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Abstract

This paper: gives an asymptotic estimation for the distribution of the minimum value in
partial sum sequence of a stationary ergodic Markov chain with finite state space and the es-
timation to describe the asymptotic behaviour of extinction probability in the Athreya-Karlin
BPRE. (i.e. branching process with random environmnents.)
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§1. Introduction

Let {¢,},n = 1,2,... be anyone sequence of random variables. Define {X,},n =0,1,2,...,

the sequence of partial sums of {£,}, by
Xo =0, Xn =3 &, (n=12,...).
i=1

In many practical problems, we need to consider the asymptotic estimation for the distribution
of the minimum value of {X, }. When {£,} is an iid sequence, the corresponding {X,} usually
is called a random walk as well known. This particular case has been studied and investigated
rather penetratingly. By the means of the renewal theory, one can obtain the results that we are
interested in here (see Feller (1971)). However, when {£,} is not iid, the situation bacomes very
complicated in general, about which little is known currently.

To extend the knowledge in the subject, we suppose that {£,} is a stationary ergodic Markov
chain with finite state space £ = {e;]i = 1,2,...,m}. Denote the equilibrium distribution and
the transition matrix of the chain by p; = P{&n = e;} and P = (pij)mxm = (P{ns1 = €;]&n =
€i})mxm respectively, where i,5 = 1,2,...,m;n =1,2,.... Furthermore, write M = min,»o{X,}
and let < be the symbol introduced by Bingham et.(1988) with the sense:

Fy=<g(t),t > +oo = 0< llm inf ——= () < limsup —=% 1)

< 400.
t—+o0 g(t) = t—too 9(t)
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In this paper, we present an asymptotic tail estimation for the distribution of M, P{M < —t}, i.e.
we have

Theorem If the above {£,} also satisfies the additional conditions below:

1} E[&] > 0;

i1) there exists at least one state e; < 0 in &;

iii) in & there exists a k-cycle for some state e; : e;,¢e;,,...,€;,_, restricted by
ej+ej, +ej,+ - -+e <0 and pij, Py Pieeig >0,
then there must exists an unique constant # > 0, such that
P{M < —t} < exp(—6t), t — 4o0.

In section 2 we shall prove the above theorem and in section 3 we shall describe an application to
Athreya-Karlin BPRE].

§2. Proof of the Theorem

To prove the theorem, first let us show several lemmas. Note that the conditions of the
theorem are the prerequisites of these lemmas. Only for saving space, we do not repeat them along
with all the meanings of symbols mentioned in section 1.

Lemma 1 Denote Q(6) = (4ij(#))mxm, where ¢;j(8) = pij exp(—0e;). Then there must
exist a constant # > 0 and a corresponding column vector C(8) = (c;(8), ..., cm(8))” > 0 (where
7 is the transposition operation ) such that Q(#)C(8) = C(8). -

Proof From the ergodicity of {£,}, we can easily see that the Q(8) is an irreducible nonneg-
ative matrix for any # > 0. Then according to Perron-Frobenius Theorem [7], for each § > 0, there
exist a Perron-Frobenius eigenvalue A(f) > 0 and a corresponding strictly positive right eigenvector
C (), which is unique to constant multiples, such that Q(8)C(8) = A(6)C(8). Obviously, following
we only need to show that there exists some 6 > 0 such that A(f) = L.

Noting that @Q(0) = P and PI =1 =(l,...,1)],(, we know A(0) = 1 and C(0) = 1. Denote

QO = (¢ (0))mxm and e =(0,...,0,1,0,...,0)y1,

where all components of e; are zero but the {-th is one.
Then [Q(9)]Fe; = (ql (0) ..,qgf,)( Nt > (0,...,0)7 .y and the I-th component in left-

hand side is

00 = T by Py Pie_iexp(=0(er + eq + - + €y _,)).

1, -nixk—1=1

particularly taking { = j, we have

qff)(ﬁ) > cexp(hf),

where ¢ = pj;, Ppjj, - -Pju_yj > 0and h = —(ej + ¢, +...ej,_,) > 0 both are completely
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determined by {&,}. It follows that
Q) e; > cexp(hd)e;.

By Perron-Frobenius theorem, corresponding the same A(8) above , there also exists a strictly

positive left eigenvector V(#)xm, which is unique to constant multiples, too. Hence
MOV (0)e; = V(0)[Q(0)}kej > cexp(hO)V (H)e;,

as V(0)e; is a positive number, which implies [A(8)]* > cexp(h8) and then A(0) — oo, as § — ..

