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Abstract

The problem of statistioal inferences about functions of population quantiles I considered.
The asymptolic distributions of functions of sample quantiles are normal. We proposs estima
tors of the variances and covariances of the asymptotic distribution by tha jackknife method
and rstablish their consisiency. The resnlts provide asymptotically valid procedures for statis—

t1cal inferences,

§ 1. Introduction

In statisticel appliontions, frequently the quantities of interest are the quantiles of
the unknown population. Let F be a distribution funetion. Define Q(¢) =inf {m:F ()
=i} for 0<<¢<C1l. The p-quantile (0<Ip<{1) of F is then Q{p). We oconsider the
following general k-samples problem. Let ¥, j§=1, .-, k¥, be unknown population
distributions and w,; be the py-quantile of Fy, I=1, -+, ky, with 0<Zpy;<<d. Denote

I
=, by K. The unknown parnmeter of interest is §=g (), where u is the K -veotor
F=1

(ﬂd_h st Mgle Mam ttt A ' Midle ttty fag) (1-1)
and ¢ i3 o continuons and differentiable function from R¥ to RE (L is a fixed integer).
The simplest example of this type of problem is the comparison of two population
mediand gy and ga (assumed to be nonzero) and f=py/us Lot xy, $=1, -, h, bhe
independent and identically distributed (i. i. d.)samples from F,. It is desired to make
statistical inferences (such as construction of a confidence region for #) hbesed on the
duta z,.

For each §, denote the empirioel distribution funotion corragsponding t0 zy; -,
%, by #;. The sample py-quantile 19 defined o he gy,=inf{z: £ (5 =put. I=1, -, A
Let & be the veotor given in (1.1} with wuy replasced by fiy. A point estimator of & is
then (/= gt &). Under mild conditions L £7) exigte and is positive at each py),
n2 0 — i — N0, 3, (1.2)
where —4 denotes convergence in distribution, S= [ g(u3] "V [Tg ()], v g(u), i the

w1990 FE 2 H 28 Huk s, 1990 1 18 H 27 B R s,

« 304 .


http://www.cqvip.com

£ OO0 http://www.cqvip.com|

gradient matrix of ¢ at 4 and [Vg(u)]™ is its transpose, ¥ =Dblock diagonal [Fy, -,
¥.] and for emoh j, -V, is an A;xA; symmetrio metrix whose (I, f)th slement is
Pu (L —p20) /[ F (i) Fy (eg)], 1<t

Since the variancs-eovariance matrix 2 is unknown, it is oruoial to have s congis-
tent estimator of = for the purposes of evaluating the accuraoy of § and making other
statistionl inferenoes The jackknife (Quenouille, 1956; Tukey, 1258) provides a conven-
ient and powerful msthod of estimeiing 2. For the present problem, the oustomary
delete-1 jackknife provides inconsistent estimator of 2 (Efron, 1982). For general
delete—d jeokknife estimator of 2 (gee Section 2), Shao and Wu (1989) eostablished its
oongistenoy for d—oc as the sample size n-»co. However, a direct application of the
result in Shao and Wu (1889, Example 1) to the present problem needs o assume that
Var & oxisis and n Var §— 2 a3 n—>co. The existence of Var # is a restriotive condition
sinco it does not hold for commonly used functions such as the ratio of quantiles.
Furthermore, the condition n'Varf— 2 may notbs easy to cheok even if Var & exists.

In this paper, we establish the consistency of the delete~-d jackknife estimator £
(2.1) and £;(m) (2.2) (for d—ocab a certain rate) without assuming any moment
condition on &, The distribution of §—& can then e approximated by N (0., £./n) (or
N{0. d(m}/n.)) and therefora stutistionl inferences can be made based on it. Note that
this approsch is nonparsmetrio, since we do not assu me that F, helongs to a parame-

tric family,

§ 2. The delete—d jackknife and its consistency

Lot X be the mx 5 matrix whose (2, jith element is the ohservation ay. Then the
Ppoint estimator §==g(ﬁ,) oan be written ay §(X). For given w, lat d=d.<n be an
integer and r=n—d. Let §, be the colletion of subsets of {1, ..-, n} which have size r.

