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Abstract

In this paper the properties of the F' statistic of the elliptical variables are investigated and
a version of the skew F' distribution is introduced. Probability density function, distribution
function, moment generating function and moments are obtained. The behavior of the F test

for the skew normal population is investigated.
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§1. Introduction

The F statistic arises in many applications of the statistical science, mainly as the ratio of
the independent estimators of the variances of the normal variables. Let @; ~ X%cu 1 =1,2, be
two independent chi-square variables, then F' = Q;/Q2 - k2/k1 has the F distribution with k;, k,
degrees of freedom and its noncentral version is obtained by replacing chi-square variables with
noncentral chi-square variables. The well known F test for the ratio of the variances of two normal
populations and the F' test for the linear hypothesis are based on the F' statistic.

In recent years natural and useful extensions of the family of the normal distributions proceed
along two connected directions, one of which is the symmetric extension including the elliptical
distributions, see, for example, Fang et al. (1990} and another is the skew extension including the
skew normal and skew elliptical distributions, see Azzalini and Dalla Valle (1996), Azzalini and
Capitanio (1999), Branco and Dey (2001) and Fang (2003).

Definition 1 Let f be the density generator of an n-dimensional spherical distribution,
satisfying |, g f(v'v)dv =1, F} its one-dimensional marginal distribution function, A € R, o € RF
and £ € R¥ be constant and Q a k x k constant positive definite matrix, k =n — 1. Let z € R* be

a random vector with probability density function

Ata'(z-€)
/ Fws+ (2 - 6'Q Yz - )yl ™/?/Fi(Meo),  z€ R,
where ¢g = (1 +a/Qa)'/2. Then z is called to have the skew elliptical distribution and denoted by
z ~ Se(&, 9, A a; f), see Fang (2003).
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Denote by ¢, (z) the normal density generator, i.e., ¢ (z) = exp(—z/2)(27)~"/2. Some special
cases for the skew elliptical distributions are the elliptical distribution with a = 0, the skew normal
distribution with f = ¢, in Azzalini and Dalla Valle (1996), Azzalini and Capitanio (1999), Arnold
and Beaver (2000), the skew elliptical distribution with A = 0 in Branco and Dey (2001).

The parameters A and « are called skewness parameters and the later shape parameter by
different authors. They provide a flexible way to model data presenting skewness, which arise
frequently in practical cases. In the univariate normal case with A = 0, = 1, the index of
skewness of z is equal to (4/7 — 1)(2/7)/2(1 — 2/7 - a®/c3)~3/? - a3/} (Azzalini and Dalla Valle,
1996, p.716). Thus positive a leads to positive skewness and the opposite holds for negative a.
The skew elliptical distribution can be generated via the mechanism called truncation, censoring,
conditioning or screening by different authors. It can be shown that z in Definition 1 has the
stochastic representation

22 yh+a/(y € >,

where (yg,y’)’ is n-dimensional elliptical distributed with location (0,£’)’, scale matrix in the block
form diag(0, ) and density generator f. That is to say, we retain the observation y if the condition
A+ (y — &) > yo is satisfied. The variable yp is called hidden variable or screening variable,
which is unknown. See Fang (2003) for this and some other stochastic representations of the skew
elliptical distributions. While maintaining mathematical tractability of the symmetric (elliptical)
distributions, the skew elliptical distributions have additional parameters to regulate the skewness
and thus is useful in reducing unrealistic assumptions in real data fitting. For more explanation
of the background of this area of research, the interested reader is referred to Arnold and Beaver
(2000), Azzalini and Dalla Valle (1996) and Azzalini and Capitanio (1999) and references therein.

In this paper we investigate the properties of the F' statistic of the skew elliptical variables
with emphasis on the skew normal case. This research will provide an insight into the applications
of the F statistic under the skew elliptical population and stimulate further research.

