
A^VÇÚO 1 32ò
1 3Ï 2016c 6�

Chinese Journal of Applied Probability and Statistics
Jun., 2016, Vol. 32, No. 3, pp. 221-260

doi: 10.3969/j.issn.1001-4268.2016.03.001

Survey

Some Recent Advances in Stochastic Simulation

WANG Chia-Li

(Department of Applied Mathematics, National Dong Hwa University, Hualien, Taiwan)

Abstract: This review article introduces two recent advances in stochastic simulation: the

construction of efficient algorithms for estimating rare events and the generation of samples from

a stationary distribution that has no closed form.

Estimating a very small quantity requires extreme accuracy to form a useful confidence inter-

val. This makes the slowly convergent rare-event simulation a challenge task in both efficiency and

accuracy. In this report, we introduce the examples of rare events of interest and the difficulties

in estimating them. Various approaches to pursue robust and efficient estimators along the de-

velopment are discussed and evaluated. Numerical experiments on estimating ruin probability are

provided to show the quality of these approaches.

In steady-state simulation, how to generate samples from a stationary stochastic process has

long been the key subject. The common practice is to discard the data gathered during the initial

transient period. However, how long the warm-up period must be raises another problem that has

no satisfactory answer. Fortunately, by the development in the past two decades, exact simulation

has become possible for certain stochastic models. In this report, we will introduce two important

methods and related applications.
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§1. Examples of Rare Event

Suppose we want to estimate α= P(A) where α is small, say of order 10−3 or less,

that is, A is a rare event. Interesting examples occur in telecommunication (α is the

probability of cell loss or buffer overflow), reliability (α is the probability of failure before

some fixed time), insurance risk (α is the ruin probability), etc. We give more details of

these applications below.
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Example 1 (Performance Measure in Telecommunication Networks) In asynchro-

nous transfer mode (ATM) networks, the connection admission control (CAC) algorithm

decides in real time whether a new connection can be admitted into the network without

violating quality of service (QoS) measures, such as the cell loss probability, for the new

connection or the existing connections. The complexity of the ATM architectures, the low cell

loss probabilities required by ATM networks (10−6 to 10−12), and the unwieldiness of matching

statistical traffic models to the traffic descriptors used by the CAC algorithm combined make

the test of CAC algorithms difficult.

Monte Carlo (MC) simulation can be used to obtain accurate estimates of performance

measures of a complex ATM, but is too slow to be used for CAC in real time. Even in non-real

time environments, such as to test a CAC algorithm, MC simulation can be too slow for very

low cell loss probabilities because of the long run times required to obtain accurate estimates.

Hence, efficient estimators that would speed up simulations involving rare events of network

(queueing) systems are in great needs.

Example 2 (Reliability of Markovian Systems) Consider a highly reliable Marko-

vian system of components with small failure rates. Complex system interdependencies can

be easily modeled in the Markov framework. These interdependencies may include failure

propagation, i.e., failure of one component with certain probability leads to failure of oth-

er components, different modes of component failure, repair and operational dependence,

component switch-over times, etc.

Suppose that the system has n distinct component-types. Type i has mi identical

components for functional and spare requirements. Let λi denote the failure rate for each of

these components. That the system is highly reliable is modeled by letting

C1ε
ri 6 λi 6 C2ε

ri

for sufficiently small ε, where ri > 1 and Ci’s are positive constants for all i. The system is

then analyzed as ε→ 0.

A suitable mathematical model can be built as: Let {Y (t) : t > 0} be a continuous-time

Markov chain, where

Y (t) = (Y1(t), Y2(t), . . . , Yn(t), R(t))

with Yi(t) being the number of failed type-i components at time t, and R(t) contains all

information required to make {Y (t) : t > 0} a Markov chain.

Let A be the state when all components are “up” and R be the set of failed states.

The probability that the system starting from A , hits R before returning to A is critical
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to efficient estimation of performance measures such as system unavailability and mean time

to failure. To estimate the probability, one can simulate an embedded discrete-time Markov

chain in {Y (t) : t > 0} as both give identical result. Set S0 = A . Then, the process

{S0, S1, . . . , ST } may be observed where T = inf{n > 1 : Sn ∈ A ∪R}, and the probability

of interest is P(ST ∈ R).

Example 3 (Ruin Probability of Risk Processes) Consider a classic problem in

insurance. Let u be the initial reserve, c be the premium rate, X1, X2, . . . be i.i.d. claims

with distribution G, and Λ(t) be the number of claims by time t, where {Λ(t)} is a Poisson

process with rate λ. The insurance surplus at time t is

U(t) = u+ ct−
Λ(t)∑
i=1

Xi, t > 0.

We call {U(t)} a risk process, and define the probability of ruin as

φ(u) = P
(

inf
t>0
{U(t)} < 0

)
.

In both theory and practice, φ(u) is very small, the ruin is a rare event.

With a normalization, i.e., c = 1, an alternative expression of φ(u) that is useful in

estimation is derived from a corresponding M/G/1 queue with arrival process {Λ(t)} and

service times Xi ([1; p. 399]). Let SN denote the stationary work in the queue with SN =
N∑
i=1

Xei, where Xei have the equilibrium distribution of X, and are i.i.d. and independent of

N , the stationary number of customers in system under, e.g., preemptive last-come-first-serve

and geometrically distributed. It is shown φ(u) = P(SN > u).

Then, φ(u) can be estimated by generating replicates of N and i.i.d. Xe’s to form J

i.i.d. replicates SNj of SN . The estimator of φ(u) is thus

J∑
j=1

I(SNj > u)

J
.

In any of the above examples, if we estimate the probability of rare event α by

Monte Carlo simulation, i.e., Z = I{A}, then we have Bernoulli sampling with variance

σ2
Z = α(1−α) that approaches 0 as α→ 0. In other words, we have a small absolute error

σZ ∼
√
α (We write a(y) ∼ b(y) if a(y)/b(y)→ 1 as y →∞).

However, the relative error

σZ
α
∼ 1√

α
→∞ as α→ 0,
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which is the relevant performance measure of the estimation. The reason why that the

relative error is so important is the following:

Suppose we obtain an estimator of α of order 10−5 and a confidence interval of half-

width 10−4. The confidence interval may look narrow, but it does not tell whether α

is of the magnitude 10−4, 10−5 or even smaller. Another way to illustrate this point is

by considering the sample size n that meets the required relative precision, say, 10%, in

terms of the half-width of the 95% confidence interval, i.e., 1.965σZ/(α
√
n) = 0.1. One gets

n ∼ 100×1.9652/α, inversely proportional to α, which increases without bound as α→ 0.

Therefore, the concern of rare-event simulation is on the efficiency and, consequently, on

the accuracy.

§2. Criterion of Efficiency

Here we set up formal criterion for efficiency concepts.

Let A(x) be a rare event with parameter x, x ∈ (0,∞) or x ∈ N . Assume that

α(x) = P{A(x)} → 0 as x→∞, and for each x, Z(x) is an unbiased estimator for α(x).

We note that Jensen’s inequality implies

E[Z2(x)] > E2[Z(x)] = α2(x),

a lower bound on the second moment. Hence, Z(x) is said to be asymptotically optimal,

or has vanishing relative error if

lim
x→∞

E[Z2(x)]

α2(x)
= 1. (1)

The second best performance that can be achieved in rare-event simulation is bounded

relative error, i.e.,

lim sup
x→∞

Var (Z(x))

α2(x)
<∞. (2)

Thus, an algorithm that meets such criterion requires bounded sample size even as x→∞.

A slightly weaker efficiency concept, namely, logarithmic efficiency, is Var (Z(x))→ 0

fast enough to have

lim sup
x→∞

Var (Z(x))

α2−ε(x)
= 0 (3)

for all ε > 0, or, equivalently,

lim inf
x→∞

| lnVar (Z(x))|
| lnα2(x)|

> 1. (4)

《
应
用
概
率
统
计
》
版
权
所
有



No. 3 WANG C. L.: Some Recent Advances in Stochastic Simulation 225

To see that (3) is weaker than (2), suppose α(x) ∼ Ce−γx. Estimator Z(x) that meets

(3) allows Var (Z(x)) to decrease like xpe−2γx for any p > 0.

Advantages of working with logarithmic efficiency rather than bounded relative error

are: the difference is minor from a practical point of view, in some examples, logarithmic

efficient estimators exist, whereas estimators with bounded relative error neither exist nor

have been developed, and logarithmic efficiency is often much easier to verify.

Remark 4 To put the criterion in a common limit form, we say Var (Z(x)) = o(α2(x))

if Z(x) has vanishing relative error, O(α2(x)) if it has bounded relative error, or o(α2−ε(x))

if it is logarithmic efficiency.

In practice, requirements (1)–(4) are often verified for E[Z2(x)], the upper bound,

instead of Var (Z(x)).

Example 5 Let N ∼ Geo(p) so that P(N = n) = p(1− p)n−1. Consider

α = P(N 6 m) =
m∑
n=1

p(1− p)n−1 = 1− (1− p)m.

Now, if p→ 0, α→ 0 for finite m, and α ∼ mp.

To estimate α, we use importance sampling, that is, with success probability p̃ instead

of p to form estimator

Z = I{N 6 m}p(1− p)
N−1

p̃(1− p̃)N−1
.

Thus,

Ep̃(Z
2) =

p2

p̃2
Ep̃

[
I{N 6 m}

(1− p
1− p̃

)2(N−1)]
=
p2

p̃

m∑
n=1

(1− p)2(n−1)

(1− p̃)n−1

=
p2

p̃

1− (1− p)2m/(1− p̃)m

1− (1− p)2/(1− p̃)
.

A good candidate for p̃ is obtained by the saddle-point argument, namely, equating

Ep̃(N) to m (Will be introduced in the next section). As E(N) = 1/p, this means p̃ = 1/m.

From p ∼ α/m and the above, we then get

Ep̃(Z
2) ∼ α2/m2

1/m

1− 1/e−1

1− 1/(1− 1/m)
∼ α2

m

1/e−1 − 1

1/m
= α2(e− 1).

