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Abstract

This paper focus on order-preservation of paths for two diffusion processes. The existence of order-preserving
coupling for two-dimentional nondegenerated dlﬂ'usmn proc%sw is proved, furthermore, an order-preserving
coupling operator is given.
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§1. Intoduction

Stochastic monotonicity plays an important role in the study of Markov processes. As for multidimentional
diffusion processes, the study of order-preservation for semi-group (or distribution) is already very completed
see {1] and [2]); in [3], order-preservation for path (or order-preserving coupling) is well studied also. [3] presents
some sufficient conditions and necessary ones for couplings of a multidimentional diffusion process to preserve
‘the nat.ura.l partial order on R¢, the next problem is: when does a order-preserving coupling exist?

Let a(z) be a d x d-order matrix and b(z) € R? for each # € R%. Wc write L ~ (a,b) if

L, = % > au(z) + Z 1(15) z € R4 (1.1)
1<1,5<d .

Let L* ~ (a*,b%), k = 1,2. Assume that af],bf € C’(Rd) and the martingale problem for L* is well-posed,
k=1,2. Denote by Pf the semi-group of L*, k = 1,2. Write P} < P? if

P} f(z) < P2f(y) (12)

holds for all £ > 0, y > = and monotone function f € C(R%). Here > is the natural partial order and “f is
monotonic” means “ f(z) < f(y) if z < y” .
~ From (1], we know that P! < P2 iff the following two conditions hold:

(1) For anyi and j, a}; = a%; =: ai; and a;;(x) depends only on z; and ;.

(2) For any i, bl(x) < b2(y) for x <y with z; = y;.

On the other hand, let I ~ (&, b), where

1 1
e = (G0 W) e = () (19

for some c(z,y) with ¢;; € C(R? x R?) such that @(z,y) is nonnegative definite, where c(z; y)’ is the transpose of
c(':t, y). We call L a coupling operator of L! and L? (see[d]). {P*¥ : z,y € R4} is said to be a coupling process
(for simplicity, coupling) if it solves the martingale problem of a coupling operator.
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Definition 1 A coupling {P*¥} is said to preserve order, if
PoY(z, <y :VE20) =1, 2<y, z,y¢c 2% (14)

Obviously, the existence of order-preserving coupling implies P! < P2, hence, (1) and (2) are necessary for
a coupling preserving order. So, we will always assume that (1) and (2) hold. Next, when L' = L?, let the
marginal processes move together whenever they meet. In the case d = 1, all couplings prescrve order since the
two marginal processes must meet before the order is broken; in other case, i.e., d > 2, whether the marginal
processes preserve order or not is a question. In [3], for the case d > 2, not required L! = L2, WANG and XU
proved the following sufficient condition for a coupling to preserve order (Theorem 1.1, (I) of [3]).

(3) Let {P*™¥} be a coupling with operator L. Suppose that (1) and (2) hold and for each i < d, one of b}
and b? is locally Lipschitz continuous. {P™V} preserves order if for each m > 0, there exists a increasing function

pm € C(Ry) such that p,(0) =0, fol pm(u)~ldu = co and
lais(2) + ais(y) — 2cii(z,9)| < pmllzi —wil), i< d, z,y€[-mm] (1.5)

From (3) we get the following main theorem, which holds under the conditions (1) and (2).
Main Theorem Whend =2, ifal =a?2 =a =02 >0, 0, b! and b* are locally Lipschitz continuous,
then there ezists a coupling operator L ~ (@,b) as (1.8) such that for coupling {P*¥} with operator L, {P=¥}

preserves order.

§2. Proof of The Main Theorem

To prove the main theorem, first we construct a coupling operator L, which has marginal operators L! and
L?, and then prove that {P*¥}, which solves the martingale problem for i, preserves order. In other wo'rds, we
try to find a “good” enough c(z, y) € C(R? x R?). From now on, we assume ¢(z,y) in (1.3) has the specified
form: ¢(z,y) = o(x)H(z,y)o(y), where H(z,y) is a 2 x 2 matrix.