In Section 2 the basic properties.are investigated. Formulas of the probability density function,
distribution function, moment generating function and the mean are obtained and illustrated with
numerical calculations. In Section 3 two examples of the F' test are given. The robustness of
the significance level against the normality and the unbiasedness of the test are investigated. The

proofs of the propositions are collected in Section 4. Finally, a brief discussion is given in Section

o

§2. Basic Properties

The F statistic is expressed as the ratio of two independent quadratic forms of the normal
variables. For the extension of its distribution under the skew elliptical populations we shall first
recall the extension of the chi-square distribution, the distribution of the quadratic forms under

the skew elliptical populations in Fang (2004).
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Definition 2 Assume z ~ Si(€,1, ), ; fn). Partition z into h parts as z = (z,---,2z})’,
where z; is k;-dimensional. Partition £ and « in the same manner. Let Q; = zz;, @ = (Q1,
o Qn), Tian = €&, Tine = oy, Tize = aja;. The distribution of Q = (Q1,---,Qn) is called

the noncentral generalized Dirichlet distribution with parameters ky/2,--- ,kn/2, Ti11, Ti12, Ti 22,

i=1,---,h, A and density function generator f,,, where Zh: kk=kn=k+1, TEIZ < Tij1Ti22, for
ki>2and 72, =it fork, =1,i=1,--- ,h, and (igrioted by NGr(k1/2,--- ,kn/2;7,); fn)-

Definition 2 extends the Dirichlet distribution in a way that if A = 0 and £ = 0, then @
is a scale mixture of the Dirichlet distribution (Fang, 2003). That the noncentral generalized
Dirichlet distribution (NG) is natural extension of the classical chi-square distribution can be seen
as follows. Let fn, = ¢y, h = 1. T XA =0, 7112 = 0; or 7122 = 0, then Q1 ~ X}, (71,11), the
noncentral chi-square distribution. Let fp, = ¢n, h=2. If A =0, 1,12 = 0,7 =1,2; or 720 =0,
1=1,2, then Q; ~ Xi,- (7:,11), are two independent chi-square variables.

Definition 3 Under the assumption of Definition 2 with A = 2, the distribution of F' =
Q1/Q2 - k2/k; is called the skew F distribution with parameters k1, k2, 75,11, 7,12, Ti22, £ = 1,2, A
and density function generator f,, and denoted by SF(k;, k2,7, A; frn)-

The skew F' distribution retains a basic property of the usual F' distribution that its inverse
also belongs to the family of the skew F' distributions. In the notation of Definition 3 we have
(z5,2]) ~ Se((&5,8), I, A, (ay, &)’ fr) as seen from its probability density function in Definition
1. Hence by definition 3, 1/F = Q2/Q1 - k1/k2 = z42z2/z21 - k1/ky ~ SF(ka, ki, 7%, X; fn), where
Tl*‘ij = T2, T._;‘ij =mn,1,J=12

Denote by ® the distribution function of the standard norl\nal distribution and ¢ its density
function. Let I; = 7'1"127’,;212/2, if Tia2 # 0 or 0, otherwise, lip = (i1 — 13)Y/2, if k; > 2;
lin = TinaToad s if Tizz # 0, or 7,.[7, otherwise, if k; = 1. Let e(k;) = wk</2=1/T\(k;/2 — 1) for
k; >3and 1for k; =1,2.

Theorem 1 Let y; with components y;; be of dimension min(k;,3), b = I ;)(Yiy1/y5y2 -
ka2/k1)ly13|% ~3ly2s]*2 73, where |y;3|% 3 vanishes if k; = 1,2. Denote k! = min(k;,2). Then the
distribution function of SF'(ky, ks, 7, A; fn) at z > 0 is given by

c(k1)e(k /bI
( 1) ( 2) (—Oo,/\+_=§1(Til,é‘22y“_ﬂ'12)) (yO)

