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Abstract

In this paper, we give the mean square convergence rates of conditional quantile estimators based on single
hidden layer feed forward networks. Our results are formulated both for independent identically distributed
(i.i.d.) random variables and for stationary mixing processes (a-mixing and S-mixing). It turns out that the
rates are the same as those for regression using neural networks. We use the same techniques as in Zhang
(1998).
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§1. Introduction

Usefulness of conditional quantile functions as good descriptive statistics has been discussed by Hogg (1975)
who calls them percentile regression lines. The estimation of conditional quantile has received the attention
of several authors, Bhattacharya (1963), Stone (1977), Koenker and Basset (1978) and more recently, Matner-
Lgber (1997), Xiang (1996), Bhattacharya and Gangopadhyay (1990) and Mukeriee (1993). Bhattacharya and
Gangopadhyay (1990) obtained Bahadur-type representation [Bahadur (1966)] of kernel estimators of conditional
quantile and studied the asymptotics of these estimates. Monotone conditional quantile estimator has been
studied in Mukeriee (1993). Matzer-Lgber (1997) showed the asymptotic normality and fund the convergence
rate for kernel estimator in mixing context.

Artificial neural networks can be viewed as flexible non linear functional forms suitable for approximating
arbitrary mapping. White, H. (1992) established the consistency of nonparemetric conditional quantile estimators
based on single hidden layer feed forward networks. White’s (1992) results are proved by applying the methed
of sieves (Grenander (1981), Geman and Hwang (1982)).

The focus of this paper is to give the mean square convergence rate of conditional quantile estimators
based on single hidden layer feed forward networks. Our results are formulated both for independent identically
distributed (i.i.d.) random variables and for stationary mixing processes. We will apply the same technique in
Zhang (1998).

The rest of this paper is organized as follow: Section 2 gives notation and some assumptions. Section 3 gives
the fundamental theorems, we prove that the mean square error of conditional quantile estimators is bounded by
the index of resolvability. In section 4, we establish the rates of convergence of conditional quantile estimators

based on single hidden layer feed forward network.
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§2. Notations and Assumption

Let (Q, A,P) be a probability space and let B and C be two sub o-fields of .4, various measures of their
dependence exist in the literature. The weakest among those most commonly used is called strong mixing or
a-mixing. The strong mixing coefficient was introduced by Rosenblatt (1956) and is defined by

a(B,C)= sup |P(B)-P(C)-P{BNC).
BeB,CeC

The absolutely regular mixing (or 8-mixing) coefficient was introduced by Bradley(1983) and is defined by
B(B,C) = Esup |P(C) — P(C|B)|.
CeC

The following relation holds between those two coefficients: 2a(B,C) < B(B,C). Let X = (X, t € Z) be a
strictly stationary process, the a-mixing coeffictent is defined by ax (k) = a(o(Xs,s < 0),0(X,,8 > k)), k> 0
and the S-mixing coefficient is defined by Bx (k) = B(c(X,,s < 0),0(Xs,8 > k)), k > 0. X is called a-mixing (or
strongly mixing) if the sequence (ax (k))k>o tends to zero at infinity. Similarly one defines S-mixing (or absolute
regularity).

Let Z; = (X¢,Y;) t € Z be a R? x R-valued strictly stationary process. The sequence Z; is either:

i) independent identically distributed (i.i.d.),
ii) B-mixing with
condition-(a) Bz(k) < ve™?*, k>1, v,p>0;
condition-(b) Bz (k) < k=P, k>1, p,Bo >0,
iii) a-mixing with
condition-(c) az(k) < Gexp(—bk*), k>1, @ b>0and o > 0.
The object of our interest is the conditional £éth quantile defined by a function § : R? — R such that

P(}/t < 00($)/Xt = ‘7“') =¢, e (O’ 1)

Suppose marginal distribution Px = u. For any two measurable functions g1,g2 : RY — R, define the

integrated squared distance between them as
r(91,93) = [ I1(2) - 92(0) Pduta). )

The following hypothesis are on the process Z;:

HI: |3 <b/2, b>0.

H2: X; takes values in [—1,1]%.

H3: The conditional density of ¥; on X; fy,x exists, let

M, = fy/x=2(00), Ma=  sup sup  fy;x=z=(0),

inf inf
y€[—b/2,b/2] z€[-1,1}4 ye[—b/2,b/2) z€[—1,1)¢

we assume that

0< M <M< o0

and if r(8,60) < A, A is sufficiently small, then

[fy/x=2(8) = fr/x=2(00)| < Mofy/x=2(80)
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for all z € [—1,1]¢, where M, < 1.
H4: Define

d
b wm},

i=1

~ ~ d
F= {f SRY > R,f(:l,‘) = / ei<w~a:>f(w)dw,/lelf(w)dw <C, |w|1 = E ijlv <w-T>=
Ré j=1

we assume 0p € F.