So, this estimator has a bounded relative error.

More generally, the bounded relative error holds also by taking p̃ = c/m because

Ep̃(Z
2) ∼ α2(ec−1)/c2. The optimal c = c∗ is obtained by minimizing (ec−1)/c2, which yields

c∗ = 1.59. However, the corresponding variance-reduction factor (e− 1)c∗2/(ec
∗ − 1) = 1.12

is very small.
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Let X1, X2, . . . be independent random replicates of X with P(X>0)>0 and E(X) <

0. Also, let Sn =
n∑
i=1

Xi be the partial sum. To deal with Sn, the following simple lemma

will often be useful:

Lemma 6 Let Xi have density f . If Xi’s are simulated i.i.d. with density f̃ , L is the

likelihood ratio and Z(x) = LI{Sn > x}, then

Ẽ[Z2(x)] = ĉ−nP̂(Sn > x), where ĉ−1 =

∫
f2/f̃ and f̂ = ĉf2/f̃ .

Proof

Ẽ[Z2(x)] = Ẽ
[( n∏

i=1

f(Xi)

f̃(Xi)

)2
I{Sn > x}

]
=

∫
· · ·
∫
x1+x2+···+xn>x

f2(x1)

f̃2(x1)
· · · f

2(xn)

f̃2(xn)
f̃(x1) · · · f̃(xn)dx1 · · · dxn

= ĉ−n
∫
· · ·
∫
x1+x2···+xn>x

f̂(x1) · · · f̂(xn)dx1 · · · dxn

= ĉ−nP̂(Sn > x). �

The next example investigates the efficiency of estimating α(x) = P(Sn > x) for large

x, that is, α(x) is small.

Example 7 Suppose that Xi’s are independent and ∼ exp(1). Since Sn =
n∑
i=1

Xi is

n-Erlang, i.e., Gamma(n, 1), we have

α(x) ∼ xn−1e−x

(n− 1)!
as x→∞. (5)

Consider the important density f̃(x) = λe−λx. Then,

ĉ−1 =
1

λ

∫ ∞
0

e−(2−λ)ydy =
1

λ(2− λ)
, f̂(x) = λ̂e−λ̂x,

where λ̂ = 2− λ. It seems reasonable to choose λ such that Ẽ(Sn) = n/λ is of order x. So

we let λ = c/x and get from Lemma 6

Ẽ[Z2(x)] = ĉ−nP̂(Sn > x) = ĉ−n
∫ ∞
x

(2− λ)nyn−1

(n− 1)!
e−(2−λ)ydy

= ĉ−n
∫ ∞

(2−λ)x

zn−1

(n− 1)!
e−zdz ∼ ĉ−n ((2− λ)x)n

(n− 1)!
e−(2−λ)x

=
ecx2n−1

(2− λ)cn(n− 1)!
e−2x,

which together with (5) show that the important sampling yields logarithmic efficiency but

not bounded relative error (then the power of x should have been 2n− 2).

《
应
用
概
率
统
计
》
版
权
所
有



No. 3 WANG C. L.: Some Recent Advances in Stochastic Simulation 227

In this report, we will demonstrate the rare-event simulation mainly via the estimation

of α(x) = P(Sn > x). Notice that not only α(x), but also the estimator’s asymptotic

variance depend on the tail distribution of X. That is to say, to estimate α(x) efficiently,

we need to first investigate the tail property of X. A common approach is to classify X as

having either a light or a heavy tail. We will discuss estimators developed for either case.

§3. Rare Events with Light Tails

We say that the tail of a distribution is light if it decays at an exponential rate or

faster. More precisely, a random variable X has a light-tail distribution F if moment

generating function (m.g.f.)

F̂ (s) = E(esX) =

∫
esxF (dx)

is finite for some s > 0. The most efficient estimator for a light-tail rare event is based on

exponential change of measure (ECM). It deserves a brief review.

For a distribution F and its m.g.f. F̂ , let κ(θ) ≡ ln F̂ (θ) be the cumulant generating

function (c.g.f), i.e., the logarithm of the m.g.f. Then, the ECM of F is defined as

Fθ(dx) ≡ eθx

F̂ [θ]
F (dx) = eθx−κ(θ)F (dx),

which is a distribution and, most importantly, in many cases reserves the form as that of

F only except the parameter. A few one-dimensional examples are below:

• If F ∼ exp(λ), then Fθ ∼ exp(λ− θ), where −∞ < θ 6 λ;

• If F ∼ N(µ, σ2), then Fθ ∼ N(µ+ θσ2, σ2);

• If F ∼ binomial(N, p), then Fθ ∼ binomial(N, peθ/(1− p+ peθ));

• If F ∼ Poisson(λ), then Fθ ∼ Poisson(λeθ).

In the change, likelihood ratio (dP/dPθ)n for i.i.d. X1, X2, . . . , Xn ∼ X is

Ln,θ ≡
n∏
k=1

F̂ [θ]

eθXk
= e−θSnF̂ [θ]n = e−θSn+nκ(θ).

Thus, if Yn is σ(X1, X2, . . . , Xn)-measurable, we have

E(Yn) = Eθ(YnLn,θ) = Eθ(Yne−θSn+nκ(θ)).

Note that the minimizer of F̂ [θ] and/or κ(θ) is the solution of F̂ ′[θ] = κ′(θ) = 0,

called γ0, and the nonzero solution of κ(θ) = 0 is also the one of F̂ [θ] = 1, called γ.

《
应
用
概
率
统
计
》
版
权
所
有



228 Chinese Journal of Applied Probability and Statistics Vol. 32

When performing ECM, the changed drift is

µθ ≡ Eθ(X) = E(XeθX/F̂ [θ]) =
F̂ ′[θ]

F̂ [θ]
= κ′(θ). (6)

Hence, µθ < 0 when and only when θ < γ0, and µγ0 = 0.

In particular, when ECM is used to make Iθ{Sn > x} more likely to occur than

I{Sn > x}, a common choice of θ is to let Eθ(Sn) = x (analytically, Eθ(Sn) = nκ′(θ)).

This θ is often referred to as a saddle point.

Remark 8 The ECM also appears in statistical hypothesis testing for the estimation

of p-values (but with a different name: one-parameter exponential family Fθ): Define

Fθ(dx) = eθxF (dx)/F̂ (θ),

and consider testing H0 : θ = 0 vs. H1 : θ > 0.

If we observe Xi = xi, i = 1, 2, . . . , n, then the p-value is given by P0(Sn > sn) where

Sn =
n∑
i=1

Xi and sn =
n∑
i=1

xi. Here P0(Sn > sn) may be approximated by the saddle-point

method.

3.1 Siegmund’s Algorithm

Assume that F is not concentrated on (−∞, 0], i.e., F (0) > 0, and E(X) < 0. Consider

the problem of estimating

α(x) = P{τ(x) <∞}, where τ(x) = inf{n : Sn > x}.

Since E(X) < 0, we can employ importance sampling via ECM to get

α(x) = Eθ[Iτ(x)<∞Lτ(x),θ] = Eθ[Iτ(x)<∞e−θSτ(x)+τ(x)κ(θ)].

To choose appropriate θ, we need to ensure that Pθ(τ(x) <∞) = 1, i.e., Eθ(X) > 0.

By (6), we have θ > γ0, and with such a θ, α(x) = Eθ[Lτ(x),θ] such that a Monte Carlo

simulation can be conducted with Z(x) = Lτ(x),θ.

Furthermore, γ is the optimal parameter provided the existence, which is assured by

F̂ [θ] = 1 having a solution and F̂ ′[γ] < ∞, which, in turn, is assured by the existence of

exponential moments. Then, we have

α(x) = Eγ [e−γSτ(x) ] = e−γxEγ [e−γε(x)],

where ε(x) = Sτ(x) − x is the overshoot.

Two examples below indicate what the change of measure looks like.

《
应
用
概
率
统
计
》
版
权
所
有



No. 3 WANG C. L.: Some Recent Advances in Stochastic Simulation 229

Example 9 Let F ∼ N(−µ, 1) with µ > 0. Then F̂ [s] = exp{−µs + s2/2} so that

γ is the solution of γ2/2− µγ = 0, which in view of γ > 0 implies γ = 2µ. Consequently,

F̂γ [s] = F̂ [s+ γ] = exp{µs+ s2/2},

which shows that Fγ ∼ N(µ, 1).

Example 10 Consider the M/M/1 queue with arrival rate λ and service rate µ, λ < µ.

Let X = S − T be independent difference of service and interarrival times. Then, F̂ [θ] = 1

means

1 = E(eγS)E(e−γT ) =
λ

λ+ γ

µ

µ− γ
,

which has the positive solution γ = µ− λ. So, we get

F̂γ [s] = F̂ [γ + s] =
λ

λ− s
µ

µ+ s
,

which shows that the changed measure corresponds to an M/M/1 queue with arrival rate µ

and service rate λ.

We are now ready to present the main results.

Theorem 11 The algorithm given by Z(x) = e−γxe−γε(x) (simulated from Fγ) has

bounded relative error.

Proof We first note that the process {ε(x), x > 0} is regenerative with regeneration

occurs at each partial maximum of {Sn}. Assume that F is aperiodic in the lattice case

or nonlattice otherwise. Then, ε(x)→ ε(∞) and

Eγ [e−γε(x)]→ Eγ [e−γε(∞)] ≡ C, as x→∞.

It follows that

α(x) ∼ Ce−γx,

a celebrated result referred to as the Cramér-Lundberg approximation.