9 &, 2 ki 2
O (Z/G + Zl Yiyi—2 > > lijyi; + 3 Ti,ll)dyod)'ld)'2/F1()\/CO)- (1)
i= i=1

i=1j=1
The dimensions for the integration in Theorem 1 can be further reduced if some of the param-
eters vanish. The probability density function of the skew F' distribution can be obtained from the
distribution function by first making suitable transformation and then taking derivative. However,
the expressions are of different forms according to k; = 1, k; = 2 or k; > 3. We present one case
in the following Theorem. Expressions in other cases can be obtained by similar argument.
Theorem 2 Denote by f, the probability density function of the usual central F' distribu-
tion. The probability density function of SF(k1, k2,7, A; ¢n) at z with ky > 3, ks > 3, 7,5, = 0,
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7i,12 = 0 is given by

2~ k/2 2 (k /2) ~ 9 ' .
P T mee) L Thz =17 | V7 o(-u/2) [ sim6)*~
X BN+ 21 + zky ko) T2 [(w7y 22k JK2) 2 cOs 0y + 1—2 cosé)g])dydoldoz, (2)

where the integration in taken for 0 <y < 00, 0< 8; < m,i=1,2.

Theorem 2 shows the probability density function of the skew F' distribution is the probability
density function of the usual central F' distribution multiplied by a factor representing the effect of
the skewness parameters A, a and the location parameter £ in the skew elliptical population. It can
be checked that this factor equals to 1 if the skewness and location parameters vanish. Calculation
shows the main shape of the F density function is retained if f,, = ¢,,.

In principle the method of Theorem 1 can be applied to obtain the moment generating function
of the skew F distribution as integrals in the space of lower dimension. We omit these formulas and
give the moment generating function and the mean of the skew F' distribution under the restriction
fn = &y, which is of more compact form than in the general case. We also adopt a simpler way
of proof by a conditioning argument using the corresponding result on the NG distribution with
normal density generator. Moments of higher order can be obtained by similar arguments.

Theorem 3 Use the notation of y; and kj in Theorem 1 and let b = [jo/2)(t/y5y2 -
k2 /k1)\y23|*2 3, where |y23|¥2~3 vanishes if k3 = 1,2. The moment generating function of SF(k1,

ka, T, X ¢n) at ¢ is given by

k ) /b@ )\ + T2 22y21 T2,12 + 2T1,12?(1 —_ 2?)_1>
? (1 +71,20(1 — 28)~1)1/2

K
ry N—-1 _ 1 _ e
X exp (Tl,]_lt(l — 2t) (yzyg 2J§1 lzjygj + T2,11)/2)
X (1 2B)~B 2 2m) 2y, [ (M co), 3

where ?:'- t/y.’zy-z . kz/kl.
Theorem 4 Suppose kg > 3 and & = 0. The mean of SF(k1, k2, T, A; ¢p) is given by

ko B k2 T1,22 B
LA-T : , 4
ki(ks —2) T Fi2F 27172 (ky /2 — 0.5) [ (1 I - 5)] )

where /

1/2
I = / |sin9|k2—2rkz—3¢(w
0<r6><027r (1 + Tl 22)1/2

) exp ( _ %)drde/d)()\/co),

1/2 )\ 9 2
Ta22 . ko2 foo—2 -+ T2 221‘ cos r
I = —————r cos 8| sin §|*2~*r"2 —— —Jexp| — —)d’rde ®(A/co),
3= (1 + Y 22)1/2 /0<a<2" | | ¢( (1 + Tl,gg)l/z ) P ( 2 / ( / )
2r2 A
(1472202 (14 m2)¥?
Theorem 4 shows the mean of the skew F' distribution can be expressed by the sum of the

B =T1,11 + k.

