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Abstract

In this paper, we consider a Sparre Andersen risk model in which the claim inter-arrival
distribution is a mixture of an exponential distribution and an Erlang(n) distribution. We
discuss the exact and the asymptotic behavior of the ruin probability under this risk model as
the initial capital u tends to infinity.
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§1. Introduction

Consider the Sparre Andersen risk model,

N(t)
Uy =u+ct— 3. Z (1.1)

i=1
where u > 0 is the initial surplus, ¢ denotes the insurer’s premium income per unit time. {Z;,
i=1,2,---}is a sequence of independent and identically distributed (i.i.d.) random variables, and
Z; denotes the ith claim amount. {T3, ¢ > 1} is a sequence i.i.d. random variables, which denote

the times between claims forms, and T; has a density function K (¢),

nan—1
K(t) = B K\ (t) + BoKn(t) = Brre™ ™ + ﬂzﬁe-“, t>0,

where n > 1 is a positive integer, A > 0, 81,082 > 0 and 1 + B2 = 1. K;(t) and K,(t) are the
density functions of exponential distribution and Erlang(n, A) distribution, respectively.
We denote the distribution of Z; by P(z), and the mean individual claim amount by E[Z] = p.
We assume that Z; has a density function p(z), and also assume that for all 7, cE(T;) > E(Z;).
Let T denote the time of ruin, so that T = inf{t > 0, U(t) < 0}, and T = oo if U(t) > 0 for
allt > 0.

Let w(-,-) be a nonnegative function. We are interested in the quantity
W(u) = E[e™*T 7 co)w(U(T-), lUTHIVO) =4),  u>0,
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where § is a positive constant, U(T—) is the surplus immediately before ruin, and |U(T)]| is the
deficit at ruin. & can be interpreted as a force of interest and w as some kind of penalty when ruin
occurs. The function W (u) is the expectation of the discounted penalty which determines the joint
and the marginal distributions of T, U(T-), and |U(T)|.

We need some further notation. Write F = 1 — F for the c’toatil of the distribution F'. Let f*
denote the Laplace transform of the function f,ie. f*(a)= / e f(z)dz.

0
For two integrable functions g; (z) and ga(x) defined on [0, ), let

u

(91 * g2)(u) == /Ou 01(u — 2)g2(2)dz and (g1 x g2)(u) := /0 g1(u — 2)dga(2).

In particular, we use the notation g2*(u) := (g1*g2)(u) and g*>*(u) := (g1%g2)(u) when g1 = g2 = ¢.
For any positive integer k, g**(u) and ¢F*(u) can be defined similarly. g**(u) denotes the nth

convolution of g with itself.

§2.  An Integro-Differential Equation and Laplace Transform

In this section we present some results for the expectation of the discounted penalty W{u).
Since most of the proofs are similar to those in Dickson and Hipp (2000, 2001) or Cheng and Tang
{2003), we just state the results without proofs.

Theorem 2.1 The function W(u) satisfies the integro-differential equation

£ (oot

S (n;1>ck(—/\—6)” 1k dk / W(u - o)p(z)dz), (2.1)

E=1
where A1 = B1(=A)(=A = 8)" 7! + Ba(=A)™.
Remark 2.1 Letting $; =0, 82 =1, n = 2 in (2.1), we can obtain the integro-differential
equation for Erlang(2) risk model, which has been considered in Dickson and Hipp (2001).
Remark 2.2 Letting n = 1 in (2.1), we obtain the integro-differential equation for the
classical model. For detail, see Gerber and Shiu (1998).
Taking the Laplace transform on both sides of Eq.(2.1), we can get the Laplace transform of
the function W (u),

Ay /-OC o au /mw(u,x — u)p(z)dzdu + G1 (e, 8) + Ga(a,d) — (AW)* (a)
(ac = A =8 — [A; = BiA(ac — A= 8)" 1+ BA(=A = 8) ]p* (@)

where A; is the same as in Theorem 2.1 and

(AW)*(a m"zl ( > k(=) — g)n—1-k /Oooe-w[dii:—k(/uww(u,z - u)p(m)dz)]du,

W*(a) = (2.2)
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(@, 8) :zi()c( X = §yr—kak-1=i ) (),
k=1 _7._.0
n_ k=1 i1 )
Gr@8) = fu) T (= = 6)"7F T of T w010 ().
k=2 i=1 =0
Lemma 2.1 Let § be strictly positive and n is a positive integer, then the equation
(ac =X —=6)" = {41 — fiX[(ac ~ A = &)™ = (=2 =8)""!}p*(a) (2.3)
has exact n roots oy () with Re(o(6)) >0 (I =1,2,---,n), where A, is defined in Theorem 2.1.
Proof When a =0, we have