Now, we have

Eγ [Z2(x)] = e−2γxEγ(e−2γε(x)) ∼ C1e−2γx,

where C1 = Eγ(e−2γε(∞)), and hence,

Var γ(Z(x)) ∼ C1e−2γx − (Ce−γx)2 ∼ C2e−2γx,

where C2 = C1 − C2 > 0 from Jensen’s inequality.
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Thus, the relative error is√
Var γ(Z(x))

α(x)
∼ e−γx

√
C2

Ce−γx
=

√
C2

C
,

which does not increase in x. �

We note that the expected time to generate one replication by the algorithm Eγ [τ(x)] is

O(x). Also, the change of measure in Theorem 11 is unique in yielding at least logarithmic

efficiency. For a proof, see [5; p. 166].

3.2 Efficient Simulation of P{Sn > n(µ+ ε)}

Consider the random walk Sn =
n∑
i=1

Xi again, but the sign of µ = E(X) is unimportant

because the rare event of interest now is A(n) = {Sn > n(µ+ ε)} with ε > 0. That is, the

parameter of the problem is the discrete n.

Since α(n) = P{A(n)} → 0 as n → ∞ from the LLN, the event A(n) is rare indeed.

By ECM, we have

Z(n) = e−θSn+nκ(θ)I{Sn > n(µ+ ε)}.

The appropriate choice of θ is by the saddle-point method as

EθX = κ′(θ) = µ+ ε, (7)

which implies θ > 0 owing to the strictly convexity and then increasing of κ. Moreover,

we have I ≡ θ(µ+ ε)− κ(θ) > 0.

Theorem 12 The ECM given by (7) is logarithmically efficient, and is the only

importance distribution F̃ with this property.

As for Siegmund’s algorithm, the proof is a small variant of the standard estimates

for obtaining the asymptotic of α(n) itself. So, we omit it.

This change of measure yields the following famous bound:

Lemma 13 (Chernoff Bound) α(n) 6 e−nI .

Proof Using the basic likelihood ratio identity and θ > 0, we have

α(n) = Eθ[I{A(n)}Ln,θ] = Eθ[I{Sn > n(µ+ ε)}e−θSn+nκ(θ)]

= e−nIEθ[I{Sn > n(µ+ ε)}e−θ(Sn−n(µ+ε))] 6 e−nI . �
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3.3 Compound Poisson Sums

Consider the random sum SN =
N∑
i=1

Xi, where Xi’s are i.i.d. and nonnegative with

distribution F , and N is an independent Poisson random variable with mean λ. As discuss-

ed in Example 3, we often need to evaluate P(SN > x) when x is large in insurance risk

and queueing theory.

By a variant of the previous analysis, we shall show that ECM is again logarithmically

efficient given that F is light-tail and satisfies some regularity conditions. Let f(x) denote

the density of F . The regularity conditions are:

A. f is gamma-like, i.e., f(x) ∼ c1x
α−1e−δx, as x→∞.

The ones that meet A are, for examples, exponential distributions, phase-type distri-

butions and inverse Gaussian distributions.

B. f is log-concave, or, more generally, f(x) = q(x)e−h(x), where q(x) is bounded away

from 0 and∞, and h(x) is concave in [x0, x
∗), where x∗ = sup{x : f(x) > 0}. Furthermore,∫∞

0 f(x)adx <∞ for some 1 < a < 2.

The distributions that satisfy B have finite support or with a density not too far from

e−x
α

with α > 1.

Define the c.g.f. of SN be ϕ(β) = lnE(eβSN ). Then, by conditioning on N , we get

ϕ(β) = λ(F̂ [β]− 1),

where F̂ [β] is the m.g.f. of F . Under ECM, the c.g.f. becomes

ϕθ(β) = ϕ(β + θ)− ϕ(θ) = λ(F̂ [β + θ]− F̂ [θ]) = λF̂ [θ](F̂θ[β]− 1),

where Fθ(dx) = eθxF (dx)/F̂ [θ] and θ is again determined by the saddle-point argument

as the solution of Eθ(SN ) = x, i.e., by x = ϕ′(θ) = λF̂ ′[θ].

Theorem 14 If either of A or B holds, the estimator (simulated from Fθ)

Z(x) = e−θSN+ϕ(θ)I{SN > x}

for α(x) is logarithmically efficient.

The proof can be found in [5; p. 171].
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§4. Rare Events with Heavy Tails

We say that F (or X) is heavy-tail if for all x > 0, F (x) > 0 and

lim
y→∞

P(X > x+ y |X > y) = lim
y→∞

F (x+ y)

F (y)
= 1.

Intuitively, this means that if X ever exceeds a large value, then it is likely to exceed any

larger value as well. Its definition may also be expressed as

F (x+ y) ∼ F (y), for all x > 0.

A popular class of heavy-tail distributions is the so-call subexponential, which means

that
P(X1 +X2 > x)

P(X1 > x)
→ 2, x→∞,

where X1, X2 are i.i.d. with distribution F . This can be shown by induction to be

equivalent to
P(X1 +X2 + · · ·+Xn > x)

P(X1 > x)
→ n, x→∞ (8)

for all n > 2.

In this report, we will concentrate on the following two examples in the subexponential

class:

Regular Variation: F (x) = L(x)/xδ, where δ > 0 and L is slowing varying, i.e., L(tx)/L(x)

→ 1 as x→∞ for any fixed t > 0. The most prominent example is the Pareto distribution,

with tail 1/(1 + x)δ, 0 < δ.

This class of distributions is initially used to model the distribution of wealth, and

has become an important tool for telecommunication model. In fact, there is a growing

interest nowadays in providing internet to mobile users, and internet traffic statistics show

that the session duration of call holding times are Pareto distributed.

Weibull Distribution: F (x) = e−cx
β
, 0 < β < 1. If β = 1, it becomes exponential.

This distribution is often used in survival analysis, as an excellent model choice for

describing the life of manufactured objects, and in insurance risk analysis for modeling

excessive claim sizes. Indeed, subexponentiality is considered as a synonym for heavy tail

in insurance mathematics. Furthermore, among the class of subexponential distributions,

Weibull with β ∈ (0, 1) provides adequate candidates for modeling large claims as it allows

greater flexibility for data fitting.
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The development of rare-event simulation with heavy tails was postponed until re-

cently. It is because that the main ideas of efficient simulation from light tails cannot be

applied to. Hence, new ideas are presented in the following subsections and in need for

more.

4.1 Conditional Estimators

To estimate α(x) = P(Sn > x) as before, a direct MC estimator is

Z1(x) = I{Sn > x},

and a conditional estimator is P(Sn > x |F ) with F ⊂ σ(X1, X2, . . . , Xn). Although,

by the conditional variance formula, this estimator always yields variance reduction, our

task is to find a proper F so that the reduction is so substantial that the estimator is,

hopefully, logarithmically efficient, or even has a bounded relative error.

The first and obvious approach is to condition on X1, X2, . . . , Xn−1, which leads to

Z2(x) = P(Sn > x |X1, X2, . . . , Xn−1) = F (x− Sn−1),

that is, only X1, X2, . . . , Xn−1 are generated.

Having smaller variance than Z1(x), Z2(x) does not, however, yield meaningful im-

provement; its variance is of the same order as that of F (x):

E[Z2
2 (x)] > E[F

2
(x− Sn−1)I{X1 > x}] = P(X1 > x) = F (x).

Consequently,

lim inf
x→∞

| lnVar (Z2(x))|
| lnα2(x)|

= lim
x→∞

| lnF (x)|
2| lnn+ lnF (x)|

=
1

2
.

The reason that it does not work well is that the probability of one single large Xi

is relatively too big, which leads to the idea of discarding the largest of the Xi’s and

considering only the remaining ones. Thus, we generate X1, X2, . . . , Xn and form the

order statistics X(1) < X(2) < · · · < X(n). We then throw away X(n), let S(n−1) = X(1) +

X(2) + · · ·+X(n−1) and have

Z3(x) = P(Sn>x |X(1), X(2), . . . , X(n−1)) = P(X(n)+S(n−1)>x |X(1), X(2), . . . , X(n−1))

=
F ((x− S(n−1)) ∨X(n−1))

F (X(n−1))
.

Theorem 15 When the tail is regularly varying, Z3(x) is logarithmically efficient.
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Sketch of the proof We first bound the density of X(n−1) as

f(n−1)(y) = n(n− 1)Fn−2(y)F (y)f(y) 6 cF (y)f(y).

Then, we evaluate E[Z2
3 (x)] separately over the region:

X(n−1) 6
x

n
,

x

n
< X(n−1) 6

x

2
and X(−1) >

x

2
. �

In a short time, an equally simple conditional estimator is proposed in [4] that im-

proves Z3(x). Because a major portion of Z3(x)’s variance is contributed from its denomi-

nator, the idea, hence, is to avoid having the probability of any given event in the denom-

inator. It is achieved by partition according to which Xi is the largest, i.e., Xi = X(n),

and condition on other Xj ’s. Since, by symmetry,

P(Sn > x) = nP(Sn > x,Xn = X(n)),

they construct the estimator in [4] as

Z4(x) = nP(Sn > x,Xn = X(n) |X1, X2, . . . , Xn−1) = nF (X(n−1) ∨ (x− Sn−1)).

Theorem 16 Estimator Z4(x) has bounded relative error in the regular varying case,

and is logarithmically efficient in the Weibull case for β < ln(3/2)/ ln 2 = 0.585.

Proof Here we only provide the proof for the regularly varying case, and refer to

[4] for the Weibull case.

If X(n−1) 6 x/n, then S(n−1) 6 (n− 1)x/n and, consequently, X(n−1) ∨ (x− Sn−1) >

x/n. Thus,

E[Z2
4 (x)]

F
2
(x)

6
n2F

2
(x/n)

F
2
(x)

=
n2L2(x/n)/(x/n)2δ

L2(x)/x2δ
=
n2+2δL2(x/n)

L2(x)
∼ n2+2δ.

Now, from (8), α(x) ∼ nF (x) and the proof is complete. �

It is remarked that Z4(x) is the first rare-event estimator that achieves the criterion

of bounded relative error.

The not-so-good performance for not-so-heavy tails is due to the possibility of large

sample size required. We illustrate the reason by an extreme case: the minimum of

max{X(n−1), x− S(n−1)} occurs when X1 = X2 = · · · = Xn−1 = x/n, and consequently,

max
X1,X2,...,Xn−1

Z4(x) = nF (x/n).

