ON INCREMENTS OF SUMS OF INDEPENDENT RANDOM VARIABLES
-
Graphical Abstract
-
Abstract
In this paper the well-known Skorokhod embedding theorem is used to consider the increments of partial sums of independent (not necessarily identically distributed) random variables when the r-th (0<r≤1)moment generating function exists or the 2nd moment exists but (2+δ)th does not for any δ>0. The results obtained are ideal. It is particularly worth to mentioning that the method in this paper is also available for weakly dependent random variables.
-
-