Let F(8,)) = det(Q(8) — AI), where I is the m x m unit matrix. Applying the implicit
function theorem on the equation F(#,A) = 0, we may show that the Perron-Frobenius eigenvalue
A(8) is continuous and differentiable on 8 > 0.

Similarly, from the set of equations
2 pijexp(—bej)ci(6) = M)ei(6),  i=1,2,---,m, (%)
i=1

which is equivalent to Q(8)C(0) = AM0)C(8),ci(8),i = 1,2,---,m are also continuous and differ-
entiable.

Taking derivative both sides of () with respect to 8 for # = 0 and noting that A(0) = 1 and
C(0) = I, we have

m m
- Y pije; + 3 pijc;(0) = N(0) + ci(0),i = 1,2,-- - ,m.
j=1 j=1

Now multiple by p; and sum over i = 1,2,---,m and substitute 31w, pi = 1,312, pijPi = Pj,
then

/\'(0) = - ilpjej = —E[&] < 0.
J:

Combining the above results, we see that there does exist some constant § > 0 such thatA(8) = 1.

By the stationary of {{,},n = 1,2, -, we may shift {£,} forward one subscript unit (i.e. time
scale) such that it becomes {£,},n = 0,1,2,---. After fixing some § > 0 introduced in Lemma I,
then we have

Lemma 2 There must exist a constant k; > 0 such that
P{M < —t|o = €;} > kici(f) exp(—0t),i = 1,2,--- ,m,

for all ¢ > 0.

Proof Since the # > 0 here is fixed. we can write ¢;(8) by c(e;) without any ambiguity.

As t = 0, the conclusion is trivally true due to M < 0, in which ky = exp(d mini<i<m{es})/
max)<i<m{c(e;)} is chosen particularly, we only need consider the case t > 0 hereafter.

Let Y, = exp(—0X,)c(€n), Fu = 0(£0,&1,-+-€n). it is easy to show that {Y,},n=0,1,2,--.
is a martingale with respect to {F,}. For constant {,u > 0, we define a Markov time by T =
min{n|X, < —t or X, > u}. By the ergodic theorem and the assumption above we known that

Xn

" 2% E[6] > 0, (n — +00).
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Hence X, =% 400 and then P{T < 400} = 1.
When n < T, we have

A
Xnpr1 <u+ 1rsn'_:;)sm{e.} =v>0,
} N
X - i} =- .
nl > t+11$x}1$nm{e.} w<0

Therefore P{—w < X7 < v} = 1 which implies E|Yr| < 400, from 0 < Y, < exp(0t) max;<i<m
{c(ei)} < +oo for all n < T, we get E[YnI{T5n}] — 0,(n — 00), where [(75,} is the indicator
function of set {T" > n}. Then by the optional stopping theorem (see e.g. [6]), we know that under
the condition & = e;, it must be hold that

E[Yrléo = &i] = E[Yolé0 = ei] = c(es).

Note that E[Y'rlfo =¢]= E[YTI{XTS—t}KO = ei]+E[YT1{XT_>_u}|€0 = e,~] and when Xr < —¢, X7 >
-t 4+ minls,-s,,,{e,-}. We have

Yr = exp(—0.XT)c(ér) < exp(—0(-t + 1g}isnm{ei})) 12‘.-‘2’5"{6("'")}’
and may deduce that '
ElYr(xr<-1pléo = &i] < exp(=0(=t + min {e:})) max {e(e:))}P{XT < 1[0 = e:}.
Recalling ky = exp(6 minici<m{ei})/ maxi<i<m{c(ei)} > 0, we have
P{Xr < —t|€o = e} > kyexp(—0t)(c(ei) — E[YrI{x,>u}léo = &]).

Noting that M < X7,c(ei) = ¢;(0) and 0 < E[YrI{x,>u)lé0 = & < exp(—0u) max;<i<m{c(ei)}
P{Xt > uléo = e;} — 0 as u — oo, we obtain

P{M < —t]6o = e} > kyci()exp(—0t)  i=1,2,---,m,

as requied.
Lemma 3 Let 8 > 0 and & be the same as in Lemma 2. Then there must exist another
constant k; > 0 such that

P{M < —t|€o = ei} < kaci(6) exp(—0t) i=1,2---,m,

forallt >0
Proof Let Y,, T and c(e;) be defined as before. Denote ko = 1/ mini<icm{c(e;)}. then as
t = 0 the conclusion is trivially true due to M < 0, too, we may suppose ¢ > 0 below.