Thus, for large n the estimator can be large.

Finally, for the case of random sum SN , it is suggested in [4] that one can either use

N as a control variate or stratify N to obtain further substantial variance reduction. See

also [8] for a theoretical treatment on this issue.
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4.2 Control Variate Estimators

Recall that the variance-reduction estimator for E(X) with a control variate Y , with

E(Y ) known, is X − c[Y − E(Y )], where optimal c = Cov (X,Y )/Var (Y ).

From (8), i.e., the occurrence of Sn > x is likely due to the occurrence of X(n) > x,

it suggests to use I{X(n) > x} as a control variate for estimating P(Sn > x) when Xi is

subexponential.

The most straightforward one is

Z5(x) = I{Sn > x} − c[I{X(n) > x} − P{X(n) > x}].

One would naturally expect that the heavier the tail is, the better its performance is.

Indeed, we have the following result from [9]:

Theorem 17 When F is regularly varying with 0 < δ < 1, Z5(x) has a bounded

relative error.

We first state a few lemmas that are useful in proving the theorem.

Lemma 18 ([11]) For F being regularly varying with 0 < δ 6 1,

lim
x→∞

P(Sn > x)− nF (x)

f(x)

∫ x

0
F (y)dy

=

cδ
n(n− 1)

2
, if 0 < δ < 1;

n(n− 1), if δ = 1,

where cδ is a constant depending on δ.

Lemma 19 ([16; p. 62]) If L1(x) is a slowly varying function and locally bounded in

[x0,∞) for some x0 > 0, then for δ > 0∫ ∞
x

y−(δ+1)L1(y)dy = x−δL2(x),

where L2(x) is a slowly varying function of x at ∞ and lim
x→∞

L1(x)/L2(x) = δ. If L1(y)/y is

integrable, then the result also holds for δ = 0.

Lemma 20 ([15; p. 25]) Suppose that F is regularly varying with parameter δ 6 1.

Then
∫ x

0 F (t)dt is also regularly varying with parameter 1− δ and

lim
x→∞

xF (x)∫ x

0
F (t)dt

= 1− δ.

Proof of Theorem 17 We first write

Var (Z5(x)) = Var (I{Sn > x})−
Cov 2(I{Sn > x}, I{X(n) > x})

Var (I{X(n) > x})
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= P(Sn > x)P(Sn < x)−
P2(X(n) > x)P2(Sn < x)

P(X(n) > x)P(X(n) < x)

= P(Sn < x)
[
P(Sn > x)−

P(X(n) > x)P(Sn < x)

P(X(n) < x)

]
.

Furthermore, with P(Sn<x) = P(X(n)<x)− P(Sn>x,X(n)<x) and some algebraic

manipulation, we derive

Var (Z5(x)) = P(Sn > x,X(n) < x)
P(Sn < x)

P(X(n) < x)
. (9)

Now, with P(Sn > x,X(n) < x) = P(Sn > x)− P(X(n) > x) and

P(X(n) > x) = nF (x)− n(n− 1)

2
F

2
(x) + o

(
F

2
(x)
)
,

we have

P(Sn > x,X(n) < x) = P(Sn > x)− nF (x) +
n(n− 1)

2
F

2
(x) + o

(
F

2
(x)
)
. (10)

Let F (x) = L2(x)/xδ and f(x) = L1(x)/xδ+1. We get lim
x→∞

xf(x)/F (x) = δ from

Lemma 19. Thus, by Lemmas 18 and 20,

lim
x→∞

P(Sn > x)− nF (x)

n2F
2
(x)

= lim
x→∞

P(Sn > x)− nF (x)

n2f(x)
∫ x

0 F (y)dy

xf(x)

F (x)

∫ x

0
F (y)dy

xF (x)

=
cδn(n− 1)

2n2

δ

1− δ
.

Using (9) and (10), we have

lim
x→∞

Var (Z5(x))

P2(Sn > x)
= lim

x→∞

P(Sn > x,X(n) < x)P(Sn < x)

P2(Sn > x)P(X(n) < x)

= lim
x→∞

[
P(Sn > x)− nF (x) +

n(n− 1)

2
F

2
(x) + o

(
F

2
(x)
)]

n2F
2
(x)

n2F
2
(x)

P2(Sn > x)

P(Sn < x)

P(X(n) < x)

=
1− δ + cδδ

1− δ
n− 1

2n
,

because the limits of n2F
2
(x)/P2(Sn > x) and P(Sn < x)/P(X(n) < x) are both 1 as

x→∞. So, Z5(x) has a bounded relative error. �

Hence, for regularly varying with 0 < δ < 1, Z5(x) is as efficient as Z4(x) (unfor-

tunately, only in theory). However, for δ > 1, the relative error of Z5(x) is no longer

bounded. Nevertheless, the result is obtained in [9]:
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Theorem 21 When F is regularly varying with δ = 1, estimator Z5(x) is logarithmic

efficient.

Also shown in [9] is the following:

Corollary 22 For N being a random variable with finite E(N2) and F being regularly

varying, Z5(x) has bounded relative error with 0 < δ < 1, and is logarithmically efficient with

δ = 1.

For regularly varying with δ > 1, estimator Z5(x) is not logarithmic efficient. Neither

it is for the Weibull claim size.

We now present the numerical performance of these estimators for SN , where N ∼
Geo(1− ρ). The magnitudes of the ruin probability considered are 10−2, 10−3 and 10−4,

and the sample size is 107. In Tables 1–3 below, we show the relative error of estimators

Z3(x), Z4(x) and Z5(x).

Table 1 Results for the Pareto claim size with δ = 0.5

ρ α(x) Z3(x) Z4(x) Z5(x)

0.25 9.995×10−3 1.140 0.1272 0.4857

0.25 1.000×10−3 1.569 0.0134 0.5237

0.25 1.000×10−4 1.927 0.0014 0.4999

0.5 9.997×10−3 1.785 0.0449 0.6948

0.5 3.020×10−3 2.078 0.0446 0.7172

0.5 9.999×10−5 2.618 0.0005 0.6159

0.75 9.998×10−3 1.611 0.0149 0.8587

0.75 1.000×10−3 2.186 0.0015 0.9337

0.75 9.998×10−5 2.459 0.0001 0.7501

Table 2 Results for the Pareto claim size with δ = 1.0

ρ α(x) Z3(x) Z4(x) Z5(x)

0.25 1.068×10−2 1.4255 0.3954 1.3048

0.25 1.011×10−3 1.8422 0.0766 1.7344

0.25 1.001×10−4 2.1199 0.0082 1.9813

0.5 1.0955×10−2 2.1809 0.2336 2.0933

0.5 1.0136×10−3 2.7115 0.0262 2.6679

0.5 1.0015×10−4 2.9479 0.0028 2.8243

0.75 1.0816×10−2 2.7739 0.0848 2.8266

0.75 1.0162×10−3 3.4228 0.0090 3.5411

0.75 1.0015×10−4 3.9802 0.0010 3.5914
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Table 3 Results for the Pareto claim size with δ = 1.5

ρ α(x) Z3(x) Z4(x) Z5(x)

0.25 1.258×10−2 1.8169 0.5667 2.0458

0.25 1.010×10−3 2.3938 0.3645 3.7140

0.25 1.013×10−4 2.6637 0.0480 5.5750

0.5 1.514×10−2 2.7867 0.5742 3.3631

0.5 1.038×10−3 3.5447 0.1324 6.2539

0.5 1.017×10−4 3.6408 0.0208 9.2826

0.75 2.103×10−2 3.5296 0.3283 4.3116

0.75 1.032×10−3 4.4880 0.0524 9.2254

0.75 1.026×10−4 4.8918 0.0096 13.675

Recall that Z4(x) is logarithmically efficient for the Weibull claim size only when

β < 0.585. One may wonder how much more reduction can be made by combining control

variate with Z4(x). So, we define

Z6(x) = Z4(x)− c[I{X(n−1) > x/e} − P{X(n−1) > x/e}],

where the lower bound of X(n−1) is chosen empirically. Nevertheless, the improvement is

not substantial. The following is shown in [9]:

Theorem 23 When F (x) ∼ x1−βe−x
β

, Z6(x) is logarithmically efficient for β < 0.65.

A recent efficient estimator using a control variate which targets on lighter heavy-tails

is proposed in [3]. With the fact that for large x, the major variance of Z4(x) comes from

Sn−1f(x), it is natural to use the term as a control variate, which leads to the estimator

Z7(x) = Z4(x) + n[E(Sn−1)− Sn−1]f(x).

Theorem 24 Assume that 0 < β < 0.585. Then Z7(x) has vanishing relative error.

More precisely,

Var (Z7(x)) ∼ n2

4
Var (S2

n−1)f ′(x)2.

Remark 25 Since Z7(x) has the form Z4(x) + c[Sn−1 − E(Sn−1)], it uses Sn−1 as

a control for Z4(x). It is then a question whether the c = −nf(x) at least asymptotically

coincides with the optimal c∗ = −Cov (Z4(x), Sn−1)/Var (Sn−1). The answer is yes by the

fact proved in [3] that

Cov (Z4(x), Sn−1) = nVar (Sn−1)f(x) + o(f(x)).
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4.3 Importance Sampling Algorithms

Although the ECM is impossible for a heavy-tail distribution, other means of impor-

tance sampling can be considered. Suppose that the density f of Xi can be changed to f̃ .

If f̃ does not depend on x, we have the result below:

Theorem 26 Let F̂ be the distribution with the density proportional to f2/f̃ . If F̂

is subexponential and satisfies

lim inf
n→∞

| ln(1− F̂ (x))|
2| ln(1− F (x))|

> 1,

then the importance sampling algorithm given by f̃ is logarithmically efficient.

