LI Qifang, SU Zhifang, . Estimation of Partial Functional Linear Regression Model under Dependent Condition[J]. Chinese Journal of Applied Probability and Statistics, 2022, 38(6): 904-918.
Citation: LI Qifang, SU Zhifang, . Estimation of Partial Functional Linear Regression Model under Dependent Condition[J]. Chinese Journal of Applied Probability and Statistics, 2022, 38(6): 904-918.

Estimation of Partial Functional Linear Regression Model under Dependent Condition

More Information
  • Corresponding author:

    SU Zhifang, E-mail: suzufine@hqu.edu.cn

  • Partial functional linear regression model refers to a type of regression machine that contains mixed functional and numerical data at the input and numerical data at the output. In the existing partial function linear regression machine estimation algorithm, it is assumed that functional data sample follow independent and identical distribution, which is inconsistent with the dependent characteristics of functional data in the financial and other fields. Therefore, the article first proposes two data-driven functional principal components representation methods for function data, then the regression coefficient function is regularized, and finally the estimation of the partial functional linear regression machine is transformed into the estimation of the multiple linear regression machine. The Monte Carlo simulation results show that the methods proposed in this paper have smaller parameter estimation errors and higher out-of-sample prediction accuracy when dealing with dependent data, the case analysis also shows the effectiveness in stock forecasting.
  • Related Articles

    [1]LI Qian, TAN Xiangyong, WANG Liming. Variable Selection in Multiple Functional Regression Model with Autoregressive Errors[J]. Chinese Journal of Applied Probability and Statistics, 2024, 40(4): 588-607. DOI: 10.12460/j.issn.1001-4268.aps.2024.2022069
    [2]LIU Xuan, MA Haiqiang. Detecting Changes in the Functional Linear Regression Model[J]. Chinese Journal of Applied Probability and Statistics, 2023, 39(4): 475-490. DOI: 10.3969/j.issn.1001-4268.2023.04.001
    [3]ZHANG Chen, WANG Zhanfeng, WU Yaohua. Dependent Robust Functional ANOVA Model with t Process[J]. Chinese Journal of Applied Probability and Statistics, 2023, 39(1): 73-92. DOI: 10.3969/j.issn.1001-4268.2023.01.005
    [4]WANG Minghui, LIU Xiangdong, LI Yin. A Semiparametric Estimation of a Regression Function in the Partially Linear Autoregressive Model[J]. Chinese Journal of Applied Probability and Statistics, 2020, 36(1): 26-40. DOI: 10.3969/j.issn.1001-4268.2020.01.003
    [5]WENG Yuling, YU Ping, ZHANG Zhongzhan. Composite Quantile Regression for Functional Linear Models with Dependent Errors[J]. Chinese Journal of Applied Probability and Statistics, 2019, 35(4): 360-372. DOI: 10.3969/j.issn.1001-4268.2019.04.003
    [6]DING Hui, XU Wenchao, ZHU Hanbing, WANG Guochang, ZHANG Tao, ZHANG Riquan. Review of Regression Analysis for Functional Data[J]. Chinese Journal of Applied Probability and Statistics, 2018, 34(6): 630-654. DOI: 10.3969/j.issn.1001-4268.2018.06.007
    [7]DING JianHua. Estimation on Monotone Partial Functional Linear Regression[J]. Chinese Journal of Applied Probability and Statistics, 2017, 33(4): 433-440. DOI: 10.3969/j.issn.1001-4268.2017.04.008
    [8]ZHANG JingHua, XUE LiuGen. Quadratic Inference Functions for Generalized Partially Linear Models with Longitudinal Data[J]. Chinese Journal of Applied Probability and Statistics, 2017, 33(4): 409-416. DOI: 10.3969/j.issn.1001-4268.2017.04.007
    [9]YU Ping, ZHANG ZhongZhan, DU Jiang. Estimation in Functional Partial Linear Composite Quantile Regression Model[J]. Chinese Journal of Applied Probability and Statistics, 2017, 33(2): 170-190.
    [10]ZHOU YingChun, ZHENG XianLin. Local Nonlinear Parametric Model for Characterizing Shape of Functional Data[J]. Chinese Journal of Applied Probability and Statistics, 2017, 33(1): 67-90.

Catalog

    Article views (261) PDF downloads (328) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return