We consider approximations to 8y obtained as the output of a single hidden layer networks,
m
gm(z) = clip(co + Y ekp(<ag-x> +bk)),
k=1
where

) b b
clip(t) = =5 l{t<-t/2) + tl{-v/a<e<e/ay + 5 lp/a<e)s

ar € RE, by, e, € R for 1 < k < m and ¢y € R. Note
V= ((11,(12,"' 7am;blab2a"' 7bm;007cla"' ,Cm)a

v is m(d+2) +1 dimensional parameter vector. We assume that ¢ : R — [—1, 1] is a Lipschitz-continous sigmoidal
function such that its tails approach the signum function sgn(z), which equals +1 for 2 positive and —1 for 2
negatives.

HS5: Assume that

a) {0(z) — d(z")|uo|z — 2*], v1 > 0 for all z,2* € R set v; = max{1,vp},

b) |¢(z) — sgn(z)| < va/|z|*3, for z € R, z # 0 where vy and vz > 0.

Define 7, = ro(vz,v3)m"(¥2:%8) where ro(v2,vs) and 71 (v2,v3) are constants dependent on ws, v3, and define a

compact subset of R™(¢+2)+1 namely
S, _—-{V‘C E[ ] 5 |eil < €, max |ai|y < T, max |b|<7'}
m - L0 2’2 7i 1 1] = ,1<l< 11 > m71<1< il = fm

and define

Gm ={gm(z,v) : v € Sy}

Denote

L(Zt,6) = |V} — 0(X)|(ELiy,>00x0) + (1 = O y,<o(x)))-

We obtain the conditional quantile estimator from a sample of size n by solving the following optimization

problem

-~ 1
0, = argmin— Y L(Z,6). (2)
0EGm T i=1

Let H(d,7m) denote the metric entropy defined as the natural logarithm of the cardinality of a é-net of Sy,
(see Pollard (1984)). Define the index of resolvability
H(d,1m) }

n

Ry (8,00, 01) = gmin {r(e,eo) + A 3)

were A > 0.
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§3. Fundamental Theorems

In the following theorems, we show that the statistical risk of the estimator defined in (2) is bounded by the
index of resolvability defined in (3).

Theorem 3.1 Z; = (X;,Y:), t € Z is 1.i.d. process, subpose H1, H2, H3 and H5 hold then for A >
2b/3+1/[(1 — Mp)My] and ap, =1

E(T(énaOO)) = O{R(‘sn;oo, an) + 6n}

Theorem 3.1 has the same structure as the corresponding result in Zhang (1998) except for the additional
term &, which arises since we do not restrict the parameter space S,, to be countable, and we use the extension
to Barron (1994) by Mccaffrey and Gallant (1994).

Using the same tecﬁnique of Zhang (1998), we can extend the result from identically distributed (i.i.d.) to
more general case of a-mixing and S-mixing.

Theorem 3.2 Z; is 3-mixing process, suppose H1, H2, H3 and H5 hold then for A > 2b/3+2/[(1— M) M, ]
(1) if Z; satisfies condition-(a) and a, = [pn/(4logn)], we have

E(r(B,,60)) = O{R(6n,00,an) + 6r},
(2) if Z, satisfies condition-(b) and a, = [(1/2)nfo/(2+F0)] we have
E(r(8n,80)) = O{R(8n, 00, an) + 8n}.

Theorem 3.3 Z; is a-mixing process satisfing condition-(c), suppose H1, H2, H3 and H5 and m <
O(neo/(1+2a0)) hold then for A > 4b/3 + 4/[(1 ~ Mo)My), if

an = [n2ao/(1+2ao) . (logn)—l/ao]’

we have

E(r(Bn,00)) = O{R(n,00,an) + &,}.

In order to prove the Theorems 3.1, 3.2 and 3.3, we need the following lemmas.

