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Abstract

In this paper, we consider an Erlang(2) risk model with a constant interest force for an insurance portfolio,
By using the techniques of Sundt & Teugels (1995) and Yang & Zhang (2001a, 2001b and 2001c), the integral
equation and exponential integral equation satisfied by survival probability have been obtained. Then we
have investigated the two-order differential equation satisfied by the Laplace-Stieltjes transform of survival
probability.
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§1. Introduction

In the classical risk theory, in which claims occur as a Poisson process, it is often assumegi that there is no
investment income. However, as we know, a large portion of the surplus of the insurange;conipagies comes from
investment income. In recent years risk models with interest rate have recently received a remarkable amount
of attention and there have been some papers which incorporate deterministic interest rate models in the risk
theory. Sundt and Teugels (1995) considered a compound Poisson model with a constant interest force. By
using similar techniques to the classical model, upper and lower bounds for the ruin probability were obtained.
Some related problems were discussed in Boogaert and Crijns (1987). Yang (1999) considered a discrete time
risk model with a constant interest force and by using martingale inequalities, both Lundberg-type inequality
and non-exponential upper bounds for ruin probabilities were obtained. Paulsen and Gjessing (1997) considered
a diffusion perturbed classical risk model. Under the assumption of stochastic investment income, but a constant
interest rate, a Lundberg-type inequality was obtained. Paulsen (1998) provided a very good survey on this
subject. Yang and Zhang (2001a, 2001b and 2001¢) showed that the techniques of Sundt and Teugels (1995) can
be used to deal with the distributions of surplus immediately after ruin and before ruin. 7

Recently, there is also considerable interest in the development of Erlang(2) no-interest risk model, which
assumes that the waiting times between claims are Erlang(2) distributions (claims arrival thus forming an Erlang
process). Dickson (1998) considered the problem of finding the survival probability for Erlang risk processes and
then derived expressions for the probability and severity of ruin and for the probability of absorption by an upper
barrier. Dickson and Hipp (1998) considered a risk process in which claim inter-arrival times have an Erlang(2)
distribution. They considered the infinite time survival probability as a compound geometric ré,ndom variable
and gave expressions from which both the survival probability from initial surplus zero and the ladder height
distribution can be calculated. '
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Apart from purely mathematical breakthrough, Erlang(2) risk models allow us to assume contagion between
claims, i.e., to deal with non-Poissonian claims’ arrivals. In fact, renewal non-Poissonian risk models do not look
like a mere analytical over-complication, modern mass media and telecommunication networks could introduce
substantial and sometimes unpredictable dependence into behaviour of insured persons which eventually could
make an assumption on the Poissonian origin of claims’ arrival suspicious [see Malinovskii (1998)].

The purpose of this paper is to consider the survival probability of Erlang(2) process under interest force. We
have obtained the integral equation and exponential integral equation satisfied by the survival probability. Also

we present a two-order differential equation satisfied by the Laplace-Stieltjes transform of survival probability.

§2. The Model

In this paper we shall consider a special Sparre Andersen risk model for the risk process, in which claims
occur as an Erlang(2) process. Let {T;}2, be a sequence of independent and identically distributed random
variables, where 7 denotes the time until the first claim and for i > 1, T; denotes the time between the (i — 1)-th

and i-th claims. We assume that T; has an Erlang(2,5) distribution with density function
k(t) = B%e P, t>0,8>0.

We also assume that the premium which the insurance company receives is paid continuously with a constant
rate p. In addition to the premium income, the company also receives interest on its reserves with a constant

force of 4. Let Us(t) denote the value of the reserve at time ¢. From the above assumption, it follows that

dUs(t) = pdt + Us(t) - 6dt — d X (2), (2.1)

N(t)
where X (t) = 3 Y;. N(t) denotes the number of claims occurring in an insurance portfolio in the time interval
j=1

j
(0, t] while Y; denotes the amount of the ith claim. We assume that {N(t),t > 0} is a Eralng(2) renewal process

with waiting times Tj, ¢ > 1, i.e.,
N@t)=max{n: Ty +To+---+T, < t}.