Proof Let ĉ =
∫∞

0 f2/f̃ . Then, by Lemma 6, the second moment of the estimator

is

Ẽ
[( n∏

i=1

f(Xi)

f̃(Xi)

)2
I{Sn > x}

]
= ĉ−nP̂(Sn > x) ∼ ĉ−nn(1− F̂ (x)),

where the last step is due to the subexponentiality of F̂ . Since α(x) ∼ n(1− F (x)) and ĉ

does not depend on x, the second assumption on F̂ implies that Eq. (4) holds. �

Example 27 If F is regularly varying with δ > 1, one can take the tail of F̃ as, e.g.,

1/ ln(e + x) (then F̃ is a regularly varying distribution with δ = 1). Indeed, f̃ = L1(x)/x

and Karamata’s theorem: ∫ ∞
x

L(y)

yδ−1
dy ∼ L(x)

(δ − 2)xδ−2

for a slowly varying function L imply

1− F̂ (x) = c1

∫ ∞
x

L2(x)/x2δ

L1(x)/x
dx ∼ c2

L2(x)

x2δ−2
,

where L1 and L2 = L2/L1 are slowly varying.

Theorem 26 is, however, one of the notorious reminders that a limit theorem does

not always tell the truth on how an algorithm performs for a given set of parameters. All

numerical experiments by the estimator show poor performance.

Finally, it is worth mentioning that two recent papers propose algorithms in the

setting of dynamic importance sampling, [6] and [7]. Both of them have vanishing relative

error. However, these algorithms are quite complicated than those introduced here.

§5. Exact Simulation

We now turn to the second topic of this report.
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Let {X(t), t > 0} (or {Xn, n ∈ Z+}) be a stochastic process in continuous (discrete)

time. Suppose that the time-average limit, α, exists and is to be estimated.

In most applications and our study here, X(t) is a Markov process. A stronger

condition than the existence of the time-average limit is the existence of the stationary

distribution (or equilibrium, steady-state distribution), π, say, by the ergodic theorem on

Markov processes.

Generally, π is not known explicitly, and the commonly used algorithm for computing

such steady-state quantities would be

αt =
1

t

∫ t

0
X(s)ds→ α,

as t→∞ that is based on the LLN.

However, there are two principle difficulties in the approach:

(i) αt is generally biased due to the initial effect as it usually starts from a nonequi-

librium distribution; in other words, the data gathered during the initial transient can not

represent the steady-state behavior of the system and, thus, is biased.

(ii) since αt is produced from a single realization of the process, embedded dependence

prevents our using C.L.T. to construct confidence intervals.

The common practice to deal with difficulty (i) is to discard the data gathered during

this period. One would let the simulation warm up before collecting any data. However,

how long the warm-up period must be is also a problem that has no satisfactory answer.

Thus, how to generate samples from a stationary stochastic process has long been the key

subject in steady-state simulation.

Clearly, if it were possible to generate the random variable with the stationary distri-

bution, we could avoid the bias by using the stationary distribution as the initial one to

have a stationary Markov chain (MC) to begin with. Such generation is called exact sam-

pling, or perfect simulation. By the development in the past two decades, exact simulation

has become possible for certain stochastic models.

The first algorithm of exact simulation was proposed in 1992 by Asmussen, Glynn &

Thorisson [2], for a class of finite MC’s. However, it was prohibitively inefficient in terms

of computer time. A few years later, Propp & Wilson [14] used the idea of coupling from

the past (CFTP) to construct an algorithm for perfect sampling. In this report, we will

introduce both methods and related applications. We shall also note here that this topic

remains an active research area.
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§6. Detection of Stationary

6.1 Regenerative Processes

A stochastic process {Y (t) : t > 0} is called regenerative if there exists a subsequence

0 = T (0) < T (1) < T (2) < · · · < ∞ of random times (the regenerative points) such that

the cycles

{Y (T (k) + s) : 0 6 s < T (k + 1)− T (k)}

are independent for different k and have the same distribution for k > 1. For expositions

of the theory of regenerative processes, see [19].

The regenerative process can be viewed as a function of a MC {X(t)}: define A(t) =

t− T (k) as the age of the cycle when T (k) 6 t < T (k + 1), and let X(t) = (A(t), Y (t)).

The existence of limiting time average of functions f of a regenerative process holds

without further conditions, provided only that E[T (2) − T (1)] < ∞. The existence of a

limiting distribution, in the sense of weak convergence, is a more technical topic and in-

volves conditions on the distribution of T (2)−T (1). However, for the purpose of stationary

simulation it is the existence of time average that matters, not of a limiting distribution.

Example 28 Let Y (t) be the workload at time t of a GI/G/1 queue, and T (0), T (1),

. . . be the epochs on customers entering an empty system. Thus, cycles 1, 2, . . . are simply

the conventional busy cycles (a busy period followed by an idle period).

If the arrival process is Poisson, an M/G/1 queue, one can alternatively let T (0), T (1), . . .

be the epochs on customers departing to leave the server idle. Thus, a cycle becomes an

idle period followed by a busy period. This definition works by the memoryless property of

the exponential distribution. Otherwise, the evolution of the process after the start of an idle

period depends on the residual arrival time at that instant.

Example 29 Reflected Brownian {Y (t)} can be viewed as a continuous-state queue-

ing or storage model. So, it is tempting to copy the busy period construction from the

previous example by letting T (0) = 0, T (1) = inf{t > 0 : Y (t) = 0}, T (2) = inf{t > T (1) :

Y (t) = 0}, and so on. However, sample path properties of Brownian motion imply that this

definition yields the unusable 0 = T (0) = T (1) = · · · . Thus, we should define

T (k + 1) ≡ inf
{
t > T (k) : Y (t) = 0 and sup

T (k)6s6t
Y (s) > 1

}
.
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6.2 Asmussen-Glynn-Thorisson Algorithm

Consider a continuous-time regenerative process {X(t), t > 0}. Define the initial cycle

C0 = {X(t), 0 6 t < T (0)} with a distribution possibly differing from the remaining cycles

Ck = {XT (k−1)+t, 0 6 t < T (k)− T (k − 1)}, k = 1, 2, . . . ,

where C1, C2, . . . are i.i.d. We write X = (C0, C1, . . .) and C for generic cycle, τ for its

length.

We start with the construction of a stationary regenerative process.

Proposition 30 (a) Assume that the distribution of C0 has density

P(C0 ∈ ·) =
1

E(τ)
E(τI{C ∈ ·}).

Let U ∼ U(0, 1) and define X∗(t) = X(t+ UT (0)). Then, X∗ is a stationary version

of X.

(b) Assume that the distribution of T (0) has density P(τ > t)/E(τ) and

P(C0 ∈ · |T (0) = t) = P(θtC ∈ · | τ > t),

where θtC = {X(s+ t), 0 6 s < τ − t}. Then X is stationary.

Part (a) is intuitive that a stationary version of X can be obtained by constructing

C0 from the generic cycle C by first length-biasing with τ and next placing the time

origin uniformly within the cycle. Part (b) leads to the following algorithm, in which the

stationary cycle random variable τ∗ defined as having the equilibrium density function

P(τ > x)/E(τ):

Proposition 31 For a regenerative process with simulatable τ∗, its stationary version

can be generated by simulating C0 as follows: Generate τ∗ and successive cycles C ′1, C
′
2, . . ..

Let σ be the first k with τ ′k > τ∗, and take C0 = θτ∗C
′
σ.

Example 32 To generate a stationary version of an M/G/1 queue is an easy problem

under the FIFO discipline, since the stationary distribution of the workload (and hence the

delay) can be generated by the Pollaczeck-Khinchine formula (see (14) in Section 6.3). For

other service disciplines that are work-conserving, i.e., the workload process has the same

distribution as under FIFO, the simulation of a stationary workload process does not present

new problems.

Suppose that we want to simulate a stationary version D∗0, D
∗
1, D

∗
2, . . . of the sequence of

delays of customers 0, 1, 2, . . . in the processor-sharing queue (this sequence is stochastically
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different than the one under FIFO). We take customers arriving to an empty system as regen-

eration points which are the same as under FIFO. Therefore, we can generate the stationary

FIFO delay by the Pollaczeck-Khinchine formula and construct the FIFO delay sequence by

the Lindley recursion (see [19; p.406]) until a customer sees an empty system upon arrival.

The desired stationary cycle length τ∗ is then the number of customers served until then,

and to complete the construction of C0, one simulates C ′1, C
′
2, . . . using the processor-sharing

discipline.

A general criterion for the ability to simulate a stationary version of a regenerative

process is the availability of an integrable function b(t) of explicit form such that P(τ >

t) 6 b(t), complemented with a (typically more easily available!) lower bound P(τ > t) >

q(t) > 0.

Theorem 33 An algorithm for generating τ∗ is the following:

1. Generate T from the density h = b/
∫
b. Fix δ > 1 and write t = T , g = g(t) = δb(t),

q = q(t), p = P(τ > t).

2. Choose n > 1 such that δ(1− gn) > 1 when g < 1, and g 6 q/(1− q)n when g > 1.

3. From the simulated values of T , generate a Bernoulli(p/g) random variable V using

the Keane-O’Brien algorithm (see [10]) with n as in Step 2.

4. If V = 1, return τ∗ = t. Otherwise, return to Step 1.

This algorithm is an acceptance-rejection algorithm, accepting a random variable from

h(t) with probability P(τ > t)/g(t). Since both h(t) and g(t) are proportional to b(t), the

output τ∗ therefore has density proportional to P(τ > t) as desired.

Proof We only need to prove that Step 3 is feasible, this means that we should

have

min{p/g, 1− p/g} > (min{p, 1− p})n.

We first show that p/g is at least either pn or (1 − p)n. If g 6 1, then p/g > pn because

of n > 1. If g > 1, then

p

g
=

p

(1− p)n
1

g
(1− p)n > p

(1− p)n
(1− q)n

q
(1− p)n > (1− p)n

since 1 > p > q.

