixed γ > 0, uniformly for x > γλ(t), as t → ∞, since F ∈ C. For any δ8 > 0, by

the same treatment we obtain the corresponding asymptotic lower bound as

K1 ≥ (1− δ8)(1− ε(t))λ(t)F (x)
∑

|n−λ(t)|<ε(t)λ(t)
P(N(t) = n)

for any fixed γ > 0, x > γλ(t), as t→∞. Furthermore, according to (4.13),∑
|n−λ(t)|<ε(t)λ(t)

P(N(t) = n) = P(|N(t)− λ(t)| < ε(t)λ(t))→ 1, as t→∞.

Thus, we can obtain

lim sup
t→∞

sup
x≥γλ(t)

|K1/(λ(t)F (x))− 1| = 0. (4.16)

Next, we estimate K2, for any δ9, δ10 > 0,

K2 ≤ P
(
S[(1−ε(t))λ(t)] − E(S(t)) > x

) ∑
n−λ(t)<−ε(t)λ(t)

P(N(t) = n)

≤ P
(
S[(1−ε(t))λ(t)] − ES[(1−ε(t))λ(t)] > x+ (1− δ9)λ(t)µ− (1 + δ9)[(1− ε(t))λ(t)]µ

)
× P(N(t)− λ(t) < −ε(t)λ(t))

≤ δ10(1 + δ10)
2[(1− ε(t))λ(t)]F (x) = o(λ(t)F (x)), (4.17)
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where δ9, and δ10 are small enough. By the same approach as used in the proof of K2, we

know that

K3 = o(λ(t)F (x)). (4.18)

Plugging (4.16), (4.17) and (4.18) into (4.15) we can obtain∑
n≤(1+δ)λ(t)

P(N(t) = n)P(Sn − E(S(t)) > x) ∼ λ(t)F (x), (4.19)

for any fixed γ > 0, uniformly for x > γλ(t), as t→∞.

To complete the proof, it remains to estimate the second term in (4.14). We use

Lemma 2.6 and set t = 1, yk = x/(2v), v > 1, y = x/v, v > 1, (y > max
1≤k≤n

{yk} for large

x), for any δ11, δ12 > 0, we obtain

P(Sn ≥ x) ≤
∑

1≤k≤n
P(Xk ≥ yk) + exp

{
xy−1 − xy−1 ln

(
x
/ ∑

1≤k≤n

∫ yk

0
udFk(u) + 1

)}
≤

∑
1≤k≤n

P(Xk ≥ x/(2v)) + exp{v − v ln(x/(nµ(1 + δ11)))}

≤ (1 + δ12)nF (x/(2v)) + ev(nµ(1 + δ11))
vx−v.

Hence, we have ∑
n>(1+δ)λ(t)

P(N(t) = n)P(Sn − E(S(t)) > x)

≤ (1 + δ12)F (x/(2v))
∑

n>(1+δ)λ(t)

nP(N(t) = n)

+ (eµ(1 + δ11))
vx−v

∑
n>(1+δ)λ(t)

nvP(N(t) = n) =: J1 + J2. (4.20)

Firstly, we estimate J1. From Assumption I, we know that∑
n>(1+δ)λ(t)

nP(N(t) = n) = o(λ(t)).

So, we have

J1 = (1 + δ12)F (x/(2v))
∑

n>(1+δ)λ(t)

nP(N(t) = n)

≤ (1 + δ12)B(2v)ρF (x)o(λ(t)) = o(λ(t)F (x)). (4.21)

Here we use Lemma 2.3 in the second step. Where B is a positive number and ρ > γF .

Next, we estimate J2. Setting v in J2 equals to p, where p > γF ≥ 1,

J2 = (eµ(1 + δ11))
px−p

∑
n>(1+δ)λ(t)

npP(N(t) = n)

= O(λ(t))(eµ(1 + δ11))
px−p = o(λ(t)F (x)), (4.22)
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where we use Assumption I in the second equality, and use Lemma 2.2 in the last equality.

Plugging (4.21), (4.22) into (4.20), we know that∑
n>(1+δ)λ(t)

P(N(t) = n)P(Sn − E(S(t)) > x) = o(λ(t)F (x)). (4.23)

Plugging (4.19) and (4.23) into (4.14), we know that (3.2) holds. �

4.3 The Proof of Theorem 3.3

Proof Note N ′(t) =
τ(t)∑
i=1

Zi, using Lemma 2.5, we know that the renewal counting

process τ(t) satisfies Assumption I: Eτp(t)I{τ(t)>(1+δ)Eτ(t)} = O(τ(t)). Since rv’s sequence

{Zn, n ≥ 1} are i.i.d. rv’s with a common df G ∈ C, it is easy to see that Assumption (A)

and Assumption (B) in Theorem 3.2 are satisfied for {Zn, n ≥ 1}. Then, by Theorem 3.2,

we have

P(N ′(t) ≥ x) = P(N ′(t)− λ′(t) ≥ x− λ′(t)) ∼ Eτ(t)G(x− λ′(t)) (4.24)

uniformly for x ≥ γEτ(t) for any fixed γ > EZ. Since γF < µG , we can choose a suitable

p such that γF < p < µG . Using Abel’s idea, for any δ > 0, we have∑
k>(1+δ)λ′(t)

kpP(N ′(t) = k)

=
∑

k>(1+δ)λ′(t)+1

(kp − (k − 1)p)P(N ′(t) ≥ k)

+ ([(1 + δ)λ′(t)] + 1)pP(N ′(t) ≥ [(1 + δ)λ′(t)] + 1) =: A1 +A2. (4.25)

Choosing some ε > 0, such that γF < p+ ε < µG . For any δ13 > 0,

A1 ≤ p
∑

k>(1+δ)λ′(t)+1

kp−1P(N ′(t) ≥ k)

≤ (1 + δ13)pEτ(t)
∑

k>(1+δ)λ′(t)+1

kp−1G(k − λ′(t))

≤ (1 + δ13)pEτ(t)
∑

k>(1+δ)λ′(t)+1

kp−1G((δk)/(1 + δ))

= o(Eτ(t)) = o(λ′(t)). (4.26)

Here, we use (4.24) in the second inequality and use Lemma 2.8 in the last inequality.

Similarly, for any δ14 > 0,

A2 ≤ (1 + δ14)([(1 + δ)λ′(t)] + 1)pEτ(t)G([(1 + δ)λ′(t)] + 1− λ′(t))

≤ (1 + δ14)([(1 + δ)λ′(t)] + 1)pEτ(t)M2(δλ
′(t))−(p+ε)

= o(λ′(t)), (4.27)
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where M1 and M2 are nonnegative constants irrespective to k. Plugging (4.26) and (4.27)

into (4.25) we obtain that N ′(t) satisfies Assumption I in Theorem 3.2. Hence by Theorem

3.2 the proof of Theorem 3.3 is completed. �

Acknowledgements We thank the referees for their valuable comments which

help the authors improve the exposition of this paper significantly.

References

[1] Tang, Q., Insensitivity to negative dependence of the asymptotic behavior of precise large deviations,

Electronic Journal of Probability, 11(4)(2006), 107–120.

[2] Ng, K.W., Tang, Q., Yan, J.A. and Yang, H., Precise large deviations for sums of random variables

with consistently varying tails, Journal of Applied Probability, 41(1)(2004), 93–107.
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