THE LAW OF THE ITERATED LOGARITHM FOR B-VALUED I. I. D. R. V.’ S INDEXED BY Tθd
-
Graphical Abstract
-
Abstract
Let B be a real separable Banach space and X a B-valued random variable. Set \mathbbN^d=\left\\barn=n_1, \cdots, n_d\right) ; ni=1,2,…,i=1,…,d andT_\theta^d=\left\\barn \in \mathbbN^d ; \barn=\left(n_1, \cdots, n_d\right)\right.,θni≤ny≤θ-1n4,i≠j,i,j=1,…,d, where d≥2 and 0<θ<1. In this paper, we discuss four forms of the LIL for B-valued i.i.d.r.v.’ s indexed by Tθi (i.e. BLIL(θ,α)1,BLIL(θ,d)2,CLIL(θ.D)1andGLIL(θ,d)2) and obtain necessary and sufficient conditions for X to satisfy, respectively, BLIL(θ,α)1,BLIL(θ,d)2,CLIL(θ.D)1andGLIL(θ,d)2.
-
-