A=

mean of the usual noncentral F' distribution and a term representing the effect of the skewness
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parameters. This additional term vanishes if A = 0 and 7, 12 = 0 or 722 = 0 s0 that A =0 and
I3 = 0, conforming with the independent chi-square case explained in the remark below Definition
2. Table 1 gives numerical results of Theorem 4 for various cases with k; = 10, k2 = 10, &, = 0 and
7 as function of a and £, where a; = (a;1,0)', & = (£11,0)". The numbers in the second column
(& = 0) of the first four rows (A = 0) are the means of the non-skew central F' distribution. The
numbers in the first and third columns (&;; = —1, 1) of the first row (A = 0) are the means of
the non-skew non-central F distribution. The numbers in the third row (A = 0, 7;;» = 0) are
the means of the non-skew F distribution. Comparing the first and the third columns with the
second column, we can see the mean increases as the noncentral parameter 7y ;, increases. This is
because B increases with 71 11, see alternative formula (7) of the mean in the proof of Theorem 4.
Comparing the fifth, second and eighth rows in the first and the third columns we can see that the
mean decreases as A increases if as = 0. This is mainly caused by A as the decreasing function of
). Comparing the pairs of the sixth and seventh rows, the third and the fourth rows, the ninth
and the tenth rows in the first column and the third column, we can see that the mean increases

or decreases as Ty 22 increases if £; > 0 or &1 < 0.

Table 1 Mean of SF

A o az1\é11 -1 0 1
0 0 0 1.3750 1.2500 1.3750
5 0 1.2722 1.2500 1.4728
0 0 1 1.3750 1.2500 1.3750
5 1 1.2787 1.2500 1.4713
1 5 0 1.2698 1.2408 1.4617
1 0 1 1.3920 1.2654 1.3920
5 1 1.2722 1.2417 1.4613
-1 5 0 1.2883 1.2592 1.4802
-1 0 1 1.3580 1.2346 1.3580
5 1 1.2885 1.2581 1.4776

§3. Applications

In this section we give two examples to illustrate the application of the distribution theory
derived in previous sections.

Example 1 Suppose z; is the sample from N(&;,0?) of size ki, z) and z, are independent.
For testing the hypothesis H : 7 /03 < 1, the usual F statisticis V = s7/s3-(ka—1)/(k; —1), where
st = z,Pz;, P; = I —11'/k;. In a more general setting we consider the data coming from the skew
normal distribution and investigate the effect of the skewness parameters on the level of the F test.
We thus assume z ~ Si(§,Q, A, a; ¢n), where z = (z},2}), € = (1'&, V&), Q = diag(lo?, Io2),
a = (a),a})', where the partition is according to k¥ = k; + ky, 1 is k;-dimensional with all
components being 1. The independent normal case is recovered if the skewness parameters vanish.

Thus the skew normal case represents a departure from the independent normal case. Let T'; be
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~1/2

ki x k; orthogonal matrix with 1k; as its first column and [';; the rest k; — 1 columns,

Y

y = Y12 _ ( I1'121/01 >,
Y21 Tyza /0y
Yo2

where y;» is k; — 1 dimensional. Then calculation shows (see Fang 2003)

. T
yi2 ~Sp2|0,1,c1A, 1 123101 3Ok—1 |,
Y22 Thoan02

where ¢; = [1 + o} (I — P1)ay0} + &y (I — Py)aso3]~'/2. Hence
(s3/07,53/03) = (¥12¥12, ¥22¥22) ~ NGa((kr = 1)/2, (k2 = 1)/ 2,7, c1 X $i—1)

by definition 2, where 7,11 = 0, 12 = 0, Tin = calPa;o?, i = 1,2. Let F = V/A, where
A=02/c3 Then F =52/s3-02/0% - (ke — 1)/ (k1 — 1) ~ SF(ky ~ L, ko — 1, T, c1X; br_1)-

If A = 0, then the distribution of V' does not depend on « (see Fang 2003) and the test can
be performed as in the normal case. If A # 0, then the true significance level will be different
from the nominal level using the standard table and the unbiasedness of the F' test can not be
easily obtained from the expression V = FA as the distribution of F' depends on ¢;. Let z be
the p-th quantile of the usual central F distribution of k; — 1, k2 — 1 degrees of freedom. Table
2 gives estimated P(V > z) for various o7 and a; with p = 0.9, a2 = oy = (@11,0), 02 = 1. If
ki = 11, ks = 11, then = = 2.3223. H ky = 2, ks = 6, then z = 4.0604. For each combination
of the parameters, 2 x 10* skew normal vectors are generated and the frequency that the statistic
V is larger than z is used to estimate P(V > z). The row corresponding to a1, = 0 is the power

function of the usual (non-skew) F' test.