From the proof of Lemma 2, we have seen that
C(C,') = E[YTI(XTS—t}I€0 = Ci] + E[YTI{XTZU}lfo = ei]l 1= 1)21 s, ML

Noting that E[Y7I{x, <—e)l0 = €] > exp(8t) minjcicm{c(ei)} and E[YrI{x,>u}lo = &} 2 0, we
have

P{Xt < —t|€ = €i} < koc(ei) exp(—0t), i=12,---,m,
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whenever u > 0. For any fixed t > 0, it is possible to regard the T in the formula above
T = min{n}X, < —t}. On the other hand, for the fixed ¢ > 0, denote T(u) = min{n|X,
~tor X, > u} (u > 0), then T = limy_ o T(u). Taking u = 1,2,---, we have {M < —t|&
e} ¥ Unzi{X7T(n)y £ —tl€o = e;}. Note that c(e;) = ci(f) and {Xr@mn) < ~t|éo = ei} C
{XT(n+1) < —t|lo = &i},n = 1,2,.--. By the continuity of probability, we can obtain

TRV

P{M < —t|€o = e;} < kaci(0) exp(—6t), i=1,2,---,m,

as required.
Remark k;,k; are dependent on # but independent of ¢.

Proof of theorem : By Lemma 2 we have
m
P{M < —t} = 3 P{M < ~t|¢o = e;} P{§o = ei}
=1

> Y kici(0) exp(—0t)pi = ¢y exp(—6t),

1

i3

where ¢y = k1 ) i, ci(0)p; > 0. Similarly, by Lemma 3, we have P{M < —t} < ¢z exp(—0¢), where
ca=ka) 1o, ci(8)pi > 0. It follows that

P{M < -t}

M <
0<es exp(—8t)

< e2 < 400,

which implies that P{M < —i} < exp(—0t), (t — o).

With regard to the uniqueness of § > 0, we only need to show that the § > 0 defined in
Lemma 1 is unique, which we can prove by reduction to absurdity. On the contrary, we suppose
that such # > 0 in Lemma 1 is more than one. Noting that the ¢|, co above are dependent on 6.
We take #; and 0;,6, < 0, say, in Lemma 2 and Lemma 3 respectively. Then there should exist
constants ¢1(61), c2(62) > 0 such that

c1(h) exp(~01t) < P{M < —t} < ca(B2) exp(-65t),  (t20).

However in the other hand, since

c2(62)
C) (01 )
we get ca(02) exp(—02t) < c1(9:1) exp(—011) for all sufficiently large t. Therefore the contradition
implies that such # > 0 here must be unique.

¢2(02) exp(—=02t)/c1(61) exp(—=61t) = exp((01 — 02)t) = 0, (t — +00),

§3. An Application to the Athreya- Karlin BPRE.

Now we suppose that {Z,},n =0,1,2,- - is a simple type of Athreya-Karlin BPRE., in which

the environment {(,},n =0,1,2,.--, is a stationary ergodic Markov chain with finite state space
€ = {eili = 1,2,--- ,m}. Denote the corresponding equilibrium distribution and the transition
matrix by

i = P{Cn = el'} and P= (pij)mxm = (P{Cn+l — €5 ICn = fi})mxma
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respectively, where i, = 1,2,--- /m;n =0,1,2,-... Furthermore, we assume that there exists a

k_ cycle: ej,ej,,--- ,ej,_, in & such that
Pjji " Pirja " Pieari > 0 and r(ej) + r(ejl) +--+ r(ejk-l) <0,

where r(e;) = log ¢, (1) and @, is the reproducing probability generating function when ¢, turns

out to be e;. If our consideration is under the sufficient condition for supercritical BPRE.:
0 < Eflog g, (1)] < +00;  E[-log(l — ¢, (0))] < +o0,

and the ¢¢, has good analysis properties: ¢ (1) < +oofor alle; € £, then we can present following
conclusion.

Conclusion There exists an unique constant 8 > 0 such that as k, the starting population
size, tends to infinity, the corresponding extinction probability, ¢¢ = P{Z, — 0,(n — +00)|Zp =
k} satisfies qx < k=%, (k — +00).

To show the conclusion, first we extend {(,},n = 0,1,2,---, into a double-ended process
{¢G.},m=---,-2,-1,0,1,2,--- by the standard way (see e.g. [3]) keeping the stationarity and
ergodicity like it before. Let ‘

Xn = m-l—i-Too ‘P(n(‘pﬁnu(' : '(‘p(n+m(0)) o '))’" =--,-2,-1,0,1,2,---.
By reversing the time scale define X} = X_n and {} = (_(n+1). We obtain a ”dual process” {X;}
satisfying X7 4y = o7, (X3), for alln, and (X},(;;) becomes a bivariate stationary ergodic process.