For the similar lower bound of 1−p/g, note first that 1−p/g > 1−p > (1−p)n when

g > 1. If g < 1, we will show that 1− p/g > pn. This will hold if 1− p/g > gn, which in

turn is equivalent to p 6 g − gn+1. The truth of this follows from

g − gn+1 = δb(t)(1− gn) > b(t) > p. �
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Example 34 For a simple yet interesting example in which an upper bound on P(τ >

t) can be obtained, consider an (s, S)-policy with state space {0, 1, . . . , S}. Items are removed

at Poisson (λ) times, and when the inventory level makes a transition from s+1 to s, a supplier

is called and arrives after a random time Z (the lead time) to replenish the inventory to S.

As regeneration times, we take the times of transition s+1→ s. If Z is stochastically smaller

than the Γ(α, λ′) distribution for some α and some λ′ > λ, an upper bound on P(τ > t)

is then the tail probability b(t) of a Γ(α + S − s, λ) distribution. A (trivial) lower bound is

q(t) = P(Z > t). If instead λ′ 6 λ, use the Γ(α+ S − s, λ′) distribution as an upper bound.

As a final remark for this approach, we note that in the final step of exact simulation

(say, in Proposition 31), it may require to generate many cycles before obtaining one that

has larger cycle length than τ∗, i.e., σ has a heavy tail. In fact, suppose τ ∼ exp so that

τ∗
D
= τ . We have

E(σ) =
∞∑
i=1

P(σ > i) =
∞∑
i=1

1

i
=∞.

It is a drawback and invites for improvement.

6.3 An Application by [17]

Suppose that {Xn : n > 0} is a positive recurrent discrete-time regenerative process,

with i.i.d. cycle lengths generically denoted as T ∼ F with E(T ) = τ < ∞. A generic

cycle is thus C = {Xn : 0 6 n < T}. From regenerative process theory, the (marginal)

stationary distribution π is given by

π(·) =
1

τ
E
( T−1∑
n=0

I{Xn ∈ ·}
)

=
1

τ
E
( T∑
n=1

I{Xn ∈ ·}
)
.

The result below, presented in discrete time, is from Proposition 31.

Proposition 35 1. Suppose we can and do simulate i.i.d. copies of C = {Xn :

0 6 n < T}, denoted by Cj = {Xn(j) : 0 6 n < Tj}, j > 1, having i.i.d. cycle lengths

{Tj} distributed as F .

2. Suppose further that we can and do simulate (independently) one copy T e distributed

as P(T e = n) = P(T > n)/τ , n > 1.

3. Let σ = min{j > 1 : Tj > T e}.

4. Use cycle Cσ to construct X∗ = XT e(σ) (e.g., if T e = n and σ = j, then X∗ = Xn(j)).

Then the simulated random element X∗ is distributed as π.
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Proof Conditional on T e = n, it holds that σ = min{j > 1 : Tj > n}, and thus Cσ

simply has the distribution of a first cycle given that its length is greater than or equal to

n:

P(X∗ ∈ · |T e = n) = P(Xn ∈ · |T > n) =
P(Xn ∈ ·, T > n)

P(T > n)
.

Since P(T e = n) = P(T > n)/τ , we obtain

P(X∗ ∈ ·) =
∞∑
n=1

P(Xn ∈ ·, T > n)

P(T > n)

P(T > n)

τ
=

1

τ
E
( T∑
n=1

I{Xn ∈ ·}
)

= π(·). �

Now, consider a FIFO M/G/c queue, c > 2, with Poisson arrival times {tn : n > 1}
at rate λ, and i.i.d. service times {Sn : n > 0} that have distribution function G with

finite mean E(S) = 1/µ.

With i.i.d. interarrival times An = tn+1 − tn, let Wn = (Wn(1),Wn(2), . . . ,Wn(c))

denote the Kiefer-Wolfowitz workload vector (see [19; p. 494]). It satisfies the recursion:

Wn+1 = R(Wn + Sne−Anf)+, (11)

where e = (1, 0, . . . , 0), f = (1, 1, . . . , 1), and R places a vector in ascending order. Notice

that Dn = Wn(1) is then the delay in queue of the nth customer.

This recursion defines a MC due to the given i.i.d. assumptions, and whenever Wn =

0, the chain regenerates with initial condition W0 = 0. The event Wn = 0 is equivalent

to “the nth arrival finds the system empty”.

With ρ = λ/µ < c, it is well known that Wn converges in distribution to a proper

stationary distribution, denoted as π. In this section, we show an algorithm for sam-

pling exactly from π. Our only assumption is that we can simulate from both G and its

equilibrium version Ge.

Given a c-server queueing model, the random assignment (RA) is when each of the c

servers forms its own FIFO single-server queue, and each arrival to the system, independent

of the past, equally likely to join any queue.

Let QF(t)(QRA(t)) denote total number of customers in system at time t for the FIFO

(RA) M/G/c queue, where both models are initially empty and fed exactly the same input

of Poisson arrivals {tn} and i.i.d. service times {Sn}. Assume further that for both models

the service times are used by the servers in the order in which service initiations occur (Sn

is the service time used for the nth such initiation). Then, it is shown (see [1; p. 342])

P{QF(t) 6 QRA(t), ∀ t > 0} = 1. (12)
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Hence, we can jointly simulate versions of two stochastic processes {QF(t)} and

{QRA(t)} while achieving a coupling such that (12) holds. In particular, whenever an

arrival finds the RA model empty, the FIFO model is found empty as well.

For the RA model, let Q(t) = (Q1(t), Q2(t), . . . , Qc(t)), where Qi(t) denotes the

number of customers in the ith queue at time t (including the number in service, if any),

and let Qn = Q(t−n ) denote the number in system at the nodes found by the nth arriving

customer. Thus, we can simulate the discrete-time process Qn, starting Q0 = 0, until it

empties again. Consecutive visits of Qn to 0 constitute positive recurrent regeneration

points for the RA models. These also serve as positive recurrent regeneration points for

the FIFO model due to (12), i.e., if Qn = 0, then Wn = 0.

So, a generic cycle length T is defined by initializing Q0 = 0 and setting

T = min{n > 1 : Qn = 0}. (13)

To generate a sample of T requires a standard discrete-event simulation of {Q(t)},
where the events are an arrival versus a service completion, and a service time S is gener-

ated only when it is needed for processing by a server to ensure that (12) applies.

The sequential generated input random variables are i.i.d. service times Sn ∼ G,

i.i.d. interarrival times An ∼ exp(λ), and i.i.d. random selections Un ∼ discrete uniform

distribution over {1, 2, . . . , c}. If Un = i, then the nth arrival joins the ith queue.

At time t0 = 0, U0 is generated, and a server is randomly selected according to U0

and begins service for a generated service time S0 (e.g., the system is found empty by an

initial customer who starts the cycle). The number in system at queue U0 is increased

to 1. A0 is then generated so as to schedule the next arrival. The simulation continues

into the future analogously until an arriving customer finds the entire system empty, thus

ending the RA cycle.

We do not simulate the FIFO model until the RA cycle is complete, at which time

we use the input that was used for the RA cycle to construct the FIFO cycle for the

workload vector in (11): store the T service times {S0, S1, . . . , ST−1} as well as the T

interarrival times {A0, A1, . . . , AT−1} so they can be used to construct the FIFO cycle

C = {W1,W2, . . . ,WT } by using recursion (11) with W0 = 0, from n = 0 up to T − 1.

To employ Proposition 35, we need to be able to simulate a copy of T e. We shall utilize

the fact that T e has the stationary excess distribution (stationary forward recurrence time

distribution) of the (discrete-time) renewal process of visits of the RA model to the empty

state (this renewal process has i.i.d. cycle lengths distributed as T ). By the definition of
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the RA regeneration points, if we take a stationary version of {Qn : n > 0}, denoted by

{Q∗n : n > 0}, then T e = min{n > 1 : Q∗n = 0}.
Since to obtain a stationary version of the RA model we only need to consider the

RA model by itself, independently of the FIFO model (recall Step 2 of Proposition 35),

we can just assign service times upon arrival. Also, because arrivals are Poisson, and

we randomly partition them into c independent Poisson processes each at rate λ/c, we

can simply treat each server as its own independent stable FIFO M/G/1 queue with

Poisson arrivals at rate λ/c < µ. Moreover, we can model workload instead of number in

system since they both empty together and thus share the same regeneration times. The

stationary workload distribution at each queue is thus given by the Pollaczeck-Khinchine

formula. The stationary delay has the representation

D =
L∑
j=1

Yj , (14)

where the {Yj} are i.i.d., ∼ Ge(x) = µ
∫ x

0 P(S > y)dy, x > 0, and L ∼ Geo(1− λ/µ) that

is independent with {Yj}.
To put this to use: Letting Vn = (Vn(1), Vn(2), . . . , Vn(c)) denote workload (at each

node) as found by the nth arriving customer to the RA model, we have, for each node

i ∈ {1, 2, . . . , c},

Vn+1(i) = (Vn(i) + SnI{Un = i} −An)+, n > 0.

Thus, {Vn : n > 0} forms a Markov process due to the i.i.d. assumptions on the input.

Denote the corresponding continuous-time process by V (t) = (V (t, 1), V (t, 2), . . . , V (t, c)),

where V (t, i) denotes the workload at the ith node at time t > 0, and Vn = V (t−n ), n > 1.

From Poisson arrivals see time averages (PASTA) (see [19; p. 293]), the limiting stationary

distribution of Vn, as n→∞, is identical with that of V (t), as t→∞. But the coordinates

of V (t), namely V (t, 1), V (t, 2), . . . , V (t, i), are i.i.d. copies of workload for the M/G/1

queue. Thus, the joint time-stationary distribution of workload is given by

(D(1), D(2), . . . , D(c)), (15)

where the D(i) here are i.i.d. distributed as D in 14.