We also assume that the claim amounts are independent of the claim number process, positive and mutually inde-
pendent and identically distributed with the common distribution F'. F satisfies F(0) =0 and p = f0°° zdF(z).
From Sundt and Teugels (1995) and (2.1), we know that
t
Us(t) = ue’ +p§%) -/ Std X (v), (2.2)
0

where u = Us(0) > 0 is the initial surplus of an insurance company and

5 ¢ t, if § =0,
E(ﬂ = / evdy = et — 1
0 , if §>0.

Let 15(u) denote the ultimate ruin probability with initial reserve u. That is

vs(w) = P{ U (Us(t) < 0)|Us(0) = u}.

>0

We use 5(u) = 1 — 15(u) to denote the survival probability (i.e. the probability that ruin never occurs).



254 B R 3T ALK

§3. Equations for ¥,(u)

In this section, we will try to obtain the integral equations for 1;(u). Using the renewal property of
the surplus process, an integral equation and another exponential integral equation, satisfied by the survival
probability, can be obtained. This is the common technique in risk theory. Although we cannot, in general,
solve the integral equations, some asymptotic results maybe be obtained by using t.hé integral equation. As
consequences of main results, several integral equations satisfied by survival probability 1,(u) in a risk process
with no interest force, where claim inter-arrival times have an Erlang(2) distribution, are obtained. At last, we
present one two-order differential equation satisfied by the Laplace-Stieltjes transform of survival probability.
The main results of this section are stated in the following Theorem 1, Theorem 2 and Theorem 3.

Theorem 1
1

bs(w) TEYIE / (30p — 6%u — 2B6u + 46%v + 466 + 26p)s(v)dv + (p - é )Zwé(o)
Bu —dp — 2pB + f(6)
+  (p+ bu)? p+(5u)2/ / "pé (v-y)(1 - (y))dyd‘v (3.1)

where f(6) is defined by (3.6) below.
Proof Given the first claim time T} = ¢ and the first claim amount Y; = y, the reserve just after the first
claim is ue®t + p(e® — 1) /6 —y. The conditional probability that the company will survive is w‘;[ue“ +p(eft-1)/6
~y]. Let ¥s(u) = 0 when u < 0. Thus we obtain

o - L e&t—l
/ Bite? / P (ue® + p=—— - y)dF (y)dt
0 0 é ’

0o ueft4peft=1/6 _
= /o- the‘m/o s(ue’ + pe®t=1/6 — y)dF (y)dt
By using the substitution s = ue’ + pe®*~!/§, we have that

o0
Pi(u) = / g (11 3‘5“’) ~(B/8) nf(s6+p)/ (ub-+p)]

Ea(u)

/0 “Tals — 9)dF(y)ds

0 udb+p sd+p
_ 2 ~(u+p E/J/ (s6 +p)~1=8/5 1n siii /saé(s e (3.2)
By taking derivative of the above expression with respect to «, and rearranging the terms, we get that
w8+ 2 = 5,0 - 28+ 9 [t 50) 00 [ - PG
Taking derivative on both sides of (3.3) yields ,
o+ 60228 1 65— 25y 50 S 1 25,00 = 7 [Tyt~ et (3.4)

Clearly, integrating both sides of (3.4) from 0 to u means

(p+ bu )”w"( 4D g (0) + (8 + 280) /0 “Bs()dv

~(8%u + 280u + Sp + 2Bp)P;(u) + (5p + 2pB)5(0)
= =8 [ Flu-)- Fa. (3.5)
After some rearrangement of the terms, we obtain that

