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Abstract

Although there exist many estimates of variance components in linear mixed effects models, only the
spectral decomposition estimate (SDE) and analysis of variance estimate (ANOVAE) have closed form in the
general case. In this paper we compare the SDE with the ANOVAE in the linear mixed model with two variance
components. Qur results show that these two estimates of the variance components have the equal variance
under some conditions. Thus the SDE shares some optimalities of the ANOVAE. Two examples are given to
illustrate owr theoretical results.
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§1. Introduction

The estimation in linear mixed model has attracted a considerable interest of researchers, in particular,
for the variance components, several estimation methods have been proposed. They are analysis of variance
ostimate (ANOVAE), maximum likelihood estimate (MLE), restricted maximum likelihood estimate (RMLE)
and minimum norm quadratic unbiased estimate (MINQUE), see, for example, Wang and Chow (1994)[!]. These
estimates have some shortcomings in different extent, for example, ANOVAE and MINQUE can not guarantee the
nonnegativity of estimates, see, for example, Kelly and Mathew (1993)2), however MINQUE, MLE and RMLE
need to solve a system of non-linear equations, which usually do not have explicit solution and an iterative
procedure is necessary, and MINQUE depends strongly on the initial guesses of the variance components, which
has certain subjectivity. see Rao (1971)B]. About statistical properties of these estimates, there are a few results
in the literature up to now, so it is better to consider them as algorithms to produce some estimates.

Wang and Yin (2002)[4 proposed a new method of simultaneously estimating fixed effects and variance com-
ponents. The corresponding estimates are called as spectral decomposition estimate (SDE). Both the ANOVAE
and SDE have their closed forms in all cases which can bring some convenience in further statistical analysis.

The purpose of this paper is to compare the SDE with the ANOVAE in the following model
y=XB+Ul+e, (1.1)

where y is a N x 1 vector of observations, X is a known N x s matrix, U is a known N x m matrix, g is
a s x 1 vector of unknown parameters, € is a m x 1 normally distributed random vector with mean vector 0
and covariance matrix o} I, € is an N x 1 normally distributed random error vector with mean vector 0 and
covariance matrix o2Iy, and the vectors ¢ and ¢ are independently distributed. S is the vector of fixed effects in

the model and £ represents random effects. This model can also be rewritten as
E(y) = X8, Cov(y) =a’In + 0}V, (1.2)
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where 17 = UL, The one-way random model and the two-way mixed model without interaction are obviously
special case of sueh models.

It is well known rthat for some models the ANOVAE is uniformly minimum variance estimate. Our results
obtained in this paper show that for model (1.1) the SDE and ANOVAE of variance components have the equal
variance under some conditions. Thus the SDE shares some optimalities of the ANOVAE.

The structure of this paper is follow. In the next section, we introduce the ANOVAE and SDE of variance
components in model (1.1). In Section 3 we compare variances of theses two estimates and obtain some results

about their variances to be equal. Finally, two examples are given in Section 4 to illustrate our theoretical results.

§2. Two Estimates of Variance Components

In what follows. A, tr(4), M(4), rk{4A)and A~ stand for the transpose, trace, column space, rank and a
generalized inverse of 4. respectively. Further, denote P4 = A(A4'A)~ A', which is the orthogonal projector onto
M(A).

Let p =vk(X) and ¢ = N — p. Suppose that Z is an N x ¢ matrix satisfying Z'X =0 and Z'Z = I,. If
w=2"Y_ we then get

E(u) =0, Cov(u) = 0*I, + a3 V7. (2.1)

where 1) = Z'VZ. Let s; = vk(17). Consider the spectral decomposition of V)
i g
=Y 74;, (2.2)
=1

where 7 > 7 > -+ > 71, denote the distinct non-zero eigenvalues of V; with multiplicities a1, a»,--- ,a,, and 4;s

9 9
denote the corresponding projection matrix respectively. Clearly, rk(4;) = ajand 3" aj =s;. Let 4 =1-3%" 4;,
j=1 =1

then rk(4) = ¢ — s;. Tt is easy to verify that the ANOVAE’s of 62 and o? are respectively given by

o uwAu
o° = k(A)’ (2.3)
~) 1 g ' I‘k(Vl) ’

T= — Au-— Au). .
1T (El AT @ ”) (2.4)

[t is well known that 3 and 3 are the unbiased estimation of o% and o} respectively and have many good
statistical properties in some cases.