We conclude that the stationary distribution for {Vn : n > 0} is the same as (15) and

thus the proportion of arrivals who find the RA system empty is given by Pc(D = 0) =

(1 − ρ1)c > 0; visits to the empty state constitute positive recurrent regeneration points;

E(T ) <∞.
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With V0 = 0, we have an identically distributed version of a cycle length (13) given

by T = min{n > 1 : Vn = 0}. So, if we start it off with V0 distributed as in (15), then

the process will be a stationary version, denoted by {V ∗n : n > 0}. We conclude that

T e = min{n > 1 : V ∗n = 0}.

Algorithm for simulating T e:

1. Initializing V0 = (D(1), D(2), . . . , D(c)).

2. Simulate sequentially {Vn} until time T e = min{n : Vn = 0}.

We conclude the approach below, in which we only need to assume that we can

simulate from both G and Ge:

Algorithm for simulating stationary W :

1. Simulate a copy of T e. Set k = T e.

2. Independently generate T .

3. If T < k, then go back to Step 2.

4. Construct the FIFO cycle C = {W1,W2, . . . ,WT }. Set W = Wk.

5. Output W .

§7. Coupling from the Past

7.1 Coupling Method

Suppose that some comparison of probability measures on a measurable space is to

be carried out. For that purpose, it is sometimes possible, and then often rewarding,

to construct random variables on a common probability space, with these measures as

distributions, in such a way that the comparison may be carried out in terms of the

random variables. Such a construction is called a coupling.

In this section, we briefly review the coupling of MC’s and its asymptotic properties

such as asymptotic stationarity.

Let {Xn} be an ergodic (which in the finite case means irreducible and aperiodic) and

positive recurrent MC with a countable state space S with transition probability matrix

P . It is a classical result that Xn approaches stationarity as n → ∞, regardless of the

initial distribution {λi}:

P(Xn = j) =
∑
i
λip

(n)
ij → πj as n→∞, (16)
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where {πi} is the unique stationary distribution. The coupling proof of (16) is the follow-

ing:

We first let {X ′n} be a copy of {Xn}, independent of Xn, governed by P and station-

ary; the latter property is achieved by letting X ′0 ∼ π. Next, define {X”n} by

X ′′n =

Xn if n < τ ;

X ′n if n > τ,

where τ = min{k : Xk = X ′k}. We thus construct a coupling of Xn and X ′n at τ , the

coupling time, such that

|P(Xn = j)− πj | = |P(X ′′n = j)− P(X ′n = j)|

= |P(X ′′n = j, τ 6 n) + P(X ′′n = j, τ > n)

− P(X ′n = j, τ 6 n)− P(X ′n = j, τ > n)|

= |P(X ′′n = j, τ > n)− P(X ′n = j, τ > n)|.

From above, we have |P(Xn = j) − πj | 6 P(τ > n), and thus, (16) follows if the

coupling is successful, i.e., if τ <∞ almost surely.
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Figure 1 Classical coupling of two discrete-time MC’s

7.2 Propp-Wilson Algorithm

Consider a MC with state space S = {1, 2, . . . , k} and transition probabilities pij ,

i, j ∈ S. We assume that the MC is ergodic.

We will use an updating rule to represent the MC simulation, which involves a random

mapping

E = (E(1), E(2), . . . , E(k))
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such that E(i) ∈ S with distribution pi, i.e., P{E(i) = j} = pij . Note that the k

components of E are not necessarily independent. We shall return to this point later.

From E, we then construct {Xn, n = 0, 1, . . .} recursively by Xn+1 = E(Xn) and let

X0 = i, the initial state. More generally, we can define a version {XN
n (i), n = N,N+1, . . .}

of {Xn} starting from i at time N by

XN
N (i) = i,XN

N+1(i) = E(i) = E(XN
N (i)), . . . , XN

n+1(i) = E(XN
n (i)).

The forward coupling time is defined as

τ1 = inf{n > 1 : X0
n(1) = X0

n(2) = · · · = X0
n(k)},

which is the first time at which the MC

{X0
n(1), n > 0}, {X0

n(2), n > 0}, . . . , {X0
n(k), n > 0}

started at time 0 from k different states coalesce. See Figure 2.
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Figure 2 The forward coupling

Whether the forward coupling time is finite almost surely depends on the updating

rule, that is, the specific dependence between the k components of E. Call the updating

rule independent if these components are independent.

Proposition 36 For independent updating, P(τ1 <∞) = 1.

Proof Let p
(n)
ij = P(Xn = j |X0 = i), the n-step transition probability. Since

p
(n)
ij → πj > 0, there exists an N and positive ε such that p

(N)
ij > ε > 0 for all i ∈ S.

Hence, the probability that k independent MC’s starting at time 0 from k different states

will all be in state j at time N is P(τ1 6 N) > εk. Similarly, P(τ1 6 2N | τ1 > N) > εk so

that

P(τ1 > N) 6 1− εk, P(τ1 > 2N) 6 (1− εk)2, . . . ,

《
应
用
概
率
统
计
》
版
权
所
有



No. 3 WANG C. L.: Some Recent Advances in Stochastic Simulation 251

which implies that τ1 <∞ a.s. �

Instead of forward coupling, Propp and Wilson propose an algorithm that uses cou-

pling from the past (CFTP). This method is based on the principle that a MC that has

already been running for an infinitely long time has reached its stationary distribution.

To obtain a random sample, CFTP “figures out” what state the MC is in at a given time,

by looking at a finite but unbounded number of randomizing operations used prior to that

time.

In particular, the backward coupling time is defined as

τ2 = inf{n > 1 : X−n0 (1) = X−n0 (2) = · · · = X−n0 (k)},

the first time at which the MC

{X−n0 (1), n > 0}, {X−n0 (2), n > 0}, . . . , {X−n0 (k), n > 0}

started at time −n from k different states coalesce. It will remain true from τ2 onward, that

is, from all earlier −n’s. Equivalently, coalescence means that the set {X−n0 (1), X−n0 (2),

. . . , X−n0 (k)} contains only one point. Note that the cardinality of this set is a nonincreas-

ing function of −n. See Figure 3.
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Figure 3 The backward coupling

Theorem 37 For the updating rule such that τ1 < ∞ a.s., τ2 < ∞ a.s. as well.

Furthermore, X−τ20 (i) does not depend on i and has distribution π.

Proof The first statement follows since P(τ2 6 k) = P(τ1 6 k) → 1 as k → ∞.

That X−τ20 (i) does not depend on i is from the definition of τ2.

Now consider X−n0 (i) for some fixed i. On τ2 6 n, we have X−n0 (i) = X−τ20 (i)

and hence P(X−n0 (i) = j) → P(X−τ20 (i) = j) as n → ∞ for all i. On the other hand,

P(X−n0 (i) = j) = pnij → πj . Hence, P(X−τ20 (i) = j) = πj as desired. �
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The introduction of forward coupling time is only for showing that the backward

coupling time is finite. It is important to note that X0
τ1(i) is not stationarily distributed.

The next result is for general MC’s.

Corollary 38 For independent updating, τ2 <∞ a.s., X−τ20 (i) does not depend on

i and has distribution π.

Now assume that there is some partial order � on S such that 1 is the minimal

element and k is the maximal one. Also, we say that {Xn} is stochastic monotone if

i � j implies X0
1 (i) � X0

1 (j) in stochastic order, which, to be put in terms of transition

probability, becomes

∑
m>l

pim 6
∑
m>l

pjm for all l if i � j.

Example 39 A random walk reflected at the barrier 0 and k,

Xn+1 = min(k,max(0, Xn +Bn)),

is a monotonic MC, where Bi’s are i.i.d. integers. Such chains appear in many finite buffer

queueing problems, or dam models.

Under the monotonicity assumption, a variant of the Propp-Wilson algorithm is often

more efficient. It is defined by monotone updating that requires

E(i) � E(j) if i � j.

It implies XN
n (i) � XN

n (j) for all N and all n > N . In particular, for all i,

XN
n (1) � XN

n (i) � XN
n (k). (17)

For instance, in Example 39 the natural monotone updating rule is E(i) = min(k,

max(0, i + B)) with the same B for all i. As for the independent updating, one would

need to take the B’s to be independent for different i.

Define

τ3 = inf{n > 1 : X−n0 (1) = X−n0 (k)}.

Figure 4 below depicts the monotone coupling.
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Figure 4 The monotone coupling

The following result is for stochastically monotone MC’s:

Corollary 40 For monotone updating, τ3 6 τ2 < ∞ a.s., X−τ30 (i) does not depend

on i and has distribution π.

Proof Let τ(k, 1) = inf{n > 1 : X0
n(k) = 1}. By the recurrence, τ(k, 1) is finite and

X0
τ(k,1)(i) = 1 for all i by (17). Clearly, by the definition, τ3 6 τ2. On the other hand,

X−τ30 (i) = X−τ30 (1) = X−τ30 (k) for all i by (17). �

7.3 Read-Once CFTP and PASTA

A few years after the birth of CFTP, Wilson [18] developed a variant of CFTP which

only runs the MC forwards in time and never restarts it at previous times in the past.

Because the method can be run using a read-once stream of randomness, it is called read-

once, or forward, CFTP. The memory and time requirements of read-once CFTP are on

par with the requirements of the usual form of CFTP, and for a variety of applications the

requirements may be noticeably less. Here, we introduce the version of read-once CFTP

that incorporates with PASTA.

Generally speaking, read-once CFTP may be viewed as a retroactive stopping rule.

It applies random transitions going forward in time, and then at some point it decides to

stop, and then returns not the current state, but some previous state. The engine of read-

once CFTP is a composite random transition procedure (see [18; Figure 3 on p. 92]) that

generates a random map and determines whether or not the map is coalescent (i.e. whether

or not it maps all states to one state). Then, it evaluates the map at a given input state

to obtain an output state. If the procedure determines (by examining the representation
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of the superset of the image of the map) that the random map is coalescent, then we say

that the map is “officially coalescent”. Otherwise the map is not officially coalescent.

