Citation: | WANG T, Sun Y. Conditions for non-confounding and collapsibility within causal diagrams [J]. Chinese J Appl Probab Statist, 2024, 40(4): 625−643. DOI: 10.12460/j.issn.1001-4268.aps.2024.2022072 |
In observational studies, the phenomenon of confounding bias often leads to errors in the evaluation of causal effects, which in turn affects the accuracy of conclusions in causal inference. This paper details the properties of these two concepts of non-confounding and collapsibility in evaluating the true causal effects and proposes several conditions for non-confounding and collapsibility with knowledge of the constructed causal diagrams. In order to give characterizations for these conditions, we introduce the concepts of linearly ordered set and stability under conditioning and studies on certain properties. Based on the above arguments, we finally present sufficient conditions for non-confounding and collapsibility, respectively.
[1] |
WOLD H. Causality and econometrics [J]. Econometrica, 1954, 22(2): 162–177. doi: 10.2307/1907540
|
[2] |
GRANGER C W J. Investigating causal relations by econometric models and gross-spectral methods [J]. Econometrica, 1969, 37(3): 424–438. doi: 10.2307/1912791
|
[3] |
MANDEL J, PALFREYMAN N M, LOPEZ J A, et al. Representing bioinformatics causality [J]. Brief Bioinform, 2004, 5(3): 270–283. doi: 10.1093/bib/5.3.270
|
[4] |
ROBINS J M, SCHEINES R, SPIRTES P, et al. Uniform consistency in causal inference [J]. Biometrika, 2003, 90(3): 491–515. doi: 10.1093/biomet/90.3.491
|
[5] |
PEARL J, MACKENZIE D. The Book of Why: The New Science of Cause and Effect [M]. New York: Basic Books, 2018.
|
[6] |
ZHONG L. Sophisticated exclusion and sophisticated causation [J]. J Philos, 2014, 111(7): 341–360. doi: 10.5840/jphil2014111724
|
[7] |
GENG Z, LIU Y, LIU C C, et al. Evaluation of causal efects and local structure learning of causal networks [J]. Annu Rev Stat Appl, 2019, 6(1): 103–124. doi: 10.1146/annurev-statistics-030718-105312
|
[8] |
苗旺, 刘春辰, 耿直. 因果推断的统计方法 [J]. 中国科学: 数学, 2018, 48(12): 1753–1788.
|
[9] |
KLEINBAUM D G, KUPPER L L, MORGENSTERN H. Epidemiologic Research: Principles and Quantitative Methods [M]. New York: Van Nostrand Reinhold, 1982.
|
[10] |
WICKRAMARATNE P J, HOLFORD T R. Confounding in epidemiologic studies: The adequacy of the control group as a measure of confounding [J]. Biometrics, 1987, 43(4): 751–765. doi: 10.2307/2531530
|
[11] |
GENG Z. Collapsibility of relative risks in contingency tables with a response variable [J]. J R Stat Soc Ser B, 1992, 54(2): 585–93. doi: 10.1111/j.2517-6161.1992.tb01898.x
|
[12] |
BOIVIN J F, WACHOLDER S. Conditions for confounding of the risk ratio and of the odds ratio [J]. Am J Epidemiol, 1985, 121(1): 152–158. doi: 10.1093/oxfordjournals.aje.a113977
|
[13] |
GREENLAND S, PEARL J, ROBINS J M. Confounding and collapsibility in causal inference [J]. Stat Sci, 1999, 14(1): 29–46.
|
[14] |
LIU Y, FANG Z Y, HE Y B, et al. Collapsible IDA: Collapsing parental sets for locally estimating possible causal effects [C]// Proceedings of the 36th Conference on Uncertainty in Artificial Intelligence. 2020, 124 : 290–299.
|
[15] |
ROTNITZKY A, SMUCLER E. Efficient adjustment sets for population average treatment effect estimation in non-parametric causal graphical models [DB/OL]. (2019-12-01)[2022-05-04]. https://arxiv.org/abs/1912.00306.
|
[16] |
PEARL J. Causality: Models, Reasoning, and Inference [M]. New York: Cambridge University Press, 2009.
|
[17] |
ROBINS J M. A new approach to causal inference in mortality studies with sustained exposure periods—application to control of the healthy worker survivor effects [J]. Math Mod, 1986, 7(9-12): 1393–1512. doi: 10.1016/0270-0255(86)90088-6
|
[18] |
PEARL J. Causal diagrams for empirical research [J]. Biometrika, 1995, 82(4): 669–688. doi: 10.1093/biomet/82.4.669
|
[19] |
GENG Z, LI G W. Conditions for non-confounding and collapsibility without knowledge of completely constructed causal diagrams [J]. Scand J Stat, 2002, 29(1): 169–181. doi: 10.1111/1467-9469.00087
|
[20] |
HOLLAND P W, WANG Y J. Dependence function for continuous bivariate densities [J]. Commun Stati-theor M, 1987, 16(3): 863–876. doi: 10.1080/03610928708829408
|
[21] |
GENG Z, GUO J H, LAU T S, et al. Confounding, homogeneity and collapsibility for causal effects in epidemiologic studies [J]. Stat Sinica, 2001, 11(1): 63–75.
|
[22] |
PEARL J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference [M]. California: Morgan Kaufmann Publishers, 1988.
|
[23] |
CHICKERING D M. A transformational characterization of equivalent Bayesian network structures [C]// Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence. 1995: 97–98.
|
[24] |
NEAPOLITAN R E. Learning Bayesian Networks [M]. New Jersey: Prentice Hall, 2003.
|
[25] |
SHAN N, DONG X G. Identifying the causal effects of stochastic interventions by augmented causal networks [J]. Chinese J Appl Probab Statist, 2012, 28(6): 601–613. doi: 10.3969/j.issn.1001-4268.2012.06.006
|
[26] |
XIE X C, GENG Z. Collapsibility for directed acyclic graphs [J]. Scand J Stat, 2009, 36(2): 185–203. doi: 10.1111/j.1467-9469.2008.00627.x
|
[27] |
MAREK J D, FRANCISCO J D. Combining knowledge from different sources in causal probabilistic Models [J]. J Mach Learn Res, 2003, 4(6): 295–316.
|
[28] |
SADEGHI K. Stable mixed graphs [J]. Bernoulli, 2013, 19(5B): 2330–2358.
|
[29] |
KOLLER D, FRIEDMAN N. Probabilistic Graphical Models: Principles and Techniques [M]. Massachusetts: MIT Press, 2009.
|
[30] |
GREENLAND S, PEARL J. Adjustments and their consequences—collapsibility analysis using graphical models [J]. Int Stat Rev, 2011, 79(3): 401–426. doi: 10.1111/j.1751-5823.2011.00158.x
|