The numhber of elements in &, ig N = (;1 ) For s={#;. -»-, ¢,} € 5,. let X, be the subm-

atrix of X consisting of the ¢; th, «-. 4, th Tows of X and §,=§(X,). The deleto-d

jackknifc estimator of X ig

Hd—

(y—l, ¥ )(r‘iALEa) (2.1)

4V ac &,

dﬂr [ T8 B.—

Note that when both » and d are large, N =(;b> i3 very large and the computation

of £; is cumbergome. In some cades, $; 0an he represented ag a funetion of the order
gtatistics. For example, when A;,=1 and g is real-valuaed (L =1),
=1\ [ n—d
2 zn_TN—kE("f ( )[ i , v
¢ 7 t;—-—l) r—1, [ AR y Vi)
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—N"‘E(ii—:l)(ﬂ—é’) g(Fia, = .Uc,k)]’ ’

=1/ \r— 4
whers £;= the integer part of rpy, vy is the ¢—th order statistio of @y, -+, x, and the
Fummation is over all 4, +++, 4 satisfying <4, <t;+d, j=1, .--, k. However, this is
still not a convenient way for computing ;. We suggest the following approXimation.
For fixed » and X, rendomly seleot m subsets {g,, --+, s} from §, and approxzimate 2.
by

Samy=27 53 (4,- L 30 )b -L 3 0.). (2.2)

dm {=1 =1
The following redult shows the consistency of ﬁ}.

Theorem 1. Assume that ¢ is differentiable in a neighborhood of x and Vg is
oontinuous at x and that for each j, F; is continuous, ¥} exists in a neighborhood of sy,
with Fj (z,) >0 and s continuous at py, I=1, -, &y If d=d, 19 selected so that

a3 /d-30 and d/n->0, (2.3)
then ad n->co, 5y ognverged to 2 in prohability. i.e,
f?,, - N

Note that S4(m) is random for given X. Tet P* be the probability corresponding
to the random seletion of g,. Then we have

Theorem 2. Assume the conditions in Theorem 1 and

n< em Tor a positive constant e. (2.4)
Then
Sa(m) = .3
in the sonse that for any s>0, s n—>rco,
P 2s(m) — 2| >8) = E[P*(| 24(m) - 2| >8] X)1 -0,
where || | is the Euelidean norm of a X X K mairix.

The following results are needed for the proofs of Theorems 1 and 2. The proof of
Lemma 1 is streightforward and is amitted. The proofs of other lemmas are given in
Seotion 3.

Lemma I, Ist o,€ERT, ¢=1, «--, n. Then for any integer d<n,

472 @D (@-a)" - - a3y (@ -3),

whare E=n"1'il g, and g, = r‘1'§ a for s€8,.

Lemma 2. Yetz, ---, 7, be i. i. d. from a distribution ¥ whieh is continuous and
strictly increasing in a neighborhood of pw=Q(p) (0<p<1). Feor 8, let i, be the
sample p—quantile based on g, ¢€s. Supposs that é/n — 0. Then

Iﬂsas,xlﬁ'_'wl -> 0 a.8,

Lemma 3, Ist £,=£(X,) be g—vootors whose components are Tunotions of X,.

Suppose that as n—»oo, thers are g—veotor ¢ and ¢ X ¢ matrix B suoh that
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R

max! &, —¢| — 0,
where || | is the Euelidean norm, and
ny

dJ.V I

= [e- NA‘%[fs ¥

-
If @' ig a Tunetion from 'E'.'J to B™ and (F 8 eontinuoud af ¢, then

AN
dﬂf £ Fy [G (&) —

(2.5)

Furthermore, the result still holdas if ¥ and .S’.. in {2.5)—{2.6) are replaced by m and
a random gample {81, +--, 8z} from S
Lemmad, Lstx

e AN EIEATRE O ICAT I

== FIE;L" and z
i=

[(VF)I*B[TG(c)]. (2.8)

-

, 2y be iid. random veetors with Bz |*<Coo. Let D= Variz)
1, sES,. For given
ice
sample from 8. Assume (2,3)—(.

