The Existence of Order-Preserving Coupling for Two-Dimentional Diffusion Processes*

Wu Xianyuan

(Department of Mathematics, Beijing Normal University, Beijing 100875) (Department of Mathematics, Capital Normal University, Beijing 100037)

Abstract

This paper focus on order-preservation of paths for two diffusion processes. The existence of order-preserving coupling for two-dimentional nondegenerated diffusion processes is proved, furthermore, an order-preserving coupling operator is given.

Keywords: Diffusion process, Coupling, Order-preserving coupling.

AMS Subject Classification: 60J25, 60J35.

§1. Intoduction

Stochastic monotonicity plays an important role in the study of Markov processes. As for multidimentional diffusion processes, the study of order-preservation for semi-group (or distribution) is already very completed (see [1] and [2]); in [3], order-preservation for path (or order-preserving coupling) is well studied also. [3] presents some sufficient conditions and necessary ones for couplings of a multidimentional diffusion process to preserve the natural partial order on \mathbb{R}^d , the next problem is: when does a order-preserving coupling exist?

Let a(x) be a $d \times d$ -order matrix and $b(x) \in \mathbb{R}^d$ for each $x \in \mathbb{R}^d$. We write $L \sim (a, b)$ if

$$L_{x} = \frac{1}{2} \sum_{1 \le i, j \le d} a_{ij}(x) \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} + \sum_{i=1}^{d} b_{i}(x) \frac{\partial}{\partial x_{i}}, \qquad x \in \mathbb{R}^{d}.$$

$$(1.1)$$

Let $L^k \sim (a^k, b^k)$, k = 1, 2. Assume that $a^k_{ij}, b^k_i \in C(\mathbb{R}^d)$ and the martingale problem for L^k is well-posed, k = 1, 2. Denote by P^k_t the semi-group of L^k , k = 1, 2. Write $P^1_t \leq P^2_t$ if

$$P_t^1 f(x) \le P_t^2 f(y) \tag{1.2}$$

holds for all $t \ge 0$, $y \ge x$ and monotone function $f \in C(\mathbb{R}^d)$. Here \ge is the natural partial order and "f is monotonic" means " $f(x) \le f(y)$ if $x \le y$ ".

From [1], we know that $P_t^1 \leq P_t^2$ iff the following two conditions hold:

- (1) For any i and j, $a_{ij}^1 = a_{ij}^2 =: a_{ij}$ and $a_{ij}(x)$ depends only on x_i and x_j .
- (2) For any i, $b_i^1(x) \leq b_i^2(y)$ for $x \leq y$ with $x_i = y_i$.

On the other hand, let $\widehat{L} \sim (\widehat{a}, \widehat{b})$, where

$$\widehat{a}(x,y) = \begin{pmatrix} a^1(x) & c(x,y) \\ c(x,y)' & a^2(y) \end{pmatrix}, \qquad \widehat{b}(x,y) = \begin{pmatrix} b^1(x) \\ b^2(y) \end{pmatrix}. \tag{1.3}$$

for some c(x,y) with $c_{ij} \in C(\mathbb{R}^d \times \mathbb{R}^d)$ such that $\widehat{a}(x,y)$ is nonnegative definite, where c(x,y)' is the transpose of c(x,y). We call \widehat{L} a coupling operator of L^1 and L^2 (see[4]). $\{P^{x,y}: x,y \in \mathbb{R}^d\}$ is said to be a coupling process (for simplicity, coupling) if it solves the martingale problem of a coupling operator.

[•] Research supported by the National Natural Science Foundation of China (grant number 19771008) and Doctoral Programm Fundation of Institution of Higher Eduation (grant number 96002704).

Received 1997. 9. 14.

