Statistical Inference on Competing Risks Model from EWD under Type-I PHCD
-
-
Abstract
In this paper, we investigate a competing risks model based on exponentiated Weibull distribution under Type-I progressively hybrid censoring scheme. To estimate the unknown parameters and reliability function, the maximum likelihood estimators and asymptotic confidence intervals are derived. Since Bayesian posterior density functions cannot be given in closed forms, we adopt Markov chain Monte Carlo method to calculate approximate Bayes estimators and highest posterior density credible intervals. To illustrate the estimation methods, a simulation study is carried out with numerical results. It is concluded that the maximum likelihood estimation and Bayesian estimation can be used for statistical inference in competing risks model under Type-I progressively hybrid censoring scheme.
-
-