The Existence Of UMVIQUE For An Unknow Parameter in Multivariate Linear Model
-
Graphical Abstract
-
Abstract
Let Y=X1BX'2+ Uε,Eε=0,be a multivariate linear model, whereX1 andBX'2 are known matrics, B is an unknown matrix and e is a random matrix. Assume thatε=(ε1,…,εn)',\vec\epsilon=\widehat=\left(\varepsilon_1^\prime, \cdots, \varepsilon_n^\prime\right)^\prime and\mathrmE(\vec\varepsilon \vec\varepsilon)=I \otimes \Sigma, where \Sigma \geq 0 is an unknown covariance matrix. This paper gives a sufficient and necessary condition for \vecY^\prime(MAM)\vecY to be the uniformly minimum variance invariance quadratic unbased estimation (UMVIQUE) of tr(CΣ), where M=I-X_1 X_1^+ \otimes X_2 X_2^+ and C≠0 is an arbitrary symmetric matrix. As corollary, the sufficient and necessary conditions for UMVIQUE of tr(CΣ) to be exist and tr(CΣ*) to be the UMVIQUE of it(CΣ) are given.
-
-