Definition 1 A coupling $\{P^{x,y}\}$ is said to preserve order, if

$$P^{x,y}(x_t \le y_t : \forall t \ge 0) = 1, \qquad x \le y, \quad x, y \in \mathbb{Z}^d.$$
 (1.4)

Obviously, the existence of order-preserving coupling implies $P_t^1 \leq P_t^2$, hence, (1) and (2) are necessary for a coupling preserving order. So, we will always assume that (1) and (2) hold. Next, when $L^1 = L^2$, let the marginal processes move together whenever they meet. In the case d = 1, all couplings preserve order since the two marginal processes must meet before the order is broken; in other case, i.e., $d \geq 2$, whether the marginal processes preserve order or not is a question. In [3], for the case $d \geq 2$, not required $L^1 = L^2$, WANG and XU proved the following sufficient condition for a coupling to preserve order (Theorem 1.1, (I) of [3]).

(3) Let $\{P^{x,y}\}$ be a coupling with operator \widehat{L} . Suppose that (1) and (2) hold and for each $i \leq d$, one of b_i^1 and b_i^2 is locally Lipschitz continuous. $\{P^{x,y}\}$ preserves order if for each m > 0, there exists a increasing function $\rho_m \in C(R_+)$ such that $\rho_m(0) = 0$, $\int_0^1 \rho_m(u)^{-1} du = \infty$ and

$$|a_{ii}(x) + a_{ii}(y) - 2c_{ii}(x, y)| \le \rho_m(|x_i - y_i|), \qquad i \le d, \quad x, y \in [-m, m]^d.$$
(1.5)

From (3) we get the following main theorem, which holds under the conditions (1) and (2).

Main Theorem When d=2, if $a^1=a^2=a=\sigma^2>0$, σ , b^1 and b^2 are locally Lipschitz continuous, then there exists a coupling operator $\widehat{L}\sim(\widehat{a},\widehat{b})$ as (1.3) such that for coupling $\{P^{x,y}\}$ with operator \widehat{L} , $\{P^{x,y}\}$ preserves order.

§2. Proof of The Main Theorem

To prove the main theorem, first we construct a coupling operator \widehat{L} , which has marginal operators L^1 and L^2 , and then prove that $\{P^{x,y}\}$, which solves the martingale problem for \widehat{L} , preserves order. In other words, we try to find a "good" enough $c(x,y) \in C(R^2 \times R^2)$. From now on, we assume c(x,y) in (1.3) has the specified form: $c(x,y) = \sigma(x)H(x,y)\sigma(y)$, where H(x,y) is a 2×2 matrix.

The following lemma tells us when the above specified c(x,y) is qualified to form a coupling operator \widehat{L} .

Lemma 1 For $d \ge 2$, $a = \sigma^2$ be a positive definite $d \times d$ -order matrix, then \widehat{a} be nonnegative definite iff H(x,y) be contractive $[i.e., for all \ \alpha \in \mathbb{R}^d, |H\alpha| \le |\alpha|]$.

Proof The proof is given by Chen Mufa(see [5]):

For all $\alpha, \beta \in \mathbb{R}^d$, we have

$$(\alpha',\beta')\widehat{a}\left(\frac{\alpha}{\beta}\right)=\alpha'a\alpha+\beta'a\beta+2\langle H\sigma\alpha,\sigma\beta\rangle=|\sigma\alpha|^2+|\sigma\beta|^2+2\langle H\sigma\alpha,\alpha\beta\rangle.$$

Thus, \hat{a} is nonnegative definite iff

$$|\alpha|^2 + |\beta|^2 + 2\langle H\alpha, \beta \rangle \ge 0, \qquad \alpha, \beta \in \mathbb{R}^d.$$

Setting $\beta = -H\alpha$, it follows that $|H\alpha| \leq |\alpha|$. This proves the necessity. The sufficiency is easy. \square