Lemma 3.1 If the process Z; satisfies H2 and H3, then if 7(8,6,) < A we have
1
E(L(Z:,6) = L(Z:,00)) 2 5 (1 — Mo)Myr(6,60) (4)

and

E(L(Z:,6) ~ L(Z0,60)) < 5(1+ Mo) Mar(6, ). Q

Firstly, we establish the following equation

Lemma 3.2 If the conditional density of Y; on X; fy,x existe, then

fo
E(L(200) ~ L2 60) = E( [ (=) fr/x )d) (©

Proof
E(L(Z:,0) — L(Z,60)) = EBy/x (L(Z4,0) — L(Zt, 60)).
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When 6p(z) > 6(z), then

EY/X::: (L(Zt’ 0) - L(Zt’ 00))
= Ey/x=c(£(60(z) ~ 8(2))1{y,00)) — (1 = €)Eyyx=5((60(z) — ()1, o))
+Ey/x=z ((Yz — €0(z) — (1 — £)80()) Ljp(2)< Vi <O0(a))) -

termI = (1 — &)(6o(x) — 0(z))Ey/x =z [y, <80)>

it follows that
termI + term IT = (1 — £)(fo () — 8(z))Ey/ x=s1[o< v, <b0)s

hence bo(a)
o

termI + termII + term III = Ey, x =, ((Yz — 0)Ljp<vi<8,]) = / (y — 0(z)) fy/x (y)dy.

(<)

Analogously when 8(zx) > 69(z) we have
]
Eyrx=e(L(Z00) — L(Z000) = [ (6= 1) vy )iy
0

We then establish the equation (6). #
Proof of Lemma 3.1 By (6) and the hypothesis H3, we have
b0 1
E(L(Z¢,0) — L(Z:,60)) > (1 — Mo) sei™E e fwx::(go)E/o (y - 6)dy > 5(1 — Mo)Myr(6,60)

and
8o 1
E(L(Z:,0) — L(Z:,60)) < (1+ Mo) [SUP y fY/x—z(eo)E (y—-0)dy < 2(1 + Mo ) Mar(8, o),
z€l-1,1
this complete the proof of Lemma 3.1. #
Let S!, be an &,-covering for S,,, with respect to the metric p, that is S;, is a finite set and for each v € S,
there exists a v’ € S}, such that p(v,v') < 8,, where p metric is defined as in Barron (1994).

Proof of Theorem 3.1 Denote
1 n 12 12
Tnlgm(X,v),6) = — Z L(Z, gm(X4,v)) — = Y L(Z4,00(X4)) = —= 3 Us
n =1 n t=1 T =1

where

Up = L(Zt,00(Xt)) — L(Z4, gm (X, v)).

Note that
|Ut| < max(€,1 — &)|60(Xt) — gm(Xe, V)| < |60 — gm(-,¥)| < b,

then |U; — EU| < 2b, and Bernstein’s condition is satisfied with ¢ = 2b/3, and

Var Ut _<. E(L(Zt’gm(Xt’V)) - L(ZthO))2 S E(gm(Xth - GO(Xt))) = ’I‘(gm(~,ll),00). (7)

m?

We use Lemma 2.4 (Craig 1933) for U; with v = H(7y,,6,) + log 1/6 and € = 1/ then for each v € S}

P(E(L(Zt, 9m(X,v)) = L(Z1,80(X0))) = Fgm(-, ), 60)

AH (T, 62) 1 Mog1/6 K ~
> . —_— 2 (Tm+0a)
—_ n + 2A_4b/3,r(gm( ’V) 00)+ n ) Se 6’
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it follows that

P(E(L(Zt, 9m(Xe,)) = L(Z0,60(X0)) = no7(9m(-,1), B0)
AH (1, 0) | Aog 1/6
n n

> Fgm (), 60) + for all V' € S,
exp(—H (Tm, 6n) + H(Tyn,0,) + logg) = g, (®)

IA

where 79 = 1/(2) — 4b/3). For any v € Sy, there exists v’ € 8/, such that p(v,v') < é,, it follows from Lemma
1 of Barron (1994), we can show that

P(EL(Zta gm(Xta V)) - ﬂor(gm(', V)’ 90) - 7"\(gm(i V)a 90)
2 EL(Ztv gm(Xtv V,)) - ﬂOT(gm('aV')790) - F(gm('a VI)aHO) + C(ba Ul)‘sn) = O’ (9)
where C(b,v1) constant dependent on b and vy, combining (8) and (9), and evaluate at the 8, to obtain

H(1p,0n) + Alogl1/é LC
n n

P (E(L(Ze,Bn) ~ L(Ze,80)) ~ o7 (B ) > 7(Fn,00) + 2 (bo)dn) <8 (10)

Define
/\H(Tm; 6n) }

g = argmin{r(ﬂ,%) + -

G

—~ n
Note that 6,, minimizes (1/n) Y. L(Z;,#), it minimizes 7,,(6,6o) also, then

i=1

P(E(L(Z:,8,) — L(Z:,600)) — 170, 60) > 7(8",80) + AH (Tm, 6n)/n + Alog1/8/n + C(b,v1)8,) < 5. (11)

Now define
W; = L(Z;,8") — L(Z;, 6p).

