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Abstract

In this paper, a representation theorem is given for the weak limit of a sequence of sets in a Banach space.
We obtain Fatou’s lemmas and dominated convergence theorems for set-valued conditional expectations with
an increasing sequence of o-fields.

Keywords: Measurable multifunction, set-valued conditional expectation, weak limit, Fatou’s lemma.
AMS Subject Classification: 60G05.

§1. Introduction

Since the concept of set-valued conditional expectation was introduced by Hiai F. and Umegak H. in 1977
(1], various convergence results have been studied by many authors {1-4]. In 1984, Pucci P. and Vitillaro G. [5]
defined a new type of weak lower and upper limit of a sequence of nonempty subsets in Banach space. They
give two Fatou's lemmas and a dominated convergence theorem for Aumman integrals. Later Wang Jianhua
[6] obtained some convergence results for integrable selections in the sense of this weak limit. In [7], we give
a representation theorem for the set-valued conditional expectation. With this result, some Fatou’s lemmas
and dominated convergence theorems were obtained. All these results were limited to the case of set-valued
conditional expectation with a fixed o-field.

In this paper, we continue the work of this field. After giving a representation theorem for the weak limit
of a sequence of subsets in Banach space, we obtain new versions of Fatou’s lemmas and dominated convergence
theorems for set-valued conditional expectations with an increasing sequence of o-fields. Finally, we give a
convergence result for integrable selections. These theorems extend the earlier results.

Throughout this paper, let X be a real separable Banach space with dual X*, D* is the countably dense
subset of X* with respect to the Mackey topology M(X*, X). We will be using the following notations:

Po(.Y) = {4 C X : 4 is a nonempty subset};

Pysey(X) = {4 C X : Ais a nonempty (bounded) closed (convex) subset};

Puk(e)(X) = {4 C X : Ais a nonempty weak compact (convex) subset}.

For A € P¢(X), the support function of A is defined by
S(z*, A) = sup{(z*,z) : z € A}, Tt e X",

The norm of A is: |A] = sup{||z| : z € 4}.
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§2. Weak Limit

Let {An}n>1 C Po(X), following Pucci [5], we define:
hmAl—{xGX (z* :v)<] mS(z*, Ap), V* € X"},
hm4”__{:r:€X (z" z)<th(a: Ap), V" € X™}.

It is clear that hmAn and hm A,, are two closed convex subsets of X, and in general 11m4 - hm A,. We

say that {4, },>; is weakly convergent to 4, denoted by hm A, = A, if and only if hmA = hmA n = A
The following lemma is well known which is useful in thls paper.

Lemma 2.1 Let {a,}n>1 be a bounded real sequence, then lima, = i?{f sup a,,, where the infimum is
- n meH

taken over all cofinal subsets H of {1,2,--- ,n,---}.
Theorem 2.2 Let {4,},>1 C Po(X), we have
>

(1) Fdn= () (@ U 4n);

n=1 n=m

(2) If {4.}n>1 is uniformly bounded, i.e. there exists A € Py(X) such that A, C A,V n > 1, then

limA4, = (E U Am), where H is the same as in Lemma, 2.1.
n H meH
Proof (1) See [7].

(2) Let 2 € lim4,, for every 2* € X* and H = {n;, nq, - -}, we have

n

(z,z) < limS(z*, An) <limS(z", An;) < sup S(z*, 4n,)

n

sup S(z*,Am)=S(z*,‘c'6 U Am).

meH meH
Hence it follows by the separation theorem that z € @ |J A, and so
meH
ze n(za U Am). (2.1)
H meH

Conversely, let z € (E U Am), then 2 €@ |J A, forall H, so

H meH meH
(z*,2) < S(z*,@ U Am) = sup S(z*, An), zt e X*. (2.2)
meH meH

It follows from the arbitrariness of H and Lemma 2.1 that

(r*,z) < mf sup S(z*, Apm) = limS(z*, Anm), te X, (2.3)
H peH m

Therefore
x € limA,,. (2.4)
n

By (2.1) and (2.4), we conclude that

:ﬂ(w U Am). #

n H meH

Remark 2.3 In [7, Theorem 2], we proved that if {4,}n>1 C Po(X) and 4, € G, n > 1, with G €
Puic(X), then
imS(s*, 4,) = $(2*,lm4,),  z* e X*. (2.5)

Under the same assumptions and using the same method of the proof of the theorem, we can prove that

imS(z*, A,) = S(z*,limA,),  z* € X*. (2.6)
n n
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§3. Convergence Theorems

Let (€2, %, P) be a complete finite measure space, {Z,}n>1 an increasing sequence of complete sub-o-fields
of . We denote by ¥, = o( v Zn).
The mapping F' : Q — PT;T‘IY) is called a Y-measurable multifunction, or shortly a random set, if for any
open subset O € X, {w € : F(w)N O # ¢} € . For details we refer the reader to [8].
Lemma 3.1 If F,, : Q@ = P;(X) is a sequence of random sets, then
(1 han is measurable.

(2) If we assume further that F, Cc G, n > 1, where G is a random set taking the values in P.(X), then

limF,, is measurable.
n

Proof (1) By Theorem 2.2 (1), we have @_Fn = ﬁ (E G Fm). Thus the measurability of EIHF,1 was
followed immediately from [8, Theorem 2.1.11, Corollaryn2=.11.3 aer=’7i‘heorem 2.1.13).