Before the proof of the main theorem, we give some notations, let

$$\lambda_1(x,y) = \frac{|x_1 - y_1|}{|x_1 - y_1| + |x_2 - y_2|}, \qquad \lambda_2(x,y) = \frac{|x_2 - y_2|}{|x_1 - y_1| + |x_2 - y_2|}, \qquad x, y \in \mathbb{R}^2, \quad x \neq y; \tag{2.1}$$

$$K(x,y) = \arccos \frac{a_{12}(x)}{\sqrt{a_{11}(x)a_{22}(x)}} - \arccos \frac{a_{12}(y)}{\sqrt{a_{11}(y)a_{22}(y)}}, \qquad x, y \in \mathbb{R}^2;$$
(2.2)

$$\begin{array}{ll} \theta_1(x,y) = \lambda_1 K(x,y), & \theta_2(x,y) = \lambda_2 K(x,y), & x,y \in R^2, & x \neq y; \\ \theta_1(x,x) = 0, & \theta_2(x,x) = 0, & x \in R^2; \end{array} \tag{2.3}$$

$$\overline{\sigma}(x) = \begin{pmatrix} \overline{\sigma}_{11}(x) & \overline{\sigma}_{12}(x) \\ \overline{\sigma}_{21}(x) & \overline{\sigma}_{22}(x) \end{pmatrix} = \begin{pmatrix} \frac{\sigma_{11}(x)}{\sqrt{a_{11}(x)}} & \frac{\sigma_{12}(x)}{\sqrt{a_{11}(x)}} \\ \frac{\sigma_{21}(x)}{\sqrt{a_{22}(x)}} & \frac{\sigma_{22}(x)}{\sqrt{a_{22}(x)}} \end{pmatrix}, \quad x \in \mathbb{R}^2;$$

$$(2.4)$$

(note that σ is symmetric, but $\overline{\sigma}$ is not.) let

$$H_1(x,y) = \begin{pmatrix} \cos \theta_1 & -\sin \theta_1 \\ \sin \theta_1 & \cos \theta_1 \end{pmatrix}, \qquad H_2(x,y) = \begin{pmatrix} \cos \theta_2 & \sin \theta_2 \\ -\sin \theta_2 & \cos \theta_2 \end{pmatrix}, \tag{2.5}$$

for $x, y \in \mathbb{R}^2$ with $x \neq y$; let

$$H_i(x,x) = \lim_{y \to x} H_i(x,y) = I, \qquad x \in \mathbb{R}^2, \quad i = 1, 2.$$
 (2.6)

The following lemmas give some remarks on the above notations.

Lemma 2 Under the assumptions of the main theorem, $\Psi(x) := \arccos \frac{a_{12}(x)}{\sqrt{a_{11}(x)a_{22}(x)}}$ in (2.2), $\overline{\sigma}$ in (2.4) and $[\overline{\sigma}'(y)]^{-1}$ are all locally Lipschitz continuous.

Proof For $\Psi(x)$, we know that $\Psi(x)$ is the spatial angle of vectors $\sigma_1(x)$ and $\sigma_2(x)$ [the two row vectors of matrix $\sigma(x)$], write $\Psi_i(x,y)$ as the spatial angle of vectors $\sigma_i(x)$ and $\sigma_i(y)$, i=1,2. Given $x \in \mathbb{R}^2$, let $y \in \mathbb{R}^2$ |x-y| small enough, we have

$$|\Psi(x) - \Psi(y)| \le \Psi_1(x, y) + \Psi_2(x, y). \tag{2.7}$$

It is easy to see that

$$\overline{\lim_{y \to x}} \frac{\Psi_i(x, y)}{|\sigma_i(x) - \sigma_i(y)|} \le \frac{1}{|\sigma_i(x)|} = \frac{1}{a_{ii}(x)}, \qquad i = 1, 2.$$
(2.8)

For all m>0, since σ is locally Lipschitz continuous, there exists $\overline{C}_m<\infty$ such that

$$|\sigma_i(x) - \sigma_i(y)| \le \overline{C}_m ||x - y||, \qquad i = 1, 2; \quad x, y \in [-m - 1, m + 1]^2.$$
 (2.9)

On the other hand, by the fact that a > 0 and a is continuous, we have

$$K_m := \sup \left\{ \frac{1}{a_{11}(x)} + \frac{1}{a_{22}(x)} : x \in [-m, m]^2 \right\} < \infty.$$
 (2.10)

By (2.7)–(2.10), we have

$$\overline{\lim_{y \to x} \frac{|\Psi(x) - \Psi(y)|}{\|x - v\|}} \le K_m \cdot \overline{C}_m \tag{2.11}$$

for all $x \in [-m, m]^2$.