The following lemma tells us when the above specified ¢(z,y) is qualified to form a coupling operator L.

Lemma 1 Ford > 2, a = 02 be a positive definite d x d-order matriz, then @ be nonnegative definite iff
H(z,y) be contractive [ i.e., for alla € R, |Ha| < |o| ].

Proof The proof is given by Chen Mufa(see [5)):

For all a, € R%, we have

(o, 8)a (;) =daa+ faf +2(Hoa,08) = |oa|? + |08]? + 2(Hoa, ap).
Thus, @ is nonnegative definite iff
lof* + 161> + 2{He, ) 20, o, f € R%.

Setting 3 = —Ha, it follows that |Ha| < |a|. This proves the necessity. The sufficiency is easy. O

Before the proof of the main theorem, we give some notations, let

|1 — 1] |2 — 1] 2
Mz, y) = , Aa(r,y) = , z,y € R, z#vy; 21
Rl gy g LR 1 P R e L A @
K(z,y) = arccos —225) __ _ arccos—220) . po. (2.2)
van(z)az(z) Ve (y)as(y)
01(.’5,:(/) = AI-K'("I"ay)a 02(7:,:(/) = A?-K(m’ y)» T,y € Rza T ‘—lé Y, (2 3)
61(z,z) =0, b2(z, ) =0, re R2; .



0'11(.’L‘) 0'12(.’1:)

(x) = <511($) 312($)) _ | Veu(z) Vau(z) z€ R (2.4)

T21(z) To2(x) o91(z) 022() !

\/a22(-’13) \/022(53)

(note that ¢ is symmetric, but & is not.) let

__(cosf; —siné _f cosfy sinG, .
Hy(w,y) = (sin01 cos 6, ) Hy(z,y) = (—sinog cosfy )’ (2.5)
for z,y € R? with z # y; let
Hi(z,z) = lim Hy(z,y)=1, =zeR? i=1,2 (2.6)
yﬁ

The following lemmas give some remarks on the above notations.
Lemma 2 Under the assumptions of the main theorem, ¥(z) := arccos _onl@) in (2.2), T in (2.4)
Va1 (z)az(z)
and [0/ (y)]™! are all locally Lipschitz continuous.
Proof For ¥(z), we know that ¥(z) is the spatial angle of vectors o, (z) and o2(z) [the two row vectors
of matrix o(x)], write ¥;(z,y) as the spatial angle of vectors oi(x) and a;(y), i = 1,2. Given r € R?, let y € R?

| — yl| small enough, we have
1(z) — ¥(y)| < U1(z,y) + a(2,y). (2.7)
It is easy to see that

Vi(z,9) 11 . ‘
y—»z Ial(z) Ug(y)l < IO',(J‘)' - a,ﬁ(z)’ L,2. (28)

For all m > 0, since o is locally Llpschltz continuous, there exists C,, < oo such that
loi(2) = o) < Cmllz —9ll, i=1,2% z,ye[-m-1,m+1>2 (2.9)

- On the other hand, by the fact that a > 0 and a is continuous, we have

K, = suP{an('r) ?1(:5) 1z € [-m, m]z} < oo. (2.10)
By (2.7)~(2.10), we have |

v—'z le yll

for all € [~-m, m]?.
Now for any fixed z Y€ [-m, m]?, write I, as the line interval in [~m, m]? with endvertex « and y, Ve > 0,
Yw € Iy, by (2.11), let 6, > 0 satisfies: For all z with ||z — W|| < by,

[#(2) — ¥(w)| < (Km - o + €)1z — w]. » * (2.12)

Denote B(w, 6,,) as the open ball centered at w and with radius’é,,, then by the oompactness of ley, there exists
{wo T, W1, W W1, Wk =Y} C lpy such that -
' 8) lw_yuwi Nlo;_sw,, i # j either be empty or be singleton.
b) B(wz—l, wia) N B(wi, 6u,) # ¢ and

c) Uo B(w;, 6u,) Dl y;
i



take z; € B(w;i—1,0w,_,) N B(w;, b, ) Nlw,_, iy 1 <4 < k, by (2.12) and the above conditions a). b). c). we have

