SUN Hongxiang, CENG Wenqu. Discrete Hausdorff Dimension of The Double time Set of Intersection of Stable Random Walk[J]. Chinese Journal of Applied Probability and Statistics, 1995, 11(1): 20-26.
Citation: SUN Hongxiang, CENG Wenqu. Discrete Hausdorff Dimension of The Double time Set of Intersection of Stable Random Walk[J]. Chinese Journal of Applied Probability and Statistics, 1995, 11(1): 20-26.

Discrete Hausdorff Dimension of The Double time Set of Intersection of Stable Random Walk

  • Let Xnn≥0 be a stable random work which is relative to the function of regularvariation bn)=n1/βS(n), and A_\beta^d=\left\(n, m) \in Z_<:^2 X_n=X_n n, nA βα is investigated. Ae a result, it is proved that \operatornamedim_H\left(A_β^\alpha\right) \stackrela . s=\left\\beginarrayl1 \quad \text 当 d>\beta \text 时 \\ 2-\fracd\beta \quad \text 当 d \leqslant \beta \text 时 \endarray\right..
  • loading

Catalog

    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return