Now for any fixed $x, y \in [-m, m]^2$, write $l_{x,y}$ as the line interval in $[-m, m]^2$ with endvertex x and $y, \forall \epsilon > 0$, $\forall w \in l_{x,y}$, by (2.11), let $\delta_w > 0$ satisfies: For all z with $||z - w|| < \delta_w$,

$$|\Psi(z) - \Psi(w)| \le (K_m \cdot \overline{C}_m + \epsilon) ||z - w||. \tag{2.12}$$

Denote $B(w, \delta_w)$ as the open ball centered at w and with radius δ_w , then by the compactness of $l_{x,y}$, there exists $\{w_0 = x, w_1, w_2 \cdots w_{k-1}, w_k = y\} \subset l_{x,y}$ such that

- a) $l_{w_{i-1},w_i} \cap l_{w_{j-1},w_j}$, $i \neq j$ either be empty or be singleton.
- b) $B(w_{i-1}, \delta_{w_{i-1}}) \cap B(w_i, \delta_{w_i}) \neq \phi$ and
- c) $\bigcup_{i=0}^k B(w_i, \delta_{w_i}) \supset l_{x,y};$

take $z_i \in B(w_{i-1}, \delta_{w_{i-1}}) \cap B(w_i, \delta_{w_i}) \cap l_{w_{i-1}, w_i}, 1 \le i \le k$, by (2.12) and the above conditions a). b). c). we have

$$\begin{split} &|\Psi(x) - \Psi(y)| \\ \leq &|\Psi(x) - \Psi(z_1)| + |\Psi(z_1) - \Psi(w_1)| + \dots + |\Psi(w_{k-1}) - \Psi(z_k)| + |\Psi(z_k) - \Psi(y)| \\ \leq &(K_m \cdot \overline{C}_m + \epsilon)(||x - z_1|| + ||z_1 - w_1|| + \dots + ||w_{k-1} - z_k|| + ||z_k - y||) \\ = &(K_m \cdot \overline{C}_m + \epsilon)||x - y||. \end{split}$$

Let $\epsilon \to 0$, we have

$$|\Psi(x) - \Psi(y)| \le K_m \cdot \overline{C}_m \cdot ||x - y||, \tag{2.13}$$

for all $x, y \in [-m, m]^2$. So, $\Psi(x)$ is locally Lipschitz continuous. The situation for $\bar{\sigma}$ and $[\bar{\sigma}'(y)]^{-1}$ are similar, we omit the detailed proofs. \square

Lemma 3 $\theta_i(\cdot,\cdot)$ i=1,2, defined in (2.3) are locally Lipschitz continuous.

Proof Note that $\lambda_i(\cdot, \cdot)$, i = 1, 2 in (2.1) are not locally Lipschitz continuous, but we have, for any $x, y, z \in \mathbb{R}^2$ with $x \neq y, y \neq z$

$$|\lambda_{1}(x, y) - \lambda_{1}(x, z)|$$

$$=|\lambda_{2}(x, y) - \lambda_{2}(x, z)|$$

$$\leq \frac{|y_{1} - z_{1}| + |y_{2} - z_{2}|}{|x_{1} - y_{1}| + |x_{2} - y_{2}|}.$$
(2.14)