(v + 6 T8 _ (524 1 2860y (u) + (6 + 260) / “Bsw)dv
(7] 0

= (dp+2Bp)P5(u) + p*P5(0) — (dp + 2p8)9;5(0) — 42 /Ou $s(u =~ y)(1 - Fy))dy.
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Letting u — oo, the right hand side of the last equality tends to
(6p -+ 28p) + P"45(0) — (3p + 2pB)5(0) - B*n,

and the left hand side goes to a constant, denoted by f(4), i.e.,

. dy - u_
f(6) = Jim {(p + 5u)2—’%51) — (6%u + 2B6u)ps(u) + (62 + 289) /0 s (v)dv}. (3.6)

It is obvious that f(0) = 0. So it follows that
7.0) = B*u— (ép+ 2pﬂ);21 — 5(0)) + £(8) 3.7)

Plugging this expression of E:,(O) by (3.7) into (3.5), we have that

(p + 6u) %P5 (w) — (6%u + 266u + 8p + 2Bp)Ps(u)
= (Bu—dp— 2P0+ f(5)) - B /0 Bs(u - y)(1 - F(y))dy — (6% + 260) /0 Bs(v)dv. (3.8)

Finally, by integrating both sides of {3.8) from 0 to u, we know that

O AR 2/35“452” + 4850 + 269)Bs(0)d0 + Lo B0
2 5 5 _
+ﬁ - (11:+ ;5)%'*' f( )u _ o 6u)2 /0 /0 Ys(v = y)(1 — F(y))dydv. (3.9)

(3.9) is called the hidden integral equation that ;(u) satisfies. #
Remark 1 If we let § = 0, then it follows from (3.3}, (3.4) and (3.7) that

d%(u) _ g -E / o~8(s—u)/p /sao(s_y')dF(y)ds,

d*P(u dipg(u
4 ff"z( 25l ) 8w = 67 [ olu— AF W)
Bu— 211/9(1 - %(0))
2
The last three equations were obtained by Dickson (1998) and Dickson & Hipp (1998).
Corollary 1 If we consider the same risk model as in Dickson & Hipp (1998), then it follows from (3.9)
that

Do (0) =

_ - 2 —- u_ 2 1’3 U_
Bolw) =00 + IR [ -5 [ [ ow-n0 - Fanaya, 610

which is the integral equation satisfied by survival probability ¥o(u) in a risk process with no interest force,
where claim inter-arrival times have an Erlang(2) distribution.
The (3.11) below is called the exponential hidden integral equation that survival probability s (u) satisfies.

Theorem 2 The survival probability ¥;(u) also satisfies the following exponential equation, i.e.,

_ u 2 v__
XIiw) = F(0) ~ / Gﬂ—)—ze-x("’ / Ba(v - 1)(1 - F(y))dydv

R LS Bop—3p— 2B+ f(0) _x(o
b (prov)’ " / 28 dydv+/ (p + bv)? Hdv, (31

where

_ 2w + 286w + 5p + 208p
= rowp Y
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and f{8) is defined by (3.6).

Proof If we rearrange (3.8), we can obtain

- 6%u + 2B6u + 6p + 2B8p—
d)6(u) ( + du)z ¢5( )
BPu—dp—2pB+f(8) +265 [ 2 u_ _
(p + 6u)? T (p+6u)? /0 Ws(v)dv - (p + 6u)? /0 Ys(u—y)(1 = Fly)dy. (3.12)

Multiplying by e~ o' (67v+285v+5p+25p)/(p+6v)*dv o1 Both sides of (3.12), then we can integrate both sides from 0
to u, and hence it follows that

Ed (u)e— 5o (62v+2/36v+6p+26p)/(p+6'u)2dv _ ',J)'& (0)

u
. 1 v 2
= (% —dp—20Bp f((g))/ Y o~ Jo (8*w+2B8w+3p+26p)/(p+6w) dw g,

(82 + 286) / ' ————( o7 / Pilw)dw e I (Furasbu vt 2n) (o) du gy

u

-p? / Pslv—y)(1 - F(y))dy) -f (62w+266w+6p+zﬁp)/(p+aw)"‘dwdv (3.13)