[¥(z) - ¥(y)|
<I¥(z) = U(z1)] + [(21) = W(wr)] + -+ + [Y(we1) — U(ze)] + | ¥(2) — U(y)|
S(Em - Cm + €)(llz = z1ll + 21 — wil] + -+ + lfwn=1 — 2l + |2 — 9ll)
=(Km - Cm + )z — 9.

Let € — 0, we have

[¥(2) = ¥(@)| < Km - Cm - ||z - yll, (2.13)

for all z,y € [-m,m]%. So, ¥(z) is locally Lipschitz continuous. The situation for & and [

we omit the detailed proofs. O

(y)]™?! are similar,

Lemma 3 6;(-,-) i = 1,2, defined in (2.8) are locally Lipschitz continuous.
Proof Note that As(-,-),i=1,2 in (2.1) are not locally Lipschitz continuous, but we have, for any z,y,2 €
R’withz#y, y#2 ' ‘

I’\l(may) - Al(i: Z)I
=|A2(z,y) — A2(z, 2)|

< lyh — 21] + ly2 — 2o _ (2.14)
|21 = 31| + |22 — 2l

Now, for any z,y, z € [—m,m]2, we observe |0;(z,y) — 61(x, z)|. When z =y, then

61(z,y) — 61(z, 2)| = M(y, 2)|¥(y) — ¥(2)|,
by the equivalence of L; distance and Ly distance and (2.13), there exists 0 < C(m) < oo such that
|61(z, ) — 61(z, 2)| < C(m)(lpr — 21| + y2 — 22l);
when z #£ y, then by (2.13) and (2.14)
|91(a:,y) - 91(1, Z)I
=[A1(z, y)(¥(z) — U(y)) — M(z, 2)(¥(zx) — ¥(2))|
<Mz, y) — de(z, 2)[12(x) — T(y)| + M(z, 2)| ¥ (y) — ¥(2)]
|31 — 21| + Jya — 2| .
< — — - —
S P TP _yzlc'(‘m)(lzl v1l + |22 — yol) + C(m)(|n — 21| + |y2 — 22)
=2C(m)(lpn — 211+ ly2 — 2a|).

Thus we get the Lemma for 8;(-, ), the situation for 82(-,-) is the same. DO

Proof of the main theorem We prove the main theorem by four steps.
Step 1 We construct a H € C(R? x R?) and, for all z,y € R?, H(z,y) is contractive.

4169
generality, we assume 0 < W13(x) < 7 and o1(x) lies in the anticlockwise direction of o2(z). So, since o(z) > 0,

we have deto(z) > 0 and det&(z) = sin ¥y5(). Write

For o(z) = ( o1(z) ) , = € R?, denote the spatial angle of vector oy(z) and o (x) by ¥12(z), without loss of -

U;(ﬂ?,y) = Hl(@',y) <511($)> , 0’;(.’1:, y) = Hz(m,y) (521(.’12) ) )

T12 (:B) T22 (.’D)



Note that the length |0} (z,9)| = |05(z,y)| = 1. Denote by ¥i,(z,y) the spatial angle of o}(z,y) and o3(z,y),

we have

cos Uiy(z,y) = (0] (2,y), 03(z,y))
_ [Hl(z, y) (;i;gg )] [Hz(m, y) (;j;g; )]
= cos(01 + 62)[011(2)T21(2) + T12(2)T22(x)] + sin(61 + 62)[F11(2)T22(x) — T12(z)F21(2)]
=cos K(z,y) cos U15(x) + sin K(z, y) sin ¥13(z)
=cos(K(z,y) — ¥12(z))
=cos VU2(y). , (2.15)