Table 2 Power function

(ki,ks) | A | en\er | 0.2 0.5 1 2 8
0 0 0 0.0008 0.1000 0.7976  1.0000
05 0 0.0009 0.1008 0.7937  1.0000
1 5 0 0.0004 0.0990 0.7966  1.0000
(11,11) 10 0 0.0005 0.1015 0.7946  1.0000
05 0 0.0009 0.1014 0.8090  1.0000
-1 5 0 0.0007 0.1028 0.8049  1.0000
10 0 0.0009 0.0999 0.8028  1.0000
0 0 0.0002 0.0100 0.1000 0.3599 0.8112
0.5 | 0.0001 0.0092 .00950 0.3428 0.8033
1 5 0.0003 0.0120 0.0964 0.3545 0.8096
(2,6) 10 0.0001  0.0097 0.0962 0.3518 0.8124
0.5 | 0.0001 00110 0.1095 04070 0.8202
1 5 0.0002 0.0110 0.1018 0.3736  0.8141
10 0.0002 0.0101 0.0988 0.3664  0.8090
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Tt can be seen that the numbers in each row is increasing with ¢, for fixed o, and «. This
implies that P(V > ) is increasing with A and the unbiasedness of the F' test is maintained. The
column corresponding to oy = 1 gives the estimate of the true significance level. We can see that
the departure of the true significance level from the nominal level is not severe for the values of
the parameters taken in this example.

Example 2 For the investigation of the robustness of the test for the location parameters
in the linear models as developed by normality theory, we suppose z ~ Sg(¢, 102, A, @; ¢,). The
testing problem is H : & € wy versus K : £ € w — wp, where w is an r-dimensional linear
subspace of R* and wy is a g-dimensional subspace of w, 0 < ¢ < r. The usual testing statistic
is F = || - &|12/llz = &2 - (k — r)/(r — q), where £ = P,z, & = P,,z, P, and P, are the
projection matrices on the spaces w and wg respectively. By the argument similar to Example 1,
making transformation to obtain a canonical form of the statistic and taking the transformation
of the skew parameters into account, we obtain F ~ SF(r — ¢,k — r,7,c1A; ¢r41), where 7 11 =
E'(Py — Pu)E/(0%), a2 = € (P, — Puy)a, nige = cda/ (P, — By )ao?, 7a11 = 0, 7,12 = 0,
Tyne = 3o/ (I — B)ao?, ¢; = (1 + &' P,yac?)~4/2. Tt can be seen that 73,1 = 0 and 7132 = 0
under H. If A = 0, then F' has the usual F' distribution and the significance level of the test is
guaranteed. However, the power function in this case will depend on 7 and hence the parameters
c, ) and a. In the case that A # 0, both the level and power will depend on the skew parameters.
Numerical calculation can be made for the investigation of the departure from the normal model.

It should be noted that the F statistic for the skew normal samples must be used with care.
In the case where invariance of the distribution is not obtained as shown in the examples, the usage

of the F statistic should be avoided.

§4. Proofs of the Propositions

Proof of Theorem 1 Using the notation of Definition 3,

M (2—€)

PIF <) = [ ow@n/zze - ko/h)]| [ Il + (2 = € (2. — ©))duo] da/ Fy (Aeo).