Now, for any $x, y, z \in [-m, m]^2$, we observe $|\theta_1(x, y) - \theta_1(x, z)|$. When x = y, then

$$|\theta_1(x,y) - \theta_1(x,z)| = \lambda_1(y,z)|\Psi(y) - \Psi(z)|,$$

by the equivalence of L_1 distance and L_2 distance and (2.13), there exists $0 < C(m) < \infty$ such that

$$|\theta_1(x,y) - \theta_1(x,z)| \le C(m)(|y_1 - z_1| + y_2 - z_2|);$$

when $x \neq y$, then by (2.13) and (2.14)

$$\begin{aligned} &|\theta_{1}(x,y) - \theta_{1}(x,z)| \\ &= &|\lambda_{1}(x,y)(\Psi(x) - \Psi(y)) - \lambda_{1}(x,z)(\Psi(x) - \Psi(z))| \\ &\leq &|\lambda_{1}(x,y) - \lambda_{2}(x,z)||\Psi(x) - \Psi(y)| + \lambda_{1}(x,z)|\Psi(y) - \Psi(z)| \\ &\leq &\frac{|y_{1} - z_{1}| + |y_{2} - z_{2}|}{|x_{1} - y_{1}| + |x_{2} - y_{2}|}C(m)(|x_{1} - y_{1}| + |x_{2} - y_{2}|) + C(m)(|y_{1} - z_{1}| + |y_{2} - z_{2}|) \\ &= &2C(m)(|y_{1} - z_{1}| + |y_{2} - z_{2}|). \end{aligned}$$

Thus we get the Lemma for $\theta_1(\cdot,\cdot)$, the situation for $\theta_2(\cdot,\cdot)$ is the same. \square

Proof of the main theorem We prove the main theorem by four steps.

Step 1 We construct a $H \in C(\mathbb{R}^2 \times \mathbb{R}^2)$ and, for all $x, y \in \mathbb{R}^2$, H(x, y) is contractive.

For $\sigma(x) = \begin{pmatrix} \sigma_1(x) \\ \sigma_2(x) \end{pmatrix}$, $x \in R^2$, denote the spatial angle of vector $\sigma_1(x)$ and $\sigma_2(x)$ by $\Psi_{12}(x)$, without loss of generality, we assume $0 < \Psi_{12}(x) < \pi$ and $\sigma_1(x)$ lies in the anticlockwise direction of $\sigma_2(x)$. So, since $\sigma(x) > 0$, we have $\det \sigma(x) > 0$ and $\det \overline{\sigma}(x) = \sin \Psi_{12}(x)$. Write

$$\sigma_1^*(x,y) = H_1(x,y) \begin{pmatrix} \overline{\sigma}_{11}(x) \\ \overline{\sigma}_{12}(x) \end{pmatrix}, \qquad \sigma_2^*(x,y) = H_2(x,y) \begin{pmatrix} \overline{\sigma}_{21}(x) \\ \overline{\sigma}_{22}(x) \end{pmatrix}.$$

Note that the length $|\sigma_1^*(x,y)| = |\sigma_2^*(x,y)| = 1$. Denote by $\Psi_{12}^*(x,y)$ the spatial angle of $\sigma_1^*(x,y)$ and $\sigma_2^*(x,y)$, we have

$$\cos \Psi_{12}^*(x,y) = \langle \sigma_1^*(x,y), \sigma_2^*(x,y) \rangle
= \left[H_1(x,y) \left(\overline{\sigma}_{11}(x) \right) \right]' \left[H_2(x,y) \left(\overline{\sigma}_{21}(x) \right) \right]
= \cos(\theta_1 + \theta_2) [\overline{\sigma}_{11}(x) \overline{\sigma}_{21}(x) + \overline{\sigma}_{12}(x) \overline{\sigma}_{22}(x)] + \sin(\theta_1 + \theta_2) [\overline{\sigma}_{11}(x) \overline{\sigma}_{22}(x) - \overline{\sigma}_{12}(x) \overline{\sigma}_{21}(x)]
= \cos K(x,y) \cos \Psi_{12}(x) + \sin K(x,y) \sin \Psi_{12}(x)
= \cos(K(x,y) - \Psi_{12}(x))
= \cos \Psi_{12}(y).$$
(2.15)