[[B1(=N)(=A = )1 + Bo(=N)"]p* (0)] < [(=X - &)™)
So for p > 0 sufficiently big, the inequality

{41 = BiM[(ac = A =)™ — (=X = )" ']}p* ()] < [(ec = A = )"

holds on the imaginary axis and on the semi-circle {a € C,Re(a) > 0,|a] = p}. By Rouches
theorem the Eq.(2.3) has exact n roots on the right-half plane #

§3. A Defective Renewal Equation

Let ¥(u) denote the probability of ultimate ruin from initial surplus «, namely

¥(u) = P(T < 0o]U(0) = u).

(u) reduces to ¥(u) if § =0 and w(z1,z2) = 1. From (2.2), we get

.y D(a) + h*(a)
¥ila) = (ac = [B2(=)" = Bid(ac = A p*(a)’ 30
where
_ n k-1 n . n—kg(5) k—1
D) = £ 5 (})Earta et
n=l/n—1 o1k 5 (4L = P(w)]
o (T g e T
N n-1/n—1 n_l_.dk[l'—P(U)]
hw) = (=) [1—P(u)]—ﬂ1Ak2=21( L )C"(‘*) i
Let

L{a) = (ac — A)™ = [B2(=N)" = BiMac — A" p*(a). (3.1)

By Lemma 2.1, the equation L(a) = 0 has exact n roots a;’s located on the nonnegative

alf-plane. Further, L(0) = 0, so 0 is a root of equation L{a) = 0. Without lose of generality, we
assume that 0 = a,, < Re(an—1) < -+ < Re(m).
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Following Dickson and Hipp (2001), we introduce the operator T, f(z) for an integrable func-
o0
tion and a complex r, defined by T, f(z) = / e~ "%~ f(y)du. Then for ¥ real r, 71, 72, we

T

TTlf(z) - TTzf(m) - ?1: Ta;
T, T, f(z) = Tp, Tr, f(2) = o 277 (3.2)
I

u— z)e " ) fu)du, Ty =Ty =T,

have

and
fr(r) = f*(ra) = (ro — 1)1, £ (r1), (3.3)

for ry #7s and if = 0, T,.f(0) = f*(r).
Lemma 3.1 Let L(«a) be defined by (3.1), then it can be written as

L{a) = h (o — ;) - [c” - ATy, - Ta,p" (@)

n—1 i+1 3 L.
+51A ;1 [; I1 (car — /\)7"] (=1 Ty, ...Tal_Hp'(a)],

k=1

i+1

where M = { K X gk=n—-1-4,5 € No}. Ny denotes the set of nonnegative integers. If M be
k=1

i+1 ,
an empty set, we assume y_ [] (cap — A)* = 1.
M k=1
Proof Since

L(a) = (ac—2A)" = Ba(=A)"p"(a) + Bir(ac — )" Ip™(a)
= Vula) = Var(a) + Va1 (a),

and ag, - -, a; are zeros of L{a), L(a;) =0,1=1,2,--- ,n. Hence

L(a) L(a) - L{an)

Vii(@) — Vir(an)] — [Var (@) — Var(an)] + [Var (@) — Vai(an)).

I

So,
Via(a) = Vii(a) - Vir{an) = (@ — an) - ¢ - g(n, @, ay),

where

gn,a,an) = (ac = M) ! + (ac — /\)"_2(anc —A) 4+ (apec— AL
Using (3.3) and getting
Vaz(@) = Vai(a) = Var(an) = Bo(—A)*(-1)(a ~ ar) - Ta, p* ()]
Similarly

VSI (a) - V31 (an)
BiM[(ec = X)"p*(a) — (anc — XY 1p* (an)]
Bid(a — an)lc- g(n — 1,a,a,)p* (@) — (ane — A1 - Ty, p* ().