—oo
The case of k; = 1 is easy to establish. For k; > 2 and o4, §; are not all 0, make transformation
yi = I'z;, where T; is orthogonal &; x k; matrix satisfying conditions in the following three cases.
If a; # 0 and &; is not proportional to ; so that 7;20 # 0 and ;2 # 0, let the first two columns of
i be a;/|lei|| and (& — liyai/llaill) /li2. If o; # 0 and &; is proportional to «;, so that 7359 # 0
and liz = 0, let the first column of T; be a;/||ag]]. If @; = 0 and & # 0, so that 7,11 # 0, l;; =0,
let the second column of I'; be &/||&]|. In all cases, we have Tla; = (Ti‘,g,o)', & = (lin, 12, 0).

Hence

P(F<z) = /I(U,z)(yllyl/y‘lzy2 'kz/kl)I( (o)

2
—00, A+ 3 (T,-l.égyn—ﬁ,lz))
i=1

. 2 2 Kk 2
X fn (yé + 21 Yivi—23 3 Lijys; + 21 Ti,ll)dyOdYIdy2/Fl (A co),
i= i=

i=1j=1
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where y; is of the same dimension as z;. If k; > 3, by a formula in Fang et al. (1990, p.23), the
integration with respect to (s, - ,%ik;) can be reduced to one dimensional and we denote the

new variable by y,3. This leads to (1) in Theorem 1. #

Proof of Theorem 2 Making transformation y;; = r;cos;1, y:2 = 7;5in6;; cosbyg, yi3 =
risinf;; sinfya, in (1) and then taking derivative with respect to z, we obtain the p.d.f. of SF
for k; > 3, which can be expressed in the following form by making a further transformation

r3(1 4 zky [k2) = v,

k/2-2 _ _ 2

i=1

2
X I{yo <A+ 21+ zky Jka) TV 271 92K Jk2) Y/ cos b1y + 721/;; cosf]— Y. 'rz-,lg}

i=1
X fn (yé +y-— 2y1/2(1 + k1 /kg)—1/2 [($k1/k2)1/2 (l11 cos 813 + l128in by cos 012)

2
+ ly1 cos By + I3 sin 6y cos 922] + z n,u)dyodyd011d012d021d022, (5)

i=1
where the integration in taken for 0 < y < 00, 0 < ;3 < ™, 0 < 0;2 < 2w, ¢ = 1,2. This is the
p.d.f. for general density generator f, with k; > 3. Let F; =® and l;; =0, 7,13 =0, Tu2 =0 by

the assumption of Theorem 2. Integrating out ;5 with
27
/ | sin f;o[* =% = 20/2D(k; /2 — 1)/T'(k:/2 — 1/2),
o .

we obtain (2). #

Proof of Theorem 3 Under the notation of Definition 3, by Fang (2003), z, |2z ~ Sk, (1,1,
M, Q15 Gk, 1), Z2 ~ Sk, (€2, 1, c2), C202; By 1), Where My = A+ @h(22 — &), €2 = (1 + ajen) 72
Then Q1|22 ~ NGi(ky/2; {71,11, 71,02, T1,22}, M; $ry+1)- Note cod+ezah (22— &) = A/ (1471,22)"/?
and e\ /(1 + c2abaz)/? = M/¢g. Using the moment generating function for NG in Fang (2004),

we obtain

E(exp(tF)) = Eu,[E(exp(tziz1))|z2]

_ ~ A1 +2T1,12{(1 —22)_1 T _ oR-1
= /1(0,1/2)(t)‘1’((1+n'22(1_2?)_1)1/2)6XP(7'1,11t(1 2t)77)

x(1— 2875 /2 /(A /(1 + 71,22) 2) B(co X + cay (22 — £2))
x exp(—(z2 — &) (72 — €)/2)(27) %212 |B(cz)/ (1 + cJosaz)'/?)

A1 +2T1,12R1 —22)—1 ~ ~_1
= /1(0,1/2)(?)4’((1_‘_‘&,22(1_2t~)_1)1/2)exP(T1,11t(1 2t)7)

x (1 — 28) 751/ exp(— (2 — £2)' (22 — £2)/2)(21)7*/% /@ (X /o),

where t = t/zhzo - ko /K1 and E,, denotes taking expectation with respect to the distribution of z,.