The SDE proposed by Wang and Yin (2002)14 based on the spectral decomposition of the covariance
matrix. and rheu by using sowe appropriate linear transformation to obtain several new singular linear models.
The feature of these models is that they have the same fixed effects as the original model, but their covariances
matrices do not involve any unknown variance component except a factor (this factor is one of eigenvalues of the
covariance matrix of original model). Using the unified theory of least squares (see, for example, Wang and Chow
(1994)[1] and Rao (1973)(3]) for every new model, we obtain estimates for fixed effects and the eigenvalues. The
cigenvalues of the covariance matrix of original model are linear functions of variance components, so by solving
a system of linear equations, we can obtain the estimate of the variance components. The prominent feature of
the new method is that for the fixed effects we can obtain several spectral decomposition estimates, they all have
some good statistical properties, so we can make use of them to do further statistical inference such as testing of

hypothesis. interval estimate and model diagnosis, and so on.
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Follow the method described above, the SDE of 62 and o7 can be obtained as follows. Let sy = rk(1°).

Counsider the spectral decomposition of 1

V= Z AiM;, (2.5)
=1
where A} > A» > - -+ > A denote the non-zero eigenvalues of V' with multlplxcxtles say, mi, Mg, -+ , My, cmd M;s
denote the corresponding projections respectively. Clearly, rk(M;) = m;, and z m; =82 Let M =1 - Z M;,
i=1 i=l1
then k(M) = N — 5.
Pre-multiplyviug (1.1) by AM; vields the following k£ + 1 new linear models
v =X +e, gi ~ N(0, (02 + Xio?) M;), (2.6)

where gt = My. X, = M X and g; = M;UE + M;e. The model (2.6) is singular and the estimate of parameters

can be obrained by using the unified theory of least squares. we can first get the estimate of o° + A0, say. a}

ol = :—y’(M,- — MiX(X'M,X)" X' M)y, (2.7)

where r; = 1k(A;) — rk(A;.X). When k=1, (ie. V = A\ M; and M = I — M,), the SDE of 0> and o7, say 5>

~D . . .
and a7 is respectively given by

(™)

Ly [M - MX(X'MX)~X'M]y, (2.8)

al
1l

Q!
—
I

171, 1,
" [7'1 y'(My = Prx)y = -y (M ~ PMx)y], (2.9)

where r = rk(\f) — rk(AX'). Clearly, in the case k = 1, the SDE is unique and unbiased. Thus in the following

section we will compare them with the ANOVAE only in terms of variances.

§3. Comparison of the SDE and ANOVAE

At first we give some lemmas which will play key role in the proof of the following theorems.

Lemma 3.1 Supposc Y ~ Np(p, V") and V" is a p x p nonsingular. Then
Var (Y'BY') = 2tr[(BV)?] + 44’ BV Bp.
Lemma 3.2 Let disamxn, matrix,‘B is & m x n, matrix. Then for any A~ and B~, we have
k(4 : B) = rk(4) +rk (I;— AAT)B) =1k((I - BB™).A) + rk(B).

The proofs of the above lemmas can be found in Searle (1971)[6] and Wang and Jia (1994)["] respectively.
In what follows we will compare the SDE and ANOVAE for the case & = 1 in decomposition (2.5) which
inplies that ¥V = L'U = A ALy that is, scalar multiple of a projection matrix. By Lemma 3.1, it is readily to get

. C~) A~ ~
the variances of 2. 5%, 57 and 57 as follows:

9 20"

Var (57) ) (3.1)

1

Var (3) = 22, (3.2)
s 2 (tk(V1))?y 4, 2trVP o 4 5 s

Var (a7) = (tr\"l)z[ k(1) + Tk(A) ] + (trV)’ + trVIU o7, (3.3)
2 2L 1\ 2, 4 e

Var (g7} = ¥ (7'1 + 1‘)0 + - oy + T —0j0%, (3.4)
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where A is defined ahove of (1.3). We are now in the position to prove Theorem 3.1.
Theorem 3.1 Var(52) = Var (3?).

