ON THE MOMENTS OF A KIND OF ELLIPTICAL MATRIX DISTRIBUTIONS
-
Graphical Abstract
-
Abstract
Let X be an m×n random matrix, n≥m and S=XX’. If Γ∈Om,\Gamma X \stackreld= X then for any integer k we get E(Sk)=ckIm cov(vec Sk)=αkIm2+βkKm2+γkQm2 Where αk,βk,γkandck are some constants, \beginaligned K_m 2 & =\sum_i j=1^m H_i \otimes H_i j^\prime ; \\ Q_m^2 & =\sum_i j=1^m H_i j \otimes H_i j ;\endaligned here Hij denotes the m×m matrix with hij=1 and all other elements zero and \otimes denotes Kroncker producte. Some special αk,βk,γkandck are found.
-
-