From [1] we know that ¢x = E[X:"] for all n. Define

11— (X5
Yo=—log(l-X3); &= —log[ fi'( 1)]-
n~1

Then Y,, = Y,,_1 + &,. Denote

€. =—loggs_ (17 &n= —IOg[l——fc_;;—‘:r—o)],
where zg is any fixed constant in [0, 1). Clearly {£,} and {E,,} both are stationary ergodic Markov
chain with finite state space. Now we construct {W,} and {U,} by the recursive relations:
Wo =0, Uy = max{yo, Yo},
{ Wasr = max{0, W, + &} { Unt1 = max{ye, Un + 1),

respectively, where yy = —log(1 —zp). By the ergodic theorem and induction we can easily deduce
that as zg is sufficiently close to 1, W,, <Y, < U,, for all n.
Let 1, = —log ¢, (1). Theny_n = €, and {1, } also is stationary ergodic. By our assumption

we have E[5,] = E[—logp; (1)] < 0. From ergodic theorem we can see that Sh o 1 — —00, as

n — +00. Therefore, if we write
Wo=0, Wu=max{0,m+u2--,m+n+ +m}
then there must exist an integer N such that

a

WN = WN+1 = WN+2 = --- %% (a.s.).
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That is W, 25 W as n — 4co. Noting that
Wn = max{ovznvzn +En—-1v"' :En +En-—1 + +El}
= max{0,9—n,M-n + N=(n=1),"** » =n + D=(no1)+ 71}
D —_
=max{0,n,m+n2, -, m+n+gn} =W,

where “27” denotes equality in distribution. Hence we get
Whn L, %4 as n — +o0o0.
On the other hand, if we let 7, = Iog[ l‘Pc,. 0)] and
— g

—(70 = max{yo,Yo},
Un =max{yo, 50+ T, % + T + 7, %0+ Ty + -+ g, Uo + 1 + -+ T},

then 7j_,, = E,, and {7, } also is stationary ergodic. Noting that

i 52 = e,

when we choose zg close enough to 1 it must be true that
o — a.s.
Y — —o0, as 1 — 400,

Ll

and there must exist an integer N* such that

l_]N‘ = UN'-{-l :UNO+2 = é (j ((l.S.).
That is U, == U as n — 400. Noting that
Un =max{yo,vo+&n, Yo +&n +- -+ &, Uo +&n + -+ &}
:max{yo,yo+ﬁ_n,-~- vy0+ﬁ—n+"'+n—2)(/0 +ﬁ—-n+"'+ﬁ_1}
D _ - _ _ ——
=max{yo, o+ 7y, Yo+ T+ -+ -1, Vo + T + - +7,} = Un.

Hence we get U, L2, U as n - +co.

Furthermore, we write
W = min{0, =i, = —n2,---}; U = min{—yo,—y0 — 7y, —¥o — 7 — T, -+ }.
Then P{W >t} = P{W < —t},P{U >t} = P{U < —t}.

Denote martices by

Q(0) = (pij exp(—0r; ))mxm; Q(8) = (pij exp(—67;(20)))mxm,
where r; = log ¢, (1), 7; log[ — e 0)] Noting that 7;(z¢) < r; we have 7;(x¢) + 7j,(z0) +
-+ +TFj._,(x0) < 0. Applying the theorem in section | to W and U respectively we can derive that
there exist constant 8,0(zo) > 0 and 0 < &, %(zo) < 400 such that
1 — Ca(x0) exp(—0(zo)t) < P{Y, <t} <1 — T exp(—0t), ¢>0,
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where zg is sufficiently close to 1.

Note that Fj(zo) T rj as zo T 1. By the implicit function theorem and Perron-Frobenius
theorem we get 8(zo) 1 6 as zo T 1 under the condition ¢¥ (1) < +oo for all e; € £. Since
P{X; >z} =1— P{Y, <log(l — z)} from an Abelian theorem, we may obtain

1
G = k/ z¥1(1 = P{Y, < log(1 — z)})dz.
0

Denote ¢; = & T'(8 + 1), c2 = 2(z0)['(0(z0) + 1) and note that

B(k,a) ~ % (k — +o0).

We have e1k~% < q¢ < cz(zo)k"z("’), for all sufficiently large k. Let zo ] | and write ¢ =
limsup, 1y c2(%0). Then 0 < ¢; < qe/k~® < ca < 400, for all sufficiently large k, which implies
that qx < k=%, (k — +00).
Obviously, this conclusion is an extension result of Grey & Lu (1993) in Classification A.
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