1. ***, @ny let 8y, ¢+, 8, be a random
Y. Than
nr Safc 1< )
dﬁ’n‘ 1§ i mf;iﬂ'" (
Proof of Theorem 1

T
cee T ‘!';L_l-zl i ) - ’D'
Let 4= 4( X, be the vector of sample ¢ rartiles based on
sa1aple X,. From Lemmas 2 and 3, we only need to show
l.let u\_:;

d.N- 2 {‘um)_”) (am—g" — oV
Fi(xy). Then uy are ii.d.
be defined the same as 4% and i with «, replaced by wy and
nts of & and £,

(2.7)
with uniform distribution on [0, 1]. Let $'* and &
# and £, be the compone-
Then [;=;{f,) and 49 =0;(#}§), where @:(¢) ={x
continugusly differentiable at p; under the assumptions on #,. A further appiication
of Lewaas 3 and 3 shows that 12.7) holds if

4 1;1 {al
ﬂ.l:ﬁr as 3
where W equala J7 with Fy, j=1

— £ (50— )" W,
on [0, 1]. From Theorem 1 in Duttweiler (1973}

%, replaced by the uniform digtribution funetion

=P:;+?'_1§(P15'—Ilu g0 ) E R
with E[RF1*=00"%%), Let tuy=pu—Luucpy %= (Ea o foa
Fea e, RO= (R, - RYL -, BY, -, Ri
1,

uTaky v Zigex .

*"and R=N"* ZSR“’. Using Lemmn

?’“‘ LS (W~ 5) (5 — §) "= Ao+ B+ A0
1S58y

where 4,— (n—1) ‘l‘il(z —3) (e

- E}f1B

(a) __ ) B
v 5B -BR
0.} < 4.| | B.|. From the law of large numbers. 4,—> ;W . Thoe result follows from for
{1, ) and (I, §)
ny o | o
Bon &R0 B

Ryt and O, satisfies
é

O(r?) = O(

)50(1)
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under {2 .37.
Proof of Theorem 2. Using Lemma 4, the proof of Theorem 2 is 8imilar to that of
Theorem 1.

§ 3. Proofs of lemmas

Proof of Lemma 3, Let ¥, be a neighborhood of w guch that F (@) is continuous
and striotly inoreasing on N,.. Then ¢{2) = p— F () Is continuous and gtriotly deorcasing
on N, let 4={a(s): 2 EN,}. Then a~*(u) i3 continuous on A. For any e8>0, there is
& 3> 0 such that

[8—pal <a If |a(8) —a(u) | = |a(e) | <.
Tet # be the empirical distribution based on &, é=1, -+, », and F® he the empirioal
distribution based on z,, ¢&s. For almost ell %1, £, -+, there is an m, sueh that for
n>-ny, 7 <83, d/n<5/8 and | F— F|..<5/3. Then for all s€8,.

la(2e) | = lp—F (&) | < |F L)~ B (G,) | +r2

SIS —Fladr 1< | FO— B ot [ B = F |t r

<d/nt [ F—F|o+r-1<3,
Thus, for all s 8,, [f,—pn|<e. Thid completes tha proof.
Proof of Lemma 8. Tet £=4"2 ‘;‘E From {the 1nean-value theorem,

GiED—GF( & =T[vGFEN]" (£, —E)
where £, satisfying {7,~&[<[¢,—&[. Let R,~[TG () —-vG&)]*(£,—E&) and Fe
N1 R,. Then

ll:r

walee —gEecn][em-L3ae]
;;‘I[ &N D€~ va®)]
'V s 8r

+ I DI D E— D (BB
From the continuity of '\-'G at cand mafﬂfc“ﬂ‘iznﬂ'x“ft“ﬂ =50, YG{(Z) - ,7G (o)

and for any >0,

‘n"l" v ¥ o 'ﬂ'J‘ v — 2
v = B’ oo 3 16— €

when n is suffieiently large. Thus (2.6) follows from (2.5), The proof for the aecond