Proof DBy Lemma 3.2. we have
rk(T: X) = rk(V)+1k((I - VV1)X)
= rk(V) +rk((I - M)X) = rk(V) + rk(MX) (3.5)

and

k(171 X) = rk(X)+rk((I - XX7)V)
= 1k(X) +rk((I - Px)V) = rk(X) + tk(PzV)
= 1k(X)+1k(Z2'V) = tk(X) + rk(Z'V). (3.6)

Since matrix 17 is positive semidefinite, thus there must exist a matrix ¢ with full row rank such that

1" = Q'(Q). using this fact and some properties of matrix rank we can obtain
k(Z'1) = tk(Z'Q'Q) = tk(2'Q") = tk(Z'Q'QZ) = tk(V)),

that is.
tk(V 1 X) = rk(X) + tk(V1). (3.7)

By using (3.5) and (3.7), we get
rk(X) + rk(V1) = tk(V) + rk(M X), (3.8)

where M = I — Aly is defined below (2.7). Note that

N —1k(V) - rk(M X)
N — (tk(V) + tk(M X))

rk(M) — rk(M X)

and

rk(d) = N —tk(X) — rk(V}) = N — (tk(X) + tk(V1))

awd using (3.8) vields
r=rk(M) - rk(MX) = rk(A), (3.9)
which completes the proof of the theorem. #
Next we will study the SDE of 7. In some special cases the SDE of o} have the same variance as the

ANOVAE of of and have simple expression. Suppose that M(X) C M(M;), 52 can be rewritten as

., 17 1
T = M, - P - ! .
v [82_py( 1 — Px)y N_szyMy]
However when .M(X') C .M(A/)), 57 can be rewritten as
171,
2= My — — (M — ]
» [32 Y- V(M- Px)y

The following two theorems show that under some condition the variance of the SDE and ANOVAE are

equal.

Theorem 3.2 Suppose that M(X) C M(M,), then Var (62) = Var (53).
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Proof Recalling that Z'X =0, rk(Z) = N — rk(X) and Z'Z = I, hence Px + ZZ' = I. Using this fact

and the assumption M(X) C M(M;), it is readily verified that

u(Vi) = w(2'VZ) = t(22'VZZ)

= tr(I = Px)V(I — Px) = Atr(M, — Px)
A (teM, — tr((X'X)~ X'X))
A1 (rk(My) - k(X))

and
el = t(ZZ2'VZZ'VZZ')
= tr(/ -~ Px)VZZ'V(I - Px)
= ANtr(MZZ'My) = Ate(M, - Px)
= A (rk(M;) — k(X))
and also

tk(ZZ'VZZ'y = rk(M; — Px)

rk(V})
' = rk(M;) - rk(X).

From (3.11) and (3.12). we get that
rk(17) 1 rk(V)? _ 1

b2 T A3 (rk(My) - rk(X))’ trVE A

(3.10)

(3.11)

(3.12)

(3.13)

In terns of (3.10) and (3.11), it is easily to verify that the corresponding coefficients of of and a%a7 in (3.3)

and (3.4) are equal. Combining (3.13) with (3.9), we know that the coefficients of ¢* are also equal. The proof

is completed. #

Theorem 3.3 Suppose that M(X) C M(M), then Var (%) = Var (57).
Proof When .M(X) C .M(AI) by using Lemma 3.1, the variance of 57 is given by

Var (53) =

2 2
2 (o o CHOBDY o 2V

(V)2 e T T

By Lemma 3.2 and the condition M(.X) C M(M), it is obvious that

V) = t(Z2'VZ2') = tr(I — Px)V(I - Px) = trV,
nl? = w(Z'VZZ'VZ)
= t(I-Px)VZZ'V(I - Px)=tuVZZ'V
= (I - Px)VV(I - Px) = trl?,

rk(V1) = rk(I — Px)V(I — Px) = tk(My).

(3.14)

(3.16)
(3.17)

By (3.15). (3.17) and (3.9), it is easy to see that the coefficients of ¢* in (3.3) and (3.14) are same. From

(3.16) and (3.17). we can see that corresponding coefficients of 64 and 362 in (3.3) and (3.14) arc the same.
1 1

The proof is completed. #

The following theorem show that two estimates have same probability of non-negativity under some condi-

tions.
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Theorem 3.4 Suppose that Z'M, Z is an idempotent symmetric matrix, then
(1) Var(5}) = Var (5});
(2) P(F] < 0) =P(3} <0).
Proof (1) Since Z’'M;Z is an idempotent symmetric matrix, (i.e., g = 1 and A; = Z'M; Z), the variauce

o ~) - R
of a7 can be simplified as

o 2 1 1 4 201 40%03
2 2 . 1
Var(@i) = 3 (l-k(szlz) + rk(A))" t &z z) Y Nz M02Z) (3.18)

Comparing (3.4) with (3.18), we know to prove (1) it is sufficient to verify that rk(Z’'M, Z) = rk(M;) — rk(M, X).
Tn fact. since Z'Al Z is an idempotent symmetric matrix, thus
Z'M\Z=2'MZZ'M\Z =2'MZ - Z’M X (X'X)"X'M, Z,
which implies that Z'A} X = 0. By using this fact, we have
vk(Z'ALZ) = k(Z'M\Z - Z’My X (X'M,X) M\ X2Z)

= rk(Z'(My — Pu,x)2Z)

= rk(ZZ'(My - Pu,x)22')

= 1k(I - Px)(My = Pp,x)(I - Px)

= vk(M; — Py, x) = tk(My) — tk(M X).
Thus statement (1) is proved.

