Abstract
Consider the model Y=(Y1, …, Yn)’=1.β+ε=(β,…,β)’+ (ε1,…,εn)’, where 1=(1, …, 1’), ε1,…., εn are independent, E(εi)=0, E(εi2)=σ2, E(εi3)=0, E(εi4)=34, i=1, …, n, -∞<β<∞, 0<σ2<∞. The necessary and sufficient conditions that (Y’A1Y, Y’A2Y) and (I’Y, Y’A1Y, Y’A2Y) are admissible for (σ2,σ2+β2) and (βσ2, σ2+β2) within the olass Y’A1Y, Y’A2Y: A1, A2≥0 and I’Y, Y’A1Y, Y’A2Y:I∈ Rn, A1, A2≥0 axe given respeetively. In comparision with the meshed used in other papers, our method is a bit simpler to comfirm or diseonfirm the admissibility of a linear estimator among linear estimators or a quadratio estimator among quadratio estimators.