Vaz (@)

i
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Hence
L(a) = Viz(a) - Vaz(a) + Vaz(a).
Using the zeros a;, as, -, a,_1 and repeating the steps as above, we can obtain
n
Vint1(a) =Vip(a) = Vin(ar) = [T(a~ ) - ¢*,
=1
n
Vanti(a) = Van(a) — Van(aa) = [[(a - i) - foA” - Ta, -+ Tey 0™ (t),
=1
. i n n—1 L.
I/3 n+1(a) = I/3 n(a) - %n(al) = H (a - al) ) Bl’\ E (—l)n-161
I=1 i=0
. i+1 .
XTa,. toe Ta.'+1p (Ol) ) E H (can—k+l - /\)Jk-
M k=1
So we get

L(a) =W n+1 (a) - V2n+l (a) + Vs n+1 (a),

and the result follows. #
Letting I(a) denote the numerator of (3.0). Since a;, - - , a,, are zeros of the denominator of
(3.0), it must also be a zero of the numerator. As Lemma 3.1, we get

Lemma 3.2 I(«) can be expressed as

n

Ia) = (-1)" [[(a - i) - T, - - Ty 1™ ().

i=1
Theorem 3.1 ¥*(a) can be written as

(=1)" T, - T, h*(a)
=W Ty, -+ Tap* (@) + Q(p*(a))’

¥*(a) = (3.4)

where
n—1 i+

1 A ..
Qw*(a) = BA T [T TT (ean = M| (<16 Ty -+ Ty (@),

i=1 LA k=1
M be the same as in Lemma 3.1.

Proof Using Lemma 3.1, Lemma 3.2 and (3.0), the result follows. #
o0
Theorem 3.2 Let u= / [1 - P(u)]du, if ¢ > Ay, then ¥(u) satisfies the defective renewal
0

equation,
U (u) = (¥ *v)(u) +nlu), (3.5)
where
V) = 2 Ton -+ Taplt) = Qo))
aw =L T T,

Proof Equation (3.5) follows immediately from (3.4), since

n

V(@)= 2 Ta - Tup'(@) = Q0" (@),

n

@) = C2 7, Tkt ().

cﬂ
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In order for the renewal equation to be defective, we require that v*(0) < 1. When n = 1, hence

a, =a; =0,

3w) = 2 To,plu) = 2 - Top(u),

A A
7'(0) = Toy(0) = 5 - Ty Top(0) = == <1,

since ¢ > \u.

Whenn =2, a, =as =0,
1. ..
Y(u) = ;5[(/\2 — BrAca1)Ta, Ta,p(u) + B1AcTa,p(u))].

Using (3.2) and (3.3), we get

1
c_g[()\2 — BiAcar)To, ToTop(0) + By AcToTop(0)]
AZ — B ey ToTop(0) — Ta, Top(0) + B1AcToTop(0)

7*(0) = Tov(0)

- c? ) c
_ Xu X =Bideas Top(0) = T, p(0)

oy fe%) a;

A 1

= — ——[(A? = BiAcay)(1 - p*(e1))]:

c2a; o

Because L(a;) = 0 = (ca; — A)? = (A% — By Acay )p*(ay),
(A% = BrAcay )p*(e1) = (cay — N)2. (3.6)

Substituting (3.6) into v*(0), we get

. A 1 (.5 9 2Xc — Brdc — A2pu
¥ (0) = ol oy A = Brdecag — (a1c— A ]=1- " .
Since ¢ > A and 0 < 33 <1, then
2xc — Ay~ BiAc> 0,
and v*(0) < 1, since c*a; > 0.
When n = 3, a,, = a3 = 0, we can obtain
Ac? A2 (aq + az) — 281 2%¢
s = B35 Ty - 2O T ) ZBNC g g
A+ Biacia? — 28 A2

3

Using (3.2), (3.3) and

0= Liai) = (aic = )° = [(-2)® = BM[(@ic = ) = (=2)]Ip*(s),  i=1,2,



F i AR F4E4:  Sparre Andersen R I HE & a9 sk & 54 437

7 (0) = Tov(0)