(2) Since y ~ N(X3.0°1 4+ 0fV"). thus
3 e _Y(Mi-Puxly s

a2+ Ao?! o2 + Ao} e
r Y'(M—Pux)y
A= T

and

* * 2 2
s a a o° o’
Py <) = P(—‘<1)=P(—‘. 5 < = )
(77 <0) ag aj o2+ Mot o2+ \o?
P(F, o
= o < .—'_-)7
( (72+/\10'f)

where oy = (1/r)y' (M = Parx)y. \} and F,,, , denote x? variable with degree of freedom n and F variable with
degree of freedom m and n.

On the other haud. when Z'Af) Z is an idempotent symmetric matrix, the ANOVAE &7 can be rewritten as

1 (u'Z’MIZu u'Au)

=N \k(ZM, 2) T k(A)
and since u ~ N(0.0%I + 07 A 2'M, Z), thus
uw'Z'AMZu 2 u' Eu 2
m ~ Xrk(Z' M, 2)1 P Xrk(A)
s u'Z'M
PG <o) = P( u'A;ZU rk(rzk'(Ajzz) <1)
_ (u’Z’Ml Zu 1k(A) o? < a? )
wAu  tk(Z'MyZ) 0% + 0N T 0?2 + 0

2
a

= (s < )

(rk(2' M, Z),rk(A)) o2+ z\10f

Sinee rk(Z°M, Z) = vk(Ay) = tk(M, X). tk(A) = rk(M) — rk(M X), thus part (2) is proved. #
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§4. Two Examples

In this section. two examples are given to illustrate our theoretical results obtained in the previous sections.
Example 4.1 One-way random effects model

Counsider the following one-way random effects model
¥ =ates + Iy @ )€ +¢,

where y = (y11.- - Y16+ yYa1s " 1 Yab)'s tap and ¢y are respectively vectors of ones of dimension ab and a . &
denotes the Kroneker product. € = (&.+- ,&,)" represents random effects with normal distribution N(0,071,), €
represents error vector with normal distribution N(0,021,5), and the vector ¢ and € are independently distributed.

For this model, the notations introduced in the previous sections are respectively

X = 101, V=I,L,®J,= b(Ia®7b),
]\[1=Iﬂ®7b, M=I—(Ia®jb)=1a®(fb—7b),
Ay =b, sy = a, p:i, r=a(b-1),

where J, is a matrix of ones of dimension b, J, = Jp/b.
Since X = 14, = (I, @) Jp)tap = Mjtay, thus the assumption of Theorem 3.2 for the present case.

The ANOVAE of 02 and o2, arc respectively given by (see, for example, Wang and Chow (1994)('])
. 1
0°=Q2, 0y =3(Q1—Q2),

where

i é(ya - y“)'z,

T a- t=1

Q= a(b - 1)2 2(?/:] yi.)2-

=1 j=1

It is easy to verify that they are also the SDE of 02 and ¢2.

Example 4.2 Counsider the following model
y=XB+ Zi{ +e,

where y. X, 3. € are the same as in (1.1), and Z; is a matrix composed of the first ¢, (g1 < ¢) column vectors
of Z defined in Section 2, ¢ is a q; x 1 normally distributed random vector with mean vector 0 and covariance
matrix 071, . and the vectors ¢ and ¢ are independently distributed.

For this example. the notations introduced in the previous sections are respectively

"=]\[]=ZIZ{, M=I—M1=Z2Z~:)+R\',

I, © 0 o
L=W=2vz=| " . A= ,
0 0 0 I,

A =1, 82 = q, T =qy,

where Zy is a matrix of the last ¢» (= ¢ — ¢1) column of Z.
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Since X = (I = Z,Z])X = MX, so the example satisfies the assumptions of Theorem 3.3. By (2.3) and
(2.4) it follows that the ANOVAE of 02 and of are given by

o,  WAw Y ZAZ'y  y'ZyZy

_muy'ru) T

(z Aju ‘%g“A) t@wgw-%yag@.

QD

2
1

3>

tl\
By using (2.8) and (2.9) we can show that these are also the SDE of o2 and 3.
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