Masking transformations as in the proof of Theorem 1 on zs, we obtain (3) in Theorem 3. #
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Proof of Theorem 4 As in the proof of Theorem 3, we use the distributions of z;|z, and

z» and the formula of mean of the quadratic form in Fang (2004) to obtain
E(F) = Eu[E(Q1l22)Q5"] k2/ka

k2 Al 27'1 12 )\11’1 29
Tk ' - : +k
/ [Cl((l-krl 22)1/2)((1+7-1 2?2 (1+m, 22)3/2) T7in 1}

><(zzz2 )1 (CaA + ca0tyz2) exp(—2225 2) (21) ¥/ 2dz2s /B (N /o)
A+ aszy Q5Z37T1,22 A+ ayzo
- - ’ o LT %% \p
/{ (1+T1,22)1/2)[A (1+7'1,22)3/2]+ ((1+Tl,22)1/2) }

X (2y22) "' exp(—2522/2)(27) "*2/2dza /@ (N /o), (6)

where (;(z) = ¢(z)/®(z). By a formula in Zhang and Fang (1982, p.468) (6) is equal to

mha/2-0.5 k2—2 /\ A+ laallys llea|ly1 i 22
F(k2/2 05) (1+T1 22) (1+T1’22)

e (d\—ﬂ%)lg}(y'y)_l exp(—y'y/2)dy/®()/co).

Making transformation y1 = rcos#, y» = rsinf, r > 0, 0 < 8 < 27, we obtain

k>
2oy he/2 1
= (2m)

_ k2 71,22
B(F) = ky2k2/271/2 (ke /2 — 0.5) [IlA I3 (1 + «rm) + IzB]’ (7)
where 1
A+ 7,07 cos 8 r2
L= ingpha—2pha-dg (222 -— .
2 /lsm P22y ( At ro)2 )exp ( 3 )drd&/@(k/co) (8)

Let t =0, 7211 =0, 7,11 = 0, in (3) and make transformation y2; = 7 cos 8y, y22 = rsinb; cosbs,

Y23 =rsinfysinfy, r > 0,0 < 0; <7, 0<6; < 27, we obtain

-
i

>\+7’21(2y21 —T2,12 _

kn /2 ' A+721/222rcos01
= c(ky)(2m) 2/ /r"2’1|sin01[k2_2]sin02lk2‘3<1>(—ﬁ—+’7_—)1/2—)
1,22
,,.2
X exp ( - 3)drdeldaz/@(x/co). 9)

Integrating out 6, and changing range of integration of 8, we obtain

1 A+ 7al2r cos B
1 = k2—1 . ko—2 2,22
T(k2/2 - 05)7r1/22'~z/2/0 [sinf] q’( (1+ 71.22)172 )

X exp ( - %)drde/@(k/co). (10)

Integrating by parts with respect to dr in (8) and applying (10) we have

I I'(ky/2 — 0.5)x1/22k2/2
k? -2 kz -2 ’

which combined with (7) establishes (4). #

I2=—
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§5.  Discussion

The main properties of the F statistic of the skew elliptical variables are investigated and a
version of the skew F distribution is introduced. This enlarge the family of the usual F distributions
and provides a tool for the investigation of the robustness of the F test with departure represented
by the skew normal distribution. However, the expressions are rather involved as the result of the
presence of the skewness parameters, incurring difficulties for further derivation of the properties
of the F' test in theory. We give some numerical results to illusirate the situation. Invariance of the
distribution of the F' statistic is obtained for the central case with one of the skewness parameter
A = 0. The non-robustness of the F test for variances in the skew normal family with A # 0 is not
surprising. Similar conclusion for independent non-normal population holds, see Lehmann (1986).
The study of the skew F' distribution also provides a basis for the statistical inference of the skew

elliptical populations.
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