On the other hand, we have

$$\sin \Psi_{12}^*(x,y) = \det(\sigma_1^*(x,y) \quad \sigma_2^*(x,y))
= \left| H_1(x,y) \left(\overline{\sigma}_{11}(x) \right) \quad H_2(x,y) \left(\overline{\sigma}_{21}(x) \right) \right|
= \cos(\theta_1 + \theta_2) [\overline{\sigma}_{11}(x) \overline{\sigma}_{22}(x) - \overline{\sigma}_{12}(x) \overline{\sigma}_{21}(x)] + \sin(\theta_1 + \theta_2) [\overline{\sigma}_{11}(x) \overline{\sigma}_{21}(x) + \overline{\sigma}_{12}(x) \overline{\sigma}_{22}(x)]
= \cos K(x,y) \sin \Psi_{12}(x) - \sin K(x,y) \cos \Psi_{12}(x)
= \sin \Psi_{12}(y).$$
(2.16)

From (2.15) and (2.16), we know that there exists an orthogonal matrix H(x,y) with $\det H(x,y) = 1$ such that $(\sigma_1^*(x,y) \ \sigma_2^*(x,y)) = H(x,y)\overline{\sigma}'(y)$, where $\overline{\sigma}'(y)$ is the transpose of $\overline{\sigma}(y)$. So,

$$H(x,y) = (\sigma_1^*(x,y) \ \sigma_2^*(x,y))[\overline{\sigma}'(y)]^{-1}, \tag{2.17}$$

obviously, $H \in C(\mathbb{R}^2 \times \mathbb{R}^2)$ and, since H is orthogonal, H is contractive.

Take $c(x,y) = \sigma(x)H(x,y)\sigma(y)$, construct $\widehat{L} \sim (\widehat{a},\widehat{b})$ as (1.3), then by Lemma 1 we know \widehat{L} is a coupling operator of L^1 and L^2 .

Step 2 Now we begin to study the properties of our specified c(x,y). If x = y, by (2.1)-(2.6) and (2.17), H(x,y) = I, so

$$a_{ii}(x) + a_{ii}(y) - 2c_{ii}(x, y) = 2a_{ii}(x) - 2(\sigma(x)\sigma(x))_{ii} = 2a_{ii}(x) - 2a_{ii}(x) = 0; \qquad i = 1, 2.$$
 (2.18)

If $x \neq y$ and $x_i = y_i$ (i = 1 or 2), without loss of generality, assume $x_1 = y_1, x_2 \neq y_2$, then, by (2.1), $\theta_1 = 0$ and by the specified structure of H(x, y) and c(x, y), we have

$$H(x,y) = \left(\begin{pmatrix} \overline{\sigma}_{11}(x) \\ \overline{\sigma}_{12}(x) \end{pmatrix} \quad H_2(x,y) \begin{pmatrix} \overline{\sigma}_{21}(x) \\ \overline{\sigma}_{22}(x) \end{pmatrix} \right) [\overline{\sigma}'(y)]^{-1}, \tag{2.19}$$

and then

$$c(x,y) = \sigma(x)H(x,y)\sigma(y)$$

$$= \sigma(x)\left(\begin{pmatrix} \overline{\sigma}_{11}(x) \\ \overline{\sigma}_{12}(x) \end{pmatrix} \quad H_2(x,y)\begin{pmatrix} \overline{\sigma}_{21}(x) \\ \overline{\sigma}_{22}(x) \end{pmatrix}\right)\begin{pmatrix} \sqrt{a_{11}(y)} & 0 \\ 0 & \sqrt{a_{22}(y)} \end{pmatrix}$$

$$= \begin{pmatrix} \sigma_{11}(x) & \sigma_{12}(x) \\ \sigma_{21}(x) & \sigma_{22}(x) \end{pmatrix}\begin{pmatrix} \sigma_{11}(x) & (\cos\theta_2\overline{\sigma}_{21}(x) + \sin\theta_2\overline{\sigma}_{22}(x))\sqrt{a_{22}(y)} \\ \sigma_{12}(x) & (-\sin\theta_2\overline{\sigma}_{21}(x) + \cos\theta_2\overline{\sigma}_{22}(x))\sqrt{a_{22}(y)} \end{pmatrix}, \tag{2.20}$$

the computation in (2.20) used the fact: $\overline{\sigma}_{ij}(x) = \frac{\sigma_{ij}(x)}{\sqrt{a_{ii}(x)}}$, i, j = 1, 2. By (2.20), together with the condition (1), we have

$$c_{11}(x,y) = \sigma_{11}^2(x) + \sigma_{12}^2(x) = a_{11}(x) = a_{11}(y). \tag{2.21}$$