On the other hand, we have

sin W1y(z, y) = det(o} (z,y) 03(z,y))
Hi(z,y) <E“(x)) Ha(z,y) (EZI(z)) ’

G12(7) 27169 .
= cos(el + 02) [7'11 (.’22)322(2) -T2 (:1:)521 (.’Z)] + sin(01 + 82)[311(.’11)?21 (.'L‘) + ?12(.’11)522 (.’1:)]

=cos K (z,y) sin ¥15(z) —sin K(z,y)cos ¥12(x)
=sin ¥q2(y). (2.16)

From (2.15) and (2.16), we know that there exists an orthogonal matrix H (z,y) with detH(z,y) = 1 such that
(01(=,y) 03(z,y)) = H(z,y)7 (y), where T'(y) is the transpose of 7(y). So,
H(z,y) = (o1(z,y) o3(z, )0’ )]~ (2.17)
obvi0|uiy,,H € C(R? x R?) and, since H is orthogonal, H is contractive.
" Take c(z,y) = o(z)H(z,y)o(y), construct L ~ (@,b) as (1.3), then by Lemma 1 we know I is a coupling

operator of L! and L2,
' Step £ Now we begin to study the properties of our specified c(z,y). If z = y, by (2.1)-(2.6) and (2.17),

| H(z,y)=1,80
» a4i(z) + au(y) - 2¢54(2,y) = 2aii(z) - 2(0(z)0(2))ii = 2a:i(z) — 2a:(z) = 0; i=1,2. (2.18)

If 2 # y and 2, = y; (i = 1 or 2), without loss of generality, assume 1 = y1, 23 # yo, then, by (2.1), 6; = 0 and
by the specified structure of H (z,y) and ¢(z,y), we have

He = ((720) men (720)) ror, (2.19)

G12(T) T22(z)
- and then

c(x’ y) = O'(II!)H(Z', y)a(y) ’
o) [ (T11(2) Ta1(z) a11(y) 0
<0((Ga8) #e0(720)) (7Y vam)
o1(2) 012(z) (on(x) (c0s0:72(z) + sin 2522(x)) /022 (1)

= , 2.20
(021(9»') 022(35)) <U12($) (—sin 8,59 () + 00302522(-?))\/022(?/)) _ (220)
the computation in (2.20) used the fact: 7;;(z) = Lm, i,j = 1,2. By (2.20), together with the condition
AV a,-,-(x)
(1), we have
cu(z,y) = 031(2) + 0%(z) = an(z) = an(y). (2.21)

N



So, by {(2.18) and (2.21) we have
aii(z) + aii(y) — 2eii(z, y) = 0. (2.22)

for all z,y € R? with z; = y;, 1 =1 or 2.
Step 3 By Lemma 2 and Lemma 3, it is easy to see that the matrix ¢(,-) we constructed in step 1 be

locally Lipschitz continuous, so there exists 0 < Cy, < oo such that
laii(y) — aii(2)| + 2lci(z, y) — cii(z, 2)| < Cmllyr — 21| + |y2 — 22]) (2.23)
holds for i = 1,2, z,v, 2 € [-m, m]? uniformly. .
Step 4 In this step, for E, we check the remained conditions of (3), and then finish the proof of the main
theorem. Given x,y € [-m,m]?, let 2! = (21,2), 22 = (y1,2), by (2.22)
aii(a:) + aii(zi) - 26,','(27, Zi) =0, 1=1,2;
then, by (2.23)

lais(2) + aii(y) — 2cii(z, y)|
=lai(z) + ais(y) — 2c:(2,y) — aii(z) — ai(2*) + 2¢cii(z, 2]
<laii(y) — ais(2")| + 2lei(z, y) — cis(z, 2°)|
<Cm(ltn ~ 21| + ly2 — 23))
=Chnl|zi — %il, i=1,2. (2.24)

Take pm(u) = Cmu, we have p, (0) = 0 and fo ml(u) du = oo, now (2.24) is just (1.5), by (3), the main theorem
follows. 0O
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