s3sertion is the same.
Proof of Lemma 4, Iot

'A"J'l-—:_- T ,JE—I;. (E.l; - :"—') (Elr— Z)'

end
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ﬂl

5 )(F-m B 5

t-'ll

Then
Sz _.1_%:)(: ~13 )
dare ;(“"” o e IRV AL m.—1 2o, } = Apt Byt 280,
where [0, |<|[A4,.| [Ba|. Hence it suffices to show A, — ;0 and B,, — ;0. Let E* and
var* be the conditional expeotation and variance taken under P* for given g, -, Z,-
By Lemma 1,
¥ oM T =N - - e
B[ 3 ) (D) = - D G- )= 2) (=)

Let oy, be the (p, g)t element of A,. I‘hen

- nr 2 1 PR
Var (g <( 20 ) 1 3T |5, -7
From the regult in [ehmann (19383, p. 138), »2& |z, —z|*=0(1). Hence Var®(az,) — 40
sinoe n*/d*m — 0 under (2.3)—{2.4).8ince {n—1)1 EE'[':‘-—Ej {(z;i—z)' «» D, wo have
=]
A, — D, Then the result follows from
= b ‘(‘ (__ - Ze~— r
E(Bn) = B[E B < B[ 2 ae I ERTE 57

- 1 RV Ty im—Tyr L
ey b E

§ 4. Some monte carlo results

As an example, we examine the perfermanos of the jackknife estimator and the
confidence interval based on the jackknife vie a Monte Carlo study. We consider & two
sgmple problem: zy, £=1, -, m, =1, 2, are independent and z, has distribution #
for each ¢ and j. Let uy be the median of ¥, and i, be the sample median besed on gy,
§¢=1, +--, n. The quantity of interest is the ratio @=pu1/us and we estimate § by &=
fia/ iz Using the proposed jaekknife method, we estimate the variance of § by A, (m),
where £,(m) is given by (2.2), and obtain an approximate §0% oconfidence interval
for &:

= [f—1.645[5,(m) /]2, G +1.645 [ m) fn] V7] (4.1)
Acoording to {2.3), we select d=the integer part of »™°. For m., we select m = the
integer part of »*? a8 suggested in Shao (1987).

In this example, we consider thres different semple sizes n= 20, 30 and 40. For sach
sample size, we consider two kinds of distributions F; and F:

{a) Normal Casge,

Fy(®) =G [{#—1)/0.25] and F,(t) =& [(#—2),0.5],
where @ i the standard normal distribution function,

{b) Exzponential Jasa,

nans.
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Fit)y=1—etand Fy(t) =1—e¢"% 0.
In both cases, the true value of & is 0.95.

The results in Table 1 is based on 3000 Monte Oarlo simulations, We summarize
the Monte Carlo results as follows.

{1) The confidence interval OI given by (4.1) has very acourate coverage proba-
bility, even when « is ag small as 20.

{2) The variange egtimator n=25, (m) is not scourate when n<C30. It is better when
n=40. This indieates that in this example the variance estimation problem requires a
largo sample size.

¢8) From the good performence of CI, the selection of d and m are adequate.

Table . Monte Carle Approximatinns of the Bias. Vairance and Coverags FProbability

Wiwmsl Tae

. w18 o s
r="10 Biza [FIReRE! 0 0o
e T Variauce L Q25 3.7~ 106
m=50 emvarnps Pron, .91
n=2350 I-las 0,00y 0.na0d
q =9 Variauce v.0018 1.5 41076
=145 Cnverige Prob. 0.912
n=d4{ Rias 0. 0017 Q.00
a=13 YVariance 0,0012 4.9+ 107
=233 (hveraps Prab. 0,895
Exponential Case
é 12,0 m) ar
n==20 Bias 0.0652 0., 0+45
A==T Varianae 0,087 0.0249
=480 Coverage Prob. .930
a=30 Bias 0, 085A 0.0193
=1 Variznes 0.0331 0.0201
trn=: 165 Coverage Prob. 0,304
@=-10 Bias 0,030 a.0074
a=12 Variance [PRIE]14 0.0012
», =133 Coverage Frub 0.394
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