Applying the Craig inequality once more with 7 = log(1 /3), we obtain
Aog1/6\ _
P (6" 60) > E(L(Z0,0%) — L(Z0 00) +mar(@",00) + 2B < 5. 12)
Combining (11) and (12), it follows that

P(E(L(Zt, 8.) ~ L(Z4,60)) — o (B, 60)

AH (7m,0n) | 2Mlog 1/8
n n

> E(L(Z:,6") — L(Z:,60)) + mor (9", 60) + +Cb, vl)én) < 23,

when n, m sufficiently large, then 1'(5,,, 8s) < A and r(6*,8p) < A, from the hypothesis H3.3 and the inequalities
(4) and (5) in Lemma 3.1, we have that

P((%(l — Mo) M, - no)r(gnﬂo)

H(Tm,6n) + 2Xlog 1/3
n n

A ~
> (%(1 + Mo) M, +no)r(e*,eo)+ +C(b, vl)Jn) < 25,

denote
1
(1-Mo)M1~no and m = 5(1 + Mo) M3 + no.

(SRR

m=

Therefore

4 C(b,v1)0n + 2/\log1/6) <25

P(r(Bs,600) > T Rp(60,n 2.
<T(n 0)—7)1 n(0o,m) T mn
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Now let & = exp(—n;nt/2)), we have that
P(r(8n,60) > ;BRn(oo,n) + 9—('%& +1) < 2exp(—mnt/2)),
1 1

integrating for 0 < t < oo yields

C(b, vl)dn

T

oo
_ —C(b’nvl)é" > t)dt < 2/ exp(—mnt/2A)dt =
1 0

Er(8n,60) — 2 Rn(60,m) -
2
oo
A 2 4
< r{0n,00) — —R,(6p,n _
< [ (Bt~ ERu(G0,m) =
This completes the proof of Theorem 3.1. #
Let (U, t € Z) be a R? x R¥ -valued strictly stationary process, for a function h defined over R? x R? and

for each integer ¢ € [1,n/2] we write

ohoy@ = | max Var(([ip] + 1~ ip)h(Upi) +hUpjsle2)

+ -+ h(Upg4nye) + (G + Dp ~ [+ DPDRUG+1)+1))
where p = n/(2q). Using Lemmas 3.2 and 3.3 in Zhang (1998), we can show Theorems 3.2 and 3.3. Firstly, we

give the bound of o2.

Lemma 3.3 If H1 holds, then for all integer ¢

012/ S 2p2r(gm('7y)a00)a (13)
where p = n/(2q).
Proof We have to prove that
otr(g)(@) < PVarUs(g) + p(p ~ 1) max Cov (Ui(g), Us (9)) (14)

from (7), we get
Var Ut S r(gm(') V),o())

and clearly
|Cov (Us, ;)i < |E(U:U;)| + |EUEUS).

Schwarz inequality entail

[EUU;| < (EUBHY2(EU2)Y? < r(gm (-, v), 60),
|EUEU;) < (EUR)Y2(EUZ)Y? < 1(gm (-, v), 600).

Consequently, following the decomposition (14), we obtain the bound (13). #

Proof of Theorem 3.2 The proof is similar to the proof of Theorem 3.1 in Zhang (1998). Since |U; — EU;|
< 2b, then condition (9) of Lemma 3.1 in Zhang (1998) is satisfied with M =2b. For U;, t = 1,2, ,n, we can
apply inequality (10) of this lemma with 7 = H (7, 8,) +log1/8, 7 = 1/ and ¢ = a,,, then for each v € S

P{E(L(Ze, gm(Xe, %)) — L{Z5, 06(X))) ~ F(gm (> v), Bo)

S AH(Tp, 6,) o¥(q) N Alog 1/6~
= an 2p%(\ — 2b/3) an,

) < e HOm T 4 20,8((p)),
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where p = n/2a, by using Lemma 3.3, we obtain

P(E(L(Zt, 9m (X, ¥)) = L(Zt, 80(X))) = F(gm (-, ¥), 60)

> AH (Tin, 62) N r(gm (-, v), 80) | Aog 1/8
an A—2b/3 an

) < e HEm8) 5 4 24, 8([p)).
We can show that

P(E(L(Zt,80) = L(Zt, 80)) ~ o7 (Bn, 60)
H(rpm,d0n) + Alog1/6 +

n an

> F(gn,eo) + A C(b, 'Ul)‘sn) < 25 + 2a,5([p]],

where 79 = 1/(X — 2b/3), define
AH (1, 6")}

0* = arg min{r(G,Qo) + .