BLAc? BiAc(ag + as) — 261 X%¢
= B5° () - @t @) 2N g )
X+ Biacal — 2802
+ IBI < acl;; ﬁl o 'TaxTazTOTOP(O)
- 71— 3\2¢c - Ay~ 281 A%¢
- Sayas ’
Since ¢ > Apand 0 < 81 <1, then
3x2c - A~ 2610%¢ > 0.
Hence,
77(0) <1,
since ajag > 0.
For a general value of n, we prove it by induction,
/\n—l — Xy - -1 /\n—l
O =1-"22_¢ “n_fn X (3.7)
ch H (s ¥
i=1
This proves the theorem. #
(o o)
Corollary 3.1 If ¢ > Ay, then / ~v(z)dz < 0 and
0
n-1 _
j X TGet ey
00 n-—
/ v(z)dz = e .Hl “ (3.8)
0 1=
a3 n=1,

where «y(u) is defined in Theorem 3.2.

§4. Exact and Asymptotic Behavior of the Ruin Probability

4.1 Exact Expression
Theorem 4.1 The solution of equation (3.5) can be expressed as

V)= S ()W), w>0, (4.1)

k=0
where 7, v are defined in Theorem 3.2, and v%* is the Dirac function at 0.
Proof It follows from (3.4), that for Re(a) > 0,

n* ()

T r@r
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Consequently,
oo
T(e) =7"(e) X (v (o))" (4:2)
By (3.7), |v*(a)] € v*(0) < 1, Formula (4.1) can be obtained by inverting (4.2). #

Theorem 4.2 The ruin probability ¥(u) has the following expression

v = (1- /Ooo veis) (|

where y(u) is defined in Theorem 3.2 and

Yelu) = (/000 'y(x)dz)'l /Ou ¥(z)dz.

Proof From Theorem 2.1, for R =1 — ¥ we have

i (n) (A - 5)n—km

k=0 \k du*

u n— - k u
= (—/\)"/0 R(u — z)p(z)dz - ﬂl)\kgj (n k 1) ck(—/\)"’l'ka%/o R(u — z)p(z)dz.

[es]

Ly
'y(z)dz) ve ¥ (u), u >0, (4.3)

Similarly to (2.2), we have

Gl (a,O) + Gz(a,O)
(ac = )" = [Bo(=A)" — BrA(ac = A)"~1p*(a)’

R (o) =
where

Gl(a,O) = i kil (Z)Ck(—)\)n_kak—l_jR(j)(O),

k=1 j=0

n—1 k—1 Li—=1 .
Ga(a.0) = BLA 3 F(=N1F T o*1mE Y RO(0)p 10 (0).
k=2 =1 =0

By the operator T, f(z), we simplify R*(«) using the same method which was used in Theorem
3.1, and get

{a—az) - (a—ay)-c*- R(0)
ala—az)---(a—an) [ = AT, - Tayp*(a) + Q(p*(a))]
R(0)
= SR I , (4.4)
a(1=(5)" Tay - Turp(@) + Q" (@)

R'(a) =

where @Q(p*(a)) is defined in Theorem 3.1.
The final-value theorem of Laplace transforms giving

1= lim R(u)= lim aR*(a),
uU—00 a—0

and hence
Ay n
R(0)=1- (Z) “Ta, -+ Taop™(0) + C:L - Q(p* ().
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It is easy to see that

n

RO =1- [ 9 and v (@) = (2)"Tay Tap™(@) - 2Q07 (@),

Inverting {4.4) yields, for u > 0,

Rew) = RO) £ ([ 2te)dz) 441w

k=0

and the result (4.3) follows. #

4.2 Asymptotic Behavior
Throughout this section, G(z) is a distribution function on [0, co) such that G(0) = 0,G(z) < 1
for all z € (0, 00) and G(o0) =1, and it has a mean 7. We note G(u,u + z] = G(u + z) — G(u). In

this section, the asymptotic formulaes for ¥(u) as u — oo are obtained.

4.2.1 Exponential Behaviour
If p(z) satisfies that there exists ap € [—00,0) such that hm p*(a) = oo. Then equation

a ao
L(a) = 0 has a negative root, which is denote as —R.