So, by (2.18) and (2.21) we have

$$a_{ii}(x) + a_{ii}(y) - 2c_{ii}(x, y) = 0. (2.22)$$

for all $x, y \in \mathbb{R}^2$ with $x_i = y_i$, i = 1 or 2.

Step 3 By Lemma 2 and Lemma 3, it is easy to see that the matrix $c(\cdot, \cdot)$ we constructed in step 1 be locally Lipschitz continuous, so there exists $0 < C_m < \infty$ such that

$$|a_{ii}(y) - a_{ii}(z)| + 2|c_{ii}(x, y) - c_{ii}(x, z)| \le C_m(|y_1 - z_1| + |y_2 - z_2|)$$
(2.23)

holds for $i = 1, 2, x, y, z \in [-m, m]^2$ uniformly.

Step 4 In this step, for \widehat{L} , we check the remained conditions of (3), and then finish the proof of the main theorem. Given $x, y \in [-m, m]^2$, let $z^1 = (x_1, y_2)$, $z^2 = (y_1, x_2)$, by (2.22)

$$a_{ii}(x) + a_{ii}(z^i) - 2c_{ii}(x, z^i) = 0, \qquad i = 1, 2;$$

then, by (2.23)

$$|a_{ii}(x) + a_{ii}(y) - 2c_{ii}(x, y)|$$

$$= |a_{ii}(x) + a_{ii}(y) - 2c_{ii}(x, y) - a_{ii}(x) - a_{ii}(z^{i}) + 2c_{ii}(x, z^{i})|$$

$$\leq |a_{ii}(y) - a_{ii}(z^{i})| + 2|c_{ii}(x, y) - c_{ii}(x, z^{i})|$$

$$\leq C_{m}(|y_{1} - z_{1}^{i}| + |y_{2} - z_{2}^{i}|)$$

$$= C_{m}|x_{i} - y_{i}|, \qquad i = 1, 2.$$
(2.24)

Take $\rho_m(u) = C_m u$, we have $\rho_m(0) = 0$ and $\int_0^1 \rho_m^{-1}(u) du = \infty$, now (2.24) is just (1.5), by (3), the main theorem follows. \square

Acknowledgement Special thanks go to professor Wang fengyu and professor Chen mufa for their selfless help and useful advices.

References

- [1] Chen, M.F. and Wang, F.Y., On order-preservation and positive correlations for multidimensional diffusion processes, *Prob. Theory Rel. Fields*, **95**(1993), 421-428.
- [2] Herbst, I. and Pitt, L., Diffusion equation techniques in stochastic monotonicity and positive correlations, Prob. Theory Rel. Fields, 87(1991), 275-312.
- [3] Wang, F.Y. and Xu, M.P., On order-preservation of couplings for multidimensional diffusion processes, *Chinese J. Appl. Prob. Stat.*, 13(2)(1996), 142-148.
- [4] Chen, M.F. and Li, S.F., Coupling methods for multidimensional diffusion processes, Ann. of Prob., 17(1)(1989), 151-177.
- [5] Chen, M.F., Optimal markovian couplings and applications, Acta Math. Sin. New Series, 10(3)(1994), 260-275.

二维扩散过程保序耦合的存在性

吴宪远

(北京师范大学数学系, 北京, 100875)

(首都师范大学数学系, 北京, 100037)

本文研究扩散过程轨道的保序性,对二维非退化扩散过程,我们证明其保序耦合存在,同时构造出一类保序算子.

关键词: 扩散过程,耦合,保序耦合.

学科分类号: O211.62.