(2) We know from [8, Corollary 2.1.1] that S(z*, F,,) is measurable, then we have by (2.6) that S(z* lian)
is measurable. Notice that imF,, takes values in P,;.(X), we can conclude from [8, Theorem 2.1.19] that llan

n
is measurable. #

Lemma 3.2 If {z,}n>; is a sequence of random variables whose absolute values are dominated by an
integrable r.v. y almost surely, i.e., |z,| < ¥, a.s., then

(1) 11rnE (za|Th) < E(mmnm ), a.s

(2) IunE(mn():n) > E(hmmnlE ), a

(3) I hm Z, = &, then hm E(mn|2n) E(z|Xx), &

Proof (1) Let u,(w) = sup zm(w), it is easy to see that |u,| < g, a.s., and u, = hmmn, a.s., as n — 00,
m2n

of course, |limz,| < g, a.s..
n
For any n > m, it is evidently that E(z,|Z5) < E(um|Xns). Since {E(um|Xn)}n>1 is a martingale right closed
by the integrable r.v. u,;,, by [9, Corollary 2.19], we have

ImE(z,]Z,) < EmE(um|Zn) = E(um|Zoo), Ym2>1.
7 n
So using Fatou’s lemma, for the real valued conditional expectation, we conclude that
EmE(z,|Z0) < AmE(um|Ze) < E(limum|Ze) = E(limza|Se0).
n m m n

(2) Tt is similar to the proof of (1).
(3) It follows immediately from (1) and (2). #

Lemma 3.3 Let F, : @ - P¢(X), n > 1, be a sequence of random sets. If there exists an integrably
bounded random set G : £ = Py.(X) such that F,, C G, a.s., then

(1) TinEE(F,JEn) CE(GIZx), as

(2) LmE(F,[Z,) CE(G|Zx), as.. . AR

Proof (1) By the martingale convergence theorem and [8, theorem 2.4.18], we have
@S(x*, E(Fo|Zn) < limS(z*,E(G|Z,))
n
lim E(S(z*, G)|E,)
n
E(S(z*,G)|2x), a.s..
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From the representation theorem of multivalued conditional expectation [7, Theorem 4], we have
ImE(F(S) = () {z€X: (" o) < TmS(a}, E(Fa[S0))

- {z e X:(z*z) <E(S(z},G)|Ex)} = E(G|Ex), as..

D8 D8

ES
—

(2) It is similar to the proof of (1). #

Theorem 3.4 Let F, : @ — Py(X), n > 1, be a sequence of random sets. If F,, C G, as., where
G: Q- P,.-(Y) is an integrably bounded random set, then

(1) @E(F,, v.)C E(@an%). a.s..

(2) LmE(F,|T,) 2 E(limF,|X.), as..

Proo;' We know from ”Lemma 3.1 that @Fn and limmF,, are measurable.

(1) For any 2* € X~ using (2.5), Lemma 3.2 and [8,nTheorem 2.4.18], we have

S(z*,@E(ann)) = @S(x*,E(ann))
@E(S(x*,Fn)IEn)
E(@S(x*,Fn)mw)
E(S(x*,@Fn) |Zoo)
S(x*,E(@anw)), a.s..

IA

There exists N; € X with P(N1) = 0 such that the above inequality holds for all z} € D* and all w € Q\N,.
On the other hand. there exists Ny € ¥ with P(Ny) = 0 such that for all w € Q\Ns, HmE(F,|Z,)(w) C
E(G|X~ )(w). which implies that

@E(ann)(w) € Pure(X), w € Q\Ns.

It is easy to see that E(EFHIEOO)(w) C E(G|E ) (w), a.s., then there exists N3 € ¥ with P(/N3) = 0 such that

E(limF,| S0 ) (w) € Puke(X) for all w € Q\N3. Let N = Ny U N, U N3, evidently, P(N) = 0, then it follows from
n

[7. Lemma 2] that

S(z*, imE(F,|2,)(W)) < S(z*, E(imFL{Zn) (w)),  z* € X*, we Q\N.
n n
Thus imE(F,|S,) C E(imF,|Su), a-s..
n n
(2) It is similar to the proof of (1). #
Theorem 3.5 Suppose that the assumptions of Theorem 3.4 hold. If we assume further that lim F},, = F',
a.s., then
lim E(F,|X,) = E(F|Zw), a.s..
n
Proof It follows immediately from Theorem 3.4. #

Remark 3.6 If ¥ = R! and F, in Theorem 3.4 and Theorem 3.5 are real random variables, then the
conclusions of Lemma 3.2 can be reduced from the two theorems immediately.

Theorem 3.7 Under the assumptions of Theorem 3.5, we have
1 W, al
Se(F,Iz.) 7 SE(rIn)

where the T3 — lim is the pointwise limit of the support function.
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Proof By Theorem 3.5 we know that lifrln E(F.|Z,) = E(F|Z), a.s.. It follows from [7, Theorem 2] that

E(Fa|Z,n) = E(F|Z4), a.s.. Since

[E(Fa|Za)(w)] < [E(GIZn)(W)] < E(IG]IZn)(w),  as..

{E(Fa|Zy)}n>1 is uniformly integrable because of [9, Theorem 1.8, Theorem 1.9]. Thus we can conclude from (7,

w
Lemma 4] that S¢ iz | — Sgps).  #
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