0€Gm

o~ n
Note that 8, minimises (1/n) 3. L[Z;,8), then
=1

P(E(L(Z:,8,) = L(Z1,60)) = 107 (B, B0)
H(rm,6n)  Alog 1/6 N

n an

> 76", 00) + > C(b,v1)dn ) < 25 + 2a,8(). (15)

Now define
W, = L(Z;,0") — L(Z;,60),

applying inequality (10) in Zhang (1998) once more with 7 = log(1 /3), then
- \ \ Aog1/8 ~
P (6%, 00) > EL(Ze,07) — L(Z,00)) + (6", 00) + “E2L2) < 95 + 20,8((p) (16)

Combing (15) and (16}, we obtain

P(E(L(Z0,8) = L(Z1,60)) = Tor (B, o)

> E(L(Z0,6%)  L(Ze, 00) + mor(8" ) + 2ETmsdn) | PABLE 3, 1,15, < 43 + dani(lp).

n n
when n, m sufficiently large, then r(an, 6o) < A and 7(8*,6p) < A, from the assumption H3.3 and inequalities 4,

5 in Lemma 3.1, we have that

P((%(l — Mo)M; — no)r(gmb‘o)

AH (7, 8n) | 2Al0g 1/8
Qn

n

1 -
> (501 + Mo)Mi +m0)r(6",60) + +C(b,v1)8n) < 45+ danB([p)),
denote
1 1
m= 5(1 — Mo)M; —mn0 and 12 = 5(1 + My) My + no.

Consequently

v

P(r(anvoo) Z %Rn(ﬁo,an) -+ C(b’ 'U1)(sn + 2) IOg 1/6
1

Ui M0n

) <28 + 4anB((p)-
If 8 — C1 is satisfied, let a,, = [pn/(4logn)], we have

bv)én  2Xlogl/3\ -~
C(b,u)8n | 2)log /<5)<2(er vp_
U2 Than nlogn

P(T(an,go) Z @Rn(gman) +
m
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Now let § = exp(—ma,t/2)), note that ¢ < r(an,(?o) < b? integrating for 0 < t < b2 yields

~ 2 _ C(b,11)6n /°° B . b2vp _ 8 bvp
Er(6,,,60) — n—an(Oo,n) —_771 <4 A exp(—mnt/2A)d +nlogn mn +nlogn'

This completes the first part of Theorem 3.2. #
The proof the second part has the same argument as that used in first part except for the choice a,. If the

process Z satisfies 8 — C2, let a,, = [(1/2)nfe/(2+B0)], we have
21 < L p-0/2460)
a’"ﬁ([an]) < gHm '

Proof of Theorem 3.3 The proof of this theorem is similar to Theorem 3.2, we omit details. #

§4. Rates of Convergence

By using Theorems 3.1, 3.2 and 3.3, we now establish the rates of convergence of On.
Theorem 4.1 Suppose H1, H2, H3, H4 and H5 hold,
i) if Z; is i.i.d., then

logn)l/2

Er(6n,60) = O(—=

ii) if Z; is f-mixing satisfying-condition (a}, then
Er(Bn,00) = O(E2),
iii) if Z, is B-mixing satisfying-condition (b), then
Er(9,,60) = O((logn x n=Fo/(2+B0))1/2)
iv) if Z,; is a-mixing satisfying-condition (c) and m < O(n®0/(1+220))  then
Er(gn, 6o) = O(((logn)l"'l/a" X n_2“°/(1+2°‘°))1/2).
Proof (sketch) By Theorems 3.1, 3.2 and 3.3, we have the following inequality
E(r(8n,80)) = O{R(bo, an) + 6}

Note that
= inf r(6,an) + H_(JZ“_T’_"_),
0eGm an

H(‘Sna Tm)

n

R(6o,an) = inf r(6o,an) +

by the results of Barron (1994), we have oielg r(6o,8) = O(1/m) and

H(Sn,m) < (m(d +2) + 1) log (220
If we choose 6, = a;?, p > 1/2, then
~ _ 1 mloga,
E(r(6n,60)) = O(R + ‘—an—),

which is of order O(log a./a»)/?. We have the rates of convergence by choosing the value a, depending on the
different cases. #
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