Theorem 4.3 Let —R denote the negative root of equation L(a) = 0. Then

(R+ar) Ta, - To,h*(—R)

Jim eflu(y) = B2 TR ) (4.5)

Il:js

Proof Since 0 = L(—R) = ﬁ (=R —-a)[c" = A" - Ty, -+ Ta,p*(—R) + Q(p*(-R))],

i=1

"= A"-To, - - Ta,p*(~R) — Q(p"(—R)). (4.6)
Note that
|t = % [ R T, Tayp(a) - Q)i
0 " Jo
= S Ta, o Tap'(=B) - QG (<R))]
Consequently -
*(-R) = Ru du=1.
(R = [ M
Because

“(_ )
dy*(=a) = / ze®"y(z)dz > 0,
da 0

the number R is unique. Multiplying (3.5) by ef*

MU B(u) = (T * 7)(u) + eMn(u),
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is a standard renewal equation. It follows from Smith’s Key renewal theorem, that

o0
/ efen(z)dz
lim e (u) = 22

U—00 oe ’
/ zefTy(z)dz
0

It is easy to see that,

By Lemma, 3.1 and using (4.6),

dv(@) __0 < L(a) ) _ CVLU(-R)
da la=-R Oa cn ,ﬁl(a—ai) w=—-R P ~fIl(R+ai)

The result (4.5) follows from (4.7)-(4.10). #

4.2.2 Subexponential Behaviour

(4.7)

(4.8)

(4.9)

(4.10)

Definition 4.1 We say G belongs to the class S of subexponential distribution function if

lim — (u) =n,

u—rco  (G{u)

where G(u) = 1 — G(u).

Proposition 4.1 (Embrechts, et al. (1979)) If G € &, then for every € > 0 there exists

some positive consants K (€) < oo such that for all n € N and u > 0,

Gg(g‘) < K(e)(1+¢)™

Lemma 4.1 If P; € S, then 4. € S and

n—1

pe(3-Q- o)
hm 1 - 78(“‘) _ n-1 ’ n Z 2’
w00 1 — Pr(u) cn - I:[1 a; — A" 1(B1c + Panc — Ap)
1, n=1,

where

@ _ ﬂl’\jg(_l)n—ici[%:ljll(cak _ A)jk] . ( ””I:[1 a[)—]’

=i+1

v and 7, be the same as Theorem 4.2 and M be the same as Lemma 3.1.

(4.11)
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Proof When n = 1, the proof is straightforward. For n > 2,

1—ve(u)

/u z)dz/ / 2)dz = Toy u)/ / Y(2)dz
= 2 (- / (1 - P()dz) // T(z)de]

_oa z )”“[zmcak—)f»]-[(a.+1--Tan1L Z>d2// (2)d]

cn

_ /\n / / X131 == Cno12n- 1/00 P(z)dzdzl ~dzp_y //
C" u+nz—: zZi

BN 3 ] o= 4]

7
C i=1

00 _ 00
/ / e~ HiH1Zi41 == G121 / - P(Z)dZdZi+1"'dZn—1)//
0 ¢} ut+ Y oz 0

k=i+41

since a, = 0.

It follows from the definition and Lebesgue’s dominated convergence theorem,

ul-lanolo 11— ;E((U)) T el A o0 - léoQ ' (4.12)
! c [] ax / v(z)dz c® / ~v(2)dz
k=1 0 0

So 7. € S by Theorem 2.7 in Teugels, J.L. (1975). Substituting (3.8) into (4.12), the result (4.11)
be obtained. #
Theorem 4.4 Suppose ¢ > Ap. If Py € S, then

. n—1
¥ (u) u'<An_Q'-H1a")
u = .
wee Bru) | Ny, Bret Bane = ) n2® (413)

c— g’
where Q be the same as in Lemma 4.1.

Proof Dividing both sides of (4.3) by Py(u), we can get

— oo o 00 Ex
PE,((U))___%_EI%))(I_ [T otaaz) £ ([ atea)" 255 (414)

Because Py € S, 7. € S by Lemma 4.1. - -
Choose ¢¢ > 0 such that (1 + 50)/ v(z)dz < 1 since / v(2)dz < 1. By Proposition 4.1,
0

0
there exists K;(gg) < oo such that for all u > 0 and all k > 1,

(U)
7& (u)

K, (Eo)(l + £o)k.
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Hence, using Lebesgue’s dominated theorem in (4.14), we have

s = (i g) (- [Tre) Sr([ )
)

&;wmh U‘ @W 1—/w(d®”, (4.15)

where we have used
§ L Wyl <1
=5 Y .
(1-y)?

=0
Substituting (3.8) and (4.11) into (4.15), the result (4.13) can be obtained. #
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