Intuitively, suppose the composite transition procedure gave us the entire random

map rather than just evaluating it at one state. Then we could do CFTP, composing new

composite maps going back in time. Let f−T be the first (the smallest T > 0) composite

map that is officially coalescent. As being conditioned to be officially coalescent, f−T is

independent of T . Let S be the state in the image of f−T . CFTP would then apply the

composite maps f−T+1, f−T+2, . . . , f−1 to S, and return the result. The composite maps

f−T+1, f−T+2, . . . , f−1 are i.i.d. random composite maps conditioned not to be officially

coalescent, and are independent of S. So we could equivalently generate T−1 fresh random

composite maps conditioned not to be officially coalescent, and apply them to S. We can

simply update S using fresh composite random maps, until one of the maps is officially

coalescent.

In read-once CFTP, an event occurs when a composite map is officially coalescent.

Imagine first randomly picking those integral times at which events occur. If there is an

event at a given time, then the MC is updated by a random composite map conditioned to

be officially coalescent, otherwise it is updated by a random composite map conditioned

not to be officially coalescent.

Furthermore, a discrete-time version of PASTA states that the distribution of the

MC sampled at times just prior to when events occur will be identical to the steady-state

distribution of the MC. Thus, we draw random samples from the MC at times just prior

to when the composite maps are officially coalescent so that the steady-state distribution

of the sample will be the steady-state distribution of the MC.

While PASTA is a statement about the steady-state behavior of the draws; in read-

once CFTP the first several draws taken at positive times will be out of equilibrium. In

this particular application of PASTA, since there is a coalescent map between draws, not

only are draws after the first one easy to compute, but they also must be independent

of one another. Since the draws are independent, any particular draw is already in the

steady-state distribution. Read-once CFTP ignores the first draw (since it is neither in

equilibrium nor easy to compute), and outputs the subsequent draws until the desired

number of independent perfectly random samples are generated.

An advantage of read-once CFTP over CFTP is that one does not need to keep track

of pseudorandom number generator seeds. When many independent samples are desired,

CFTP typically keeps track of seeds for a number of independent streams of pseudorandom

numbers, whereas read-once CFTP needs only one good-quality stream of pseudorandom
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numbers to produce a large number of samples.

As a remark, one may perceive that CFTP and PASTA are not completely unrelated

ideas. The “time zero sees time averages” principle behind CFTP can be used to derive

the “Poisson arrivals see time averages” in both the continuous and discrete settings.

7.4 An Application by [13]

In a queueing system, the fraction of arrivals finding the queue in some state, the

customer average, is not necessarily the same as the fraction of time the queue in that

state, the time average. In this subsection, new proofs relating time averages and customer

averages are presented, which is based on the read-once CFTP idea for discrete-time MC’s.

Consider a queueing system having a renewal customer arrival process, and let Q(t)

be the state of the system at time t, immediately prior to any arrival which may occur

at that time. Let X1, X2, . . . be i.i.d. customer interarrival times and Tn =
n∑
i=1

Xi be

the arriving time of the nth customer. We suppose that the state of the system encodes

the amount of time each customer has been in service, along with their positions in the

system, so that Q(Tn), the state seen by arrival n, is a MC. Let S denote the state space

and 0 ∈ S correspond to the system being empty.

Suppose for some p > 0 that

Ps,0 = P{Q(Tn+1) = 0 |Q(Tn) = s} > p for all s,

and construct {Jn} as an i.i.d. Bernoulli sequence with parameter p such that whenever

Jn = 1 then Q(Tn) = 0. Specifically, let {Ui} be i.i.d. U(0, 1) random variables, and

Jn = max
s∈S

I{Q(Tn−1) = s, Q(Tn) = 0, Un < p/Ps,0}.

That is, Jn = 1 if, for some s, the state seen by arrival n− 1 is s, the state seen by arrival

n is 0, and the corresponding uniform is less than p/Ps,0.

We say that random variable Z taking value in S has the time average steady-state

(stationary) distribution if

P(Z ∈ A) = lim
t→∞

1

t

∫ t

0
I{Q(s) ∈ A}ds

for any set of states A. For X ∼ F , we say that Xe has the equilibrium distribution if

P(Xe 6 x) =
1

E(X)

∫ x

0
P(X > s)ds.

Its density is fe(x) = P(X > x)/E(X).
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Suppose that the system is empty at time 0 and say that a new cycle begins at time

TN , where N = min{n > 0 : Jn = 1} denotes the number of arrivals in the first cycle.

Also, let Qn(t) be a random variable, independent of all else, with distribution

P{Qn(t) 6 m} = P{Q(Tn + t) 6 m |Tn + t < Tn+1, n 6 N}.

Note that this means that Qn(t) is independent of both N and Q(t), though its distribution

is defined in terms of the distribution of Q(t) and N .

We now state following result, which is an extension to the read-once CFTP. We refer

readers to [13] for the detailed proof.

Proposition 41 With the above definitions, the variable QN−1(Xe) has the time

average steady-state distribution.

Sketch of the proof Let N = min{n>0 : Jn=1} and RA be the amount of time

spent in A during the first cycle, then

RA =

∫ TN

0
I{Q(s) ∈ A}ds.

By the renewal reward theorem, we have

P(Z ∈ A) =
E(RA)

E(TN )
.

Because N is a stopping time for the sequence of interarrival times, Wald’s equation gives

E(TN ) = E(X)E(N) = E(X)/p.

Now, the desired result will be shown by proving

E(RA) =
P{QN−1(Xe) ∈ A}E(X)

p
. �

The variable QN−1(Xe) can be simulated as follows. Simulate the queue until a cycle

ends, let s = Q(TN−1), generate Xe, start a completely independent simulation of the

queueing system from state s at time 0 without any arrival, and output the state of this

independent simulation at time Xe. Note that this is not the same as simply outputting

the state Q(TN−1 +Xe), since Qn−1(t) is defined to be independent of all else (including

N) and, thus, N does not indicate the end of a cycle in the system Qn−1(t).

On the other hand, we say that W taking value in S has the customer average steady-

state distribution if

P(W ∈ A) = lim
n→∞

1

n

n∑
i=1

I{Q(Ti) ∈ A}.
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Fix a parameter p > 0, and suppose that each customer, independently of all else,

with probability p is labeled as an exploding customer. Immediately after the arrival of

such a customer, the system is instantly cleared of all customers and enters state 0. Now

let Jn be the indicator variable equal to 1 if customer n is an exploding customer. If

Jn = 1, then Q(Tn) is the system seen by an exploding arrival. We consider p > 0 and

= 0 separately.

The result below is also a version of the ‘forward’ CFTP, and allows exact simulation

of the stationary distribution of a discrete-time MC.

Proposition 42 If p > 0, then Q(TN ) has the customer average steady-state distri-

bution.

Proof Let NA denote the number of time periods when the MC is in state A during

the cycle, i.e.,

NA =
N∑
i=1

I{Q(Ti) ∈ A}.

If we suppose that a reward 1 is earned each time when the state of the chain is in A then

πA = E(NA)/E(N) = pE(NA).

Define event Bk be that a new cycle begins on the transition following the kth visit to A.

Then
NA∑
k=1

I{Bk} = I{Q(TN ) ∈ A}.

Because I{B1}, I{B2}, . . . are i.i.d. and the event {NA = n} is independent of I{Bn+1},
I{Bn+2}, . . ., it follows that

P{Q(TN ) ∈ A} = E(NA)E(I{B1}) = pE(NA).

This completes the proof. �

The next result relates time and customer averages for queues with exploding cus-

tomers.

Corollary 43 Suppose that p > 0.

1. If X is exponentially distributed, then W
D
= Z. In other words, if arrivals are from a

Poisson process, then the customer average steady-state distribution is the same as the

time average steady-state distribution.

2. Let G(s), s ∈ S, be a function of the system state having the property that, for some

partial ordering, G(Q(T )) decreases with respect to that partial ordering at all times
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at which customers do not arrive. Then G(W ) 6st G(Z) (G(W ) >st G(Z)) when

the interarrival distribution X is NBUE (NWUE). In other words, the customer average

steady-state distribution of G(Q) is stochastically smaller (larger) than the time average

steady-state distribution of G(Q) when the interarrival distribution is NBUE (NWUE).

Proof It follows from Porposition 42 that the customer average steady-state dis-

tribution is the distribution of the system state seen by exploding arrivals, which is dis-

tributed as the state seen by customers immediately preceding an exploding arrival after

a random interarrival time during which there are no new arrivals.

On the other hand, from Proposition 41, the time average steady-state distribution is

the distribution of the system state seen by customers immediately preceding an exploding

arrival after a random time, distributed according to the equilibrium distribution, during

which there are no new arrivals.

In the exploding customers model, each interarrival time is independent of the type

of customer (exploding or nonexploding). Then, because the equilibrium distribution is

the interarrival distribution for a Poisson process, the famous PASTA result, part 1, is

proven. Also, becuase the equilibrium distribution is stochastically smaller than F when

F is NBUE and is stochastically larger when F is NWUE, part 2 follows. �

Finally, the main result below relates customer and time averages for general queues.

Corollary 44 Corollary 43 holds if p = 0, under the stability condition that state 0

is positive recurrent.

We now use a simple example to illustrate this result.

Example 45 Consider a D/D/1 queue with interarrival and service times being 1 and

0.9, respectively. Then, all customers see an empty system upon arrival, i.e., the customer-

average stationary distribution of the number in system being 0 is 1. Equivalently, from

Proposition 42, N = 1, 2, . . . such that W = Q(TN ) = 0 surely.

On the other hand, the system is empty for 10% of the time and has one customer 90%

of the time. Indeed, as

P(Xe 6 x) =
1

E(X)

∫ x

0
P(X > s)ds = x, 0 < x < 1,

the equilibrium interarrival time ∼ U(0, 1). That Z = QN−1(Xe) = 0 with probability 0.1

and 1 with probability 0.9 is equal to the time-average stationary distribution as Proposition

41 says.

Finaly, W 6st Z is consistent with Corollary 44 as the constant is NBUE.
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