0 (p + J‘U
Let

_ §2w + 286w + 8p + 28p
()= /o prowe

So (3.11) comes immediately from (3.13) above. #
Corollary 2 If we consider the same risk model as in Dickson & Hipp (1998), then it follows from (3.11)
that

2 u ’U_ *
) = Bo(0) + (9 1) =) = o [Temmoe [TGo0 -1 - Py, (319

which is called the exponential integral equation satisfied by survival probability ¥, (x) in a risk process with no
interest force, where claim inter-arrival times have an Erlang(2) distribution.
We now have obtained the integral equation satisfied by ¥;s(u). As an application of Theorem 1, we get
the following two-order differential equation satisfied by s (s), the Laplace-Stieltjes transform of 15{u), given by
s) = f;° e~*udips(u). To this end, let Fi(s) = f0°° e~ *“dFi(u) be the Laplace-Stieltjes transform of F(u),
where Fj is the equilibrium distribution of F, given by Fi(z) = (1/u) j:(l ~ F(y))dy.
Theorem 3 The Laplace-Stieltjes transform of 44 (u) satisfies the following two-order differential equation,

ie.,

27N
834(s) + (— - _

_ (5p+2ﬂp 7 - ﬂuFl(s (O)+ﬂ2u—5p—2pﬂ+f(5)
s ‘ - s '

§2 -~ . BuF o

(3.15)
Proof Firstly, we note that

/ ’ / 5w - )1~ Flg)dydv = "M)u -~ Fo- )i

/ Flo — 4)dv)5(u)dy

¥

I}
c'a\'so\s\

(1= F)av)Tsto)dy

X
[
E

o\\

= Fi(u -~ y)wa(y)dy

¥5(u — y) Fi(y)dy,

1]
=
o\\o
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so, it follows from (3.1) that

(p+0u)ys(u) = p*h;s(0) + (36p + 26p ~ 6%u — 266u) /0 “Tsw)dv

| +(B%n —6p—2Bp + F(8))u - B /Ou ¥s(u — y)F1 (y)dy
+(462 + 466) /0 " o5 (). (3.16)

Taking Laplace-Stieltjes transforms on both sides of (3.16) yields

P [ e+ [ e + 2 [ et dus(u)

= p%%,(0) + (35p + 28p) /0 " o= (u)du — (57 + 266) /0 " emoud (u /0 " (v)dv)

Pr-= 202 IO _ gy [7 eorva( [“Ftu-n)Fi )

8

+(46” + 486) /-00 e " urhg (u)du. (3.17)
0

N

It is easy to derive the following identities by using the formula of integration by parts, i.e.,
* —suy] 1 [ —su 1 1~
e Ps(u)du = —= [ os(u)d(e™™) = =95(0) + =5(s),
0 S Jo L) S
o0 —
| e atubsw)
0

/oo ™5 (u)du + /oo e ud(Ps(u))
0 0
= —@s(s) + %EJ(O) + %5&(3)
= Us(0)+ 1 3s(5) — Bi(s),
/0 ue Ps(u)dy = %(%Ea(o) + %&5(3)) - %a:s(s),
/0 e d(uhs(u))

2/0 ue"‘"@a(u)du+/0 e *Uu?d (i, (u))
~ 9 [ _

= HE -3 [ e
~ _ —~ 2~

= B+ 2 (B0 + 135(5)) - 2B5(e),

0

/000 e /Ou%;(v)dvdu+/ e~ *“uthg (u)du

/000 e‘s“d(u /Ou E‘;(v)dv)

- %/Ow e Ps(u)du + /0°° e utps(u)du
21— 1~ 15
= ;(;1/}5(0) + ;¢a(8)) = 5 %s(s),

—% /000 Fu)de ™) = %f‘l(s),

/0 % oo B (w)du
/Ooo e=oud( /Ou Bslu - F@Y) = Fils) E%(O) + %‘;5(3)] ‘

Hence, (3.15) follows immediately